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Smoothened is a key receptor of the hedgehog pathway, but the roles of
Smoothened in cardiac development remain incompletely understood. In
this study, we found that the conditional knockout of Smoothened from the
mesoderm impaired the development of the venous pole of the heart and
resulted in hypoplasia of the atrium/inflow tract (IFT) and a low heart
rate. The blockage of Smoothened led to reduced expression of genes critical
for sinoatrial node (SAN) development in the IFT. In a cardiac cell culture
model, we identified a Gli2–Tbx5–Hcn4 pathway that controls SAN
development. In the mutant embryos, the endocardial-to-mesenchymal tran-
sition (EndMT) in the atrioventricular cushion failed, and Bmp signalling
was downregulated. The addition of Bmp2 rescued the EndMT in mutant
explant cultures. Furthermore, we analysed Gli2+ scRNAseq and Tbx5−/−

RNAseq data and explored the potential genes downstream of hedgehog
signalling in posterior second heart field derivatives. In conclusion, our
study reveals that Smoothened-mediated hedgehog signalling controls
posterior cardiac progenitor commitment, which suggests that the mutation
of Smoothenedmight be involved in the aetiology of congenital heart diseases
related to the cardiac conduction system and heart valves.
1. Introduction
The heart, as the first functional organ during development, serves as a pump
that delivers nutrients and oxygen to the embryo. Cardiac progenitor formation
and differentiation are essential for heart development. During early gastrula-
tion, a subset of mesodermal cells leaves the primitive streak and is destined
to a cardiac fate [1]. Later during development, at approximately E7.5, the lat-
eral anterior splanchnic mesoderm forms crescent-shaped clusters of cells
consisting of the first and second heart fields (first heart field: FHF; second
heart field: SHF) [2,3]. The SHF lies medial and dorsal to the FHF. As cardiac
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development proceeds, the bilateral progenitors coalesce at
the ventral midline and form a primitive heart tube. The
heart tube elongates and loops through the addition of SHF
progenitors from the arterial and venous poles [3,4]. The pro-
genitors in the anterior SHF (aSHF) give rise to the right
ventricle and outflow tract (OFT) at the arterial pole, whereas
the posterior SHF (pSHF) progenitors contribute to the
posterior portion of the heart, which includes the atrioventri-
cular (AV) canal, atria and inflow tract (IFT) at the venous
pole [5–7].

The hedgehog (Hh) pathway has been implicated in
cardiac development in mammals through activation of
Smoothened (SMO)-mediated downstream signalling
events. Smo−/− mutant embryos fail to turn and are arrested
at approximately E9.0 with a linear heart tube [8]. A global
removal of Shh or the inactivation of Smo with Mef2cCre/+ in
aSHF or with Gli1CreERT2 leads to atrial septal defects due to
loss of the dorsal mesenchymal protrusion (DMP) [9,10]. It
has been reported that Tbx5 acts upstream or parallel to Hh
signalling in cardiac progenitors and controls DMP formation
at E10.5 [11]. Lineage tracing has indicated that Hh-receiving
cells labelled at E6.5–E7.5 contribute to the AV canal,
common atrium and IFT and to the other cardiac portions
[12]. DiI labelling and clonal analysis has revealed that car-
diac progenitors in pSHF contribute to the AV canal, atrium
and IFT [5]. However, the function of Hh signalling in the
pSHF during the development of the posterior portion of
the heart remains incompletely elucidated.

In this study, we determined the role of Hh signalling in
the cardiac mesoderm during early cardiac development.
We used Mesp1Cre/+ to abrogate the activity of Smo in the
murine cardiac mesoderm. The inactivation of Smo resulted
in hypoplasia of the IFT, common atrium and AV cushion.
The mutant embryos also exhibited a low heart rate. We
found that the loss of Smo impaired the developmental poten-
tial of cardiac progenitors due to downregulation of Tbx5 in
the pSHF. Genes critical for sinoatrial node (SAN) develop-
ment were downregulated in the IFT of the mutant hearts.
A Gli2–Tbx5–Hcn4 axis required for SAN development was
identified. We also found that Bmp2 expression was
decreased in the mutant AV canal myocardium, and in
explant cultures, the endocardial-to-mesenchymal transition
(EndMT) defect was rescued by treatment with Bmp2. More-
over, we analysed Gli2+ scRNAseq and Tbx5−/− RNAseq data
and explored the potential genes downstream of Gli2 that are
associated with cardiac contraction.
2. Material and methods
2.1. Animals
Smoflox/+ (SmoF/+) (JAX: 004526), Mesp1Cre/+ (Cat#: RBRC01145)
and Tie2Cre/+ animals were previously generated and main-
tained on a 129, TT2/ICR and B6/KM genetic background,
respectively [1,13,14]. To specifically inactivate Smo in
the mesoderm, we bred SmoF/+;Mesp1Cre/+ animals with
Smoflox/flox (SmoF/F) animals to generate SmoF/F;Mesp1Cre/+

mutant embryos. To abrogate Smo in the endothelium, we
bred SmoF/+;Tie2Cre/+ animals with SmoF/F animals to generate
SmoF/F;Tie2Cre/+ mutant embryos. In all related experiments,
control refers to stage-matched embryos that are either Cre(+)
and F/+, or F/F but Cre(−), unless otherwise specified. Noon
on the day at which a vaginal plug was observed was
regarded as embryonic day 0.5 (E0.5). The embryonic stages
for each experiment are indicated in the figures or legends,
and the embryo sexes were unknown at the time of harvest.
All the animals were housed in a pathogen-free environment,
and all the animal experiments were performed according to a
protocol approved by the Institutional Animal Care and Use
Committee of Xinxiang Medical University.

2.2. Dissection, histology and immunostaining
Embryos at desired stages were dissected in either cold
diethyl polycarbonate (DEPC)-treated phosphate-buffered
saline (PBS) or room-temperature PBS and fixed for 2–16 h
in 4% paraformaldehyde (PFA) at 4°C. The embryos were
then dehydrated through an ethanol gradient, cleared with
xylene, oriented and embedded in paraffin. Subsequently,
the embryos were cut into serial sections and stained with
hematoxylin and eosin (H&E). Immunostaining was per-
formed according to the manufacturer’s instructions. The
sections were subjected to antigen retrieval before the appli-
cation of blocking reagents and subsequent primary
antibodies. Primary antibody information is provided in
electronic supplementary material, table S1.

2.3. EdU assay
Timed pregnant mice received an IP injection of EdU (Ribo-
bio) 2 h prior to embryo dissection. Immunostaining of
EdU was performed on paraffin serial sections according to
the manufacturer’s instructions. EdU kit information is
provided in the electronic supplementary material, table S1.

2.4. Whole-mount in situ hybridization
Whole-mount and section in situ hybridization (ISH) were
performed as previously described [15,16]. Mouse DNA tem-
plates (Tbx5, Wnt2, Hcn4, Isl1, Nkx2.5, Myl7, Meis1, Arid3b,
Bmp2 and Twist1) were amplified by PCR from correspond-
ing cDNA and subcloned into the pBlueScriptSK or pCR2.1
vector with the indicated primers and used to generate
probes (electronic supplementary material, table S1); the plas-
mids are available upon request. After fixation, the embryos
or sections were treated with 10 µg ml−1 proteinase K,
re-fixed in 4% PFA/0.2% glutaraldehyde solution and prehy-
bridized twice at 68°C for 30 min. The specimens were then
hybridized overnight at 70°C with digoxigenin (DIG)-
labelled antisense RNA probes. The following day, the
embryos/sections were washed, blocked and incubated over-
night with alkaline phosphatase (AP)-conjugated anti-DIG
IgG. AP activity was detected using BM purple (Roche).
The embryos/sections were postfixed in 4% PFA/0.2%
glutaraldehyde prior to visualization.

2.5. Quantitative RT-PCR (qRT-PCR)
Total RNA was isolated from IFT and cultured cells with
TriPure (Roche) and converted to cDNA with a SuperScript
III cDNA Synthesis Kit (Invitrogen) according to the manufac-
turer’s instructions. The primers were selected from
PrimerBank or self-designed (electronic supplementary
material, table S1). qPCR was performed using SYBR Green,
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and the relative expression level was normalized to β-actin
using the ΔΔCt method.
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2.6. Explant culture
Explant culture was performed according to a previous
report [17]. AV canals from E9.5 hearts were dissected and
cultured on collagen gels for up to 50 h. For rescue assays,
Bmp2 (100 ng ml−1) was added to the culture medium. The
dissection and explant culture were repeated at least three
times.
 sob
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2.7. Measurement of heart rate
E9.5 heart tubes (or embryos) were dissected in DMEM con-
taining 10% FBS, penicillin (100 units ml−1) and streptomycin
(100 units ml−1). The heart tubes or hearts were then trans-
ferred to a prewarmed medium (37°C) and incubated in a
humidified incubator (supplied with 5% CO2 and 95% air)
for 1 h. After incubation, the beating heart tubes (or hearts)
were taken out for video recording, and the heart rates
were measured.
2.8. Cell culture
P19CL6 cells were cultured as previously described and dif-
ferentiated in 1% dimethyl sulfoxide (DMSO) [18]. Briefly,
the cells were maintained in an α-minimal essential
medium (Thermo Fisher) supplemented with 10% fetal calf
serum (HyClone), 4 mM L-glutamine, penicillin (100 units
ml−1) and streptomycin (100 units ml−1) at 37°C in a humidi-
fied incubator containing 5% CO2 and 95% air. To induce
cardiac differentiation, 1% DMSO was added to the P19CL6
culture medium. For transient transfection, P19CL6 cells
were cultured in a differentiation medium for 2 days. On
the third day, gene overexpression assays were conducted
via the transfection of Gli2 (pCEFL3xHAmGli2 [19]) Gli1
( pcCDNA3.1-Gli1, YouBio) or Tbx5 ( pTbx5-IRES-hrGFPII,
homemade, the mouse Tbx5 coding sequence was cloned
into IRES-hrGFPII) using Lipofectamine 3000 (Thermo
Fisher) according to the instruction manual. Briefly, after 2
days of differentiation, P19CL6 cells were seeded into a
24-well culture plate at a density of 1.5 × 105 well−1. After
12–14 h, the cells were transfected with 500 ng of pCEFL3x-
HAmGli2, pcDNA3.1-Gli1 or pTbx5-IRES-hrGFPII and
incubated for another 48 h under differentiation conditions
before harvest. Cells transfected with the empty vector or
vehicle were used as control. For the Smoothened inhibition
assay, the transfection step was replaced by the addition of
sonidegib (working concentration: 10 µM) to the cells in a
24-well plate. The cells were tested, and no mycoplasma
contamination was found. All cell assays were performed in
duplicate or triplicate, and the experiments were repeated
at least three times.
2.9. Bioinformatic analysis
Gene ontology (GO) expression analysis was performed
using the DAVID Bioinformatics Resources and WEB-based
GEne SeT AnaLysis Toolkit.
2.10. Statistical analysis
All the data are presented as the means ± SEMs from at least
three independent experiments. Unpaired two-tailed Stu-
dent’s t-tests or Mann–Whitney tests were used for the
statistical analyses.
3. Results
3.1. Smo and its main downstream transcription factors

are expressed in the cardiac mesoderm
We first analysed the expression patterns of Smo and its
downstream transcriptional factors in the early developing
mouse. At E7.0–E7.5, Smo and its downstream transducers
Gli1 and Gli2 were observed in the mesodermal germ layer
(Smo: figure 1a; Gli1 and Gli2: electronic supplementary
material, figure S1A–C) and in other germ layers. By E8.0–
E8.25, Smo, Gli1 and Gli2 were expressed in the cardiac
mesoderm (figure 1b,c,d,e, and g,h, respectively). Although
the expression of Smo was barely detected by E8.5 (electronic
supplementary material, figure S1D–D00), Gli1 and Gli2
expression was present in the atrium/IFT and the connected
dorsal mesoderm at E8.5 (figure 1f,i).

3.2. Hh signalling is required for IFT and common
atrium development and AV cushion formation

To determine the function of Hh signalling in cardiac pro-
genitors, we specifically abrogated Smo activity in the
mesoderm using Mesp1Cre/+ mice.

SmoF/F;Mesp1Cre/+ (Smo mKO) mutant embryos were
grossly indistinguishable from their littermate controls by
E8.5. At E8.75, although embryonic turning and gut tube clo-
sure appeared to be normal (electronic supplementary
material, figure S2), a small primitive atrium was observed
in the mutant heart (figure 2a,c). The gross atrial defect was
present after E9.5 (figure 2e,g). Moreover, the OFT and right
ventricle derived from the anterior secondary heart field
and the left ventricle derived from FHF exhibited a reduction
in size and impaired cardiac looping as the embryo devel-
oped (electronic supplementary material, figure S3). The
survival rate indicated that the viability of the mutant
embryos began to decline at E10.5 (electronic supplementary
material, table S2).

We then conducted a histological analysis of the hearts at
different stages. In this study, we were particularly interested
in pSHF development. Serial sections indicated that the
mutant embryos had smaller AV canals and atria and shorter
IFTs than the controls at E8.75 (approx. 16 somite stage) and
E9.5 (figure 2b,d,b1,d1 and f,h,f1,h1, respectively). At E8.75,
mesenchymal cells were barely detectable in the AV cushions
of both the control and mutant embryos (figure 2b2,d2). By
E9.5, mesenchymal cells had formed in the AV cushions of
the control embryos (figure 2f,f2). However, no or very few
mesenchymal cells were found in the mutant AV cushions
(figure 2h,h2).

We further quantitatively assessed the morphological
defects of the posterior portions of the developing hearts.
The lengths of the dorsal myocardial walls (IFT + atrium +
AV canal, midsagittal section) were significantly decreased
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in the mutant hearts (E8.75, control: 404.70 ± 34.07 µm,
mutant: 278.7 ± 18.77 µm, n = 6, p = 0.0019; E9.5, control:
537.00 ± 4.11 µm, mutant: 376.00 ± 20.35 µm, n = 5–6, p <
0.0001) (figure 2i,j ). We also measured the areas of the ventri-
cle, atrium and IFT in midsagittal sections. The area ratios for
the atrium and IFT relative to the left ventricle were signifi-
cantly smaller in the mutant hearts than in the controls
(E8.75, control: 0.5120 ± 0.0331, mutant: 0.2560 ± 0.0375,
n = 5, p = 0.0009; E9.5, control: 0.4800 ± 0.0450, mutant:
0.2400 ± 0.0250, n = 4–5, p = 0.0034) (figure 2k,l ).

Taken together, these results demonstrate that mesoder-
mal Smo controls atrial and IFT development and AV
cushion formation in developing hearts.

3.3. Loss of Smo in the mesoderm impairs the
developmental potentials of cardiac progenitors
in the pSHF

Given that the Smo mKO mutants phenocopy Tbx5 homozy-
gous mutants with respect to the posterior developing heart
(i.e. the primitive atrium and IFT) [20], we examined the
expression of Tbx5 in early mutant embryos. Whole-mount
ISH showed that Tbx5 expression was reduced in the pos-
terior portion of the cardiac crescent at the 2–4 s stage
(approx. E8.0) (figure 3a,b). Wnt2 is regulated by Tbx5 and
is required for development of the cardiac posterior pole
[21]. At E8.0–E8.25, the expression of Wnt2 was reduced in
the Smo mKO mutants (figure 3c,d ).

Hcn4 (hyperpolarization-activated cyclic nucleotide-gated
potassium channel 4) is a marker of the FHF and expressed at
the cardiac crescent at the approximately 2–4s stage [22]. Tbx5
and Hcn4 expression domains mostly overlap in the FHF [23].
Whole-mount ISH indicated that Hcn4 expression in the car-
diac crescent of the controls was comparable to that found in
the Smo mKO mutants (figure 3e) at the approximately 2 s
stage.

Isl1 marks the SHF during cardiogenesis [24]. At the
approximately 4 s stage, Isl1 and Tbx5 show overlap in their
posterior expression domains [23]. The expression of Isl1 in
the Smo mKO mutants did not differ from that in the controls
(figure 3f ).
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Nkx2.5marks cardiac progenitors in both the FHF and the
SHF, and its expression is maintained beyond birth. In the
Smo mKO mutants, the expression of Nkx2.5 was downregu-
lated at E8.0 in the cardiac crescent and later in the sinus
venosus (figure 3g,h), and by E9.5, Nkx2.5 expression returned
to a normal level (electronic supplementary material, figure
S4). These results are consistent with those found in the
Smo−/− mutants [8]. We then examined the expression of
MF20, a myosin heavy chain protein, by immunostaining
and found no difference between the controls and mutants
(electronic supplementary material, figure S5).

Thus, Smo is required for the expression of Tbx5 and
Nkx2.5, but not Isl1 andHcn4, in the cardiac progenitors located
in the posterior cardiac crescent. The results demonstrate that
Hh signalling controls the developmental potentials, not the
formation, of the cardiac progenitors in the pSHF.
3.4. Loss of Smo activation in the pSHF impairs the
development and function of the SAN

We assessed the activities of Hh signalling in the Smo mKO
mutants. Gli1 is a transcription activator and amplifies the
exiting Hh signalling, and it has been reported that Gli1 is
a direct transcriptional target of Gli2 [25]. Mouse genetic
studies have shown that Gli2 mainly functions as a strong
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activator in response to Hh signalling [26]. In Smo mKO mice,
the expression of Gli1 and Gli2 in the atrium/IFT was down-
regulated (figure 4a–d). These results suggested that Hh
signalling was repressed in the Smo mKO mutant hearts.

The IFT and atrium are mainly derived from the pSHF.
Tbx5 expression patterns the IFT and atrium at the cardiac
looping stage [27]. Hypomorphic Tbx5lox/+ mice display
sinus rhythm with premature atrial complexes and sinoatrial
pauses [28]. In the Smo mKO mutant mice, the expression
of Tbx5 in the IFT (including the SAN primordium) and
atrium was significantly decreased at E8.75 and E9.5, respect-
ively (E8.75, control: 96.46 ± 1.31%, mutant: 77.60 ± 4.12%,
n = 4–5, p = 0.0057; E9.5: control: 89.10 ± 2.13%, mutant:
55.17 ± 6.50%, n = 4, p = 0.0025) (figure 4e–i).
Cdk6, a cyclin-dependent kinase gene promoting G1-S pro-
gress, is transactivated by Tbx5 in the pSHF during atrium
development [11]. In the Smo mKO mutants, the expression
of Cdk6 was downregulated (E8.75, control: 86.90 ± 2.14%,
mutant: 68.52 ± 4.15%, n = 3, p = 0.0171; E9.5: control: 83.50 ±
0.07%, mutant: 59.09 ± 0.65%, n = 3, p < 0.0001) (figure 4j–n).

Hcn4 is required for the generation of pacemaker poten-
tials in SAN cells [29]. Compared with that in the controls,
the expression of Hcn4 in the IFT (including the SAN primor-
dium) and atrium of the Smo mKO mutants markedly
decreased at E8.75 and E9.5, respectively (E8.75, control:
82.86 ± 2.44%, mutant: 50.93 ± 4.07%, n = 3, p = 0.0025; E9.5:
control: 89.77 ± 2.47%, mutant: 63.89 ± 1.10%, n = 3–4,
p = 0.0004) (figure 4o–s).
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Figure 4. Impaired development of the cardiac conduction system in the IFT and atrium of the Smo mKO mutants. (a,b) Reduced expression of Gli1 in the atrium/IFT and
dorsal mesoderm (pSHF) of the Smo mKO mutants at E8.75 (arrowheads). (c,d ) Reduced expression of Gli2 in the atrium/IFT and pSHF of the Smo mKO mutants at E8.75
(arrowheads). (e,i) Reduced expression of Tbx5 in the IFT and atrium of the mutants (arrows: putative SAN primordium). ( j–n) Reduced expression of Cdk6 in the IFT and
atrium of the mutants (arrows: putative SAN primordium). (o–s) Reduced expression of Hcn4 in the IFT and atrium of the mutants (arrows: putative SAN primordium).
(t) Embryo showing the cardiac IFT dissected for qRTPCR. The dashed box indicates the IFT of E9.0 embryos. (u–w) qRT-PCR analysis of Tbx3, Shox2 and Tbx18 in the IFT of
the Smo mKO embryos. (x) Downregulated expression of Isl1 in the IFT and pSHF of the mutant embryos (arrow: IFT, arrowhead: pSHF). (y,z) Reduced heartbeats in the
mutant embryos (y: control and mutant hearts in culture from videos; z: statistics of the heart rate, dashed circle: putative sinoatrial node). Scale bar: 100 µm.
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To investigate the role of Hh signalling in SAN develop-
ment, we dissected out the IFT (figure 4t) and examined
the expression of the transcriptional factors critical for the
SAN gene programme. Lineage tracing has revealed that
the SAN develops from a subpopulation of Tbx3+ cells in
the IFT [30]. Tbx3 is required for induction of the SAN
gene programme [31]. The qRT-PCR results demonstrated
that the expression level of Tbx3 was significantly reduced in
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the IFT of the Smo mutant hearts (figure 4u). Shox2 expression
was restricted to the sinus venosus, including the SAN and the
venous valves of the developing heart. Shox2 null mutants
exhibit bradycardia and hypoplastic SAN [32]. In the Smo
mKO mutants, Shox2 expression was decreased (figure 4v).
Tbx18 appears not to regulate the SAN gene programme but
is required for SAN morphogenesis and deployment of the
progenitors [33]. The qRT-PCR results indicated that the
expression of Tbx18 in the IFT of the controls was comparable
to that in the mutants (figure 4w).

Isl1 acts upstream of the SAN signalling cascade to regulate
pacemaker progenitor differentiation [34]. Isl1 was detected in
the IFT (SAN primordium domain, on the right side) and
dorsal mesoderm in the controls at E9.5 (figure 4x), whereas
its expression was decreased in the Smo mKO mutants at this
stage (figure 4x). Meis1 is associated with the PR interval
[35], and its expression in the IFT was decreased in the mutants
(electronic supplementary material, figure S6).Myl7 is required
for cardiomyocyte contraction, and its expression was reduced
in the mutant IFT and atrium (electronic supplementary
material, figure S6). Moreover, the inactivation of Smo in the
mesoderm decreased the expression of Arid3b in the IFT (elec-
tronic supplementary material, figure S6).

Given that the genes critical for SAN development were
downregulated in the mesodermal Smo knockout heart, we
assessed the heart rate of E9.5 mouse embryos and found
that the heartbeats were reduced in the newly dissected
Smo mKO mutant embryos. We dissected the whole heart
and studied the cardiac contractions in detail under a micro-
scope. In the E9.5 control heart, the putative SAN beat
rapidly (figure 4y; electronic supplementary material, Video
S1, the dotted circles indicate the putative SAN), and the
AV canal myocardium was also beating. In the E9.5 Smo
mKO mutant heart, contraction of the putative SAN and
AV canal myocardium was slower (figure 4y; electronic sup-
plementary material, video S2, the dotted circle indicated the
putative SAN). Statistical analyses showed that the heart rates
of the control and Smo mKO mutants were 158 ± 14 b.p.m.
and 49 ± 45 b.p.m. (n = 5, p = 0.0020), respectively (figure 4z).
The significant difference in the cardiac rates demonstrated
that cardiac conduction was impaired in the Smo mKO
mutants.

Taken together, the results indicate that Smo controls the
commitment of pSHF progenitors to the SAN cell lineage.
3.5. Smo maintains Bmp2 expression to induce EndMT
during AV cushion formation

Bmp signalling is required for EndMT during AV cushion
formation [17,36,37]. Bmp2 is expressed in the AV myocar-
dium from E8.5 to E10.5. The deletion of Bmp2 with
Nkx2.5Cre/+ or Bmp type I receptor Alk2 with Tie2Cre/+ leads
to a failed EMT [17,37].

We examined Bmp2 expression in the developing hearts
by ISH and found that the expression of Bmp2 was reduced
in the myocardium of the AV canal of the Smo mKO mutants
at E9.0 (figure 5a and b, e and f ). We further checked the level
of phosphorylated-Smad1/5/8 (pSmad1/5/8) at E9.5 by
immunostaining. In the control embryos, most endocardial
cells and the overlying myocardium of the AV canal stained
positive for pSmad1/5/8 (figure 5c), whereas in the Smo
mKO mutant embryos, the staining was markedly reduced
(figure 5g).

Twist1, encoding a basic helix–loop–helix transcription
factor, is involved in the EndMT [37]. We thus examined
the expression of Twist1 in the AV cushion. In the controls,
Twist1 was expressed in the endocardium and derived
mesenchyme of the AV canal (figure 5d ). In the Smo mKO
mutants, Twist1 expression was diminished or markedly
reduced at E9.5 (figure 5h).

To determine whether Bmp2 is sufficient for induction of
the EndMT in the absence of Hh signalling, we performed a
rescue assay in explant culture, a well-established model for
studying the EndMT. In the control explants, a number of
invasive mesenchymal cells were found in the collagen gel
after 48 h in culture (figure 5i). By contrast, the mutant
explants had fewer invasive mesenchymal cells (figure 5j ).
Furthermore, the addition of 100 ng ml−1 Bmp2 to the Smo
mKO mutant explants significantly promoted invasive
mesenchymal formation (figure 5k–m), which suggested
that Hh signalling regulates the EndMT in the AV cushion
by modulating Bmp2 expression.

To test whether Smo expression in the endocardium is
required for AV cushion formation, we ablated Smo specifi-
cally in endocardial/endothelial cell lineages using Tie2Cre/+

mice. Interestingly, the mesenchymal cells in the AV cushion
of the Tie2Cre/+;SmoF/F mutants formed with no notable
defects by E9.75 (figure 5n–q, dashed boxes).

These results demonstrate that Smo signals in the myocar-
dium of the AV cushion to regulate the expression of Bmp2,
which induces the EndMT via lateral induction.
3.6. Analysis and identification of Hh signalling and its
potential downstream targets in the pSHF

To explore the gene regulatory network, we performed
loss- and gain-of-function studies using the P19CL6 cell
line, a well-established in vitro model for cardiomyocyte
differentiation. In cells treated with sonidegib (a selective
antagonist of Smo), the expression of Tbx5, Hcn4 and Bmp2
was decreased to 42.13 ± 32.34% (n = 6, p = 0.0043), 58.89 ±
11.84% (n = 6, p = 0.0008), 37.27 ± 6.12% (n = 5, p = 0.0184),
respectively (figure 6a). Gli2 is the main effector of Hh signal-
ling and is expressed in the cardiac mesoderm. In
Gli2-overexpressing cells, the expression of Tbx5, Hcn4 and
Bmp2 was increased to 811.20 ± 496.40% (n = 5, p = 0.0125),
513.80 ± 329.22% (n = 5, p = 0.0228), 854.75 ± 346.82% (n = 4,
p = 0.0016), respectively. In the Tbx5-overexpressing cells,
the expression of Hcn4 was increased to 246.00 ± 69.53%
(n = 4, p = 0.0020). However, Tbx5 did not affect Bmp2
expression (figure 6b). These results suggested that Gli2
controls pacemaker progenitor cell differentiation by increas-
ing Hcn4 expression, at least in part via Tbx5 induction.
Moreover, by examining the changed genes in the Tbx5
mutant pSHF (RNAseq data) [21,38], we found that Hcn4
expression in the pSHF was also reduced in the E9.5 Tbx5
mutants. We further evaluated the regulation of Gli1 by
Gli2. In Gli2-overexpressing cells, the expression level of
Gli1 was increased to 703.00 ± 154.00% (n = 3, p = 0.0025),
whereas in Gli1-overexpressing cells, the expression levels
of Tbx5 and Bmp2 were not altered (figure 6c).

Based on the results from our in vivo and in vitro studies, we
propose the regulatory network model shown in figure 6d. In the
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presence of Hh morphogen, patched1 terminates its inhibition of
Smo activity in the pSHF cardiac progenitors, leading to acti-
vation of the transcriptional factor Gli2. The Gli2 activator
translocates to the nucleus to activate Tbx5 and Bmp2 expression.
Tbx5 further activates the downstream gene Hcn4. The
expression of Bmp2 induced by Gli2 is Tbx5 independent.

Because Gli2 is expressed in scattered cardiac progenitors,
we analysed scRNAseq data of the E8.5 heart [39]. Among
the total 109 cardiomyocytes, eight Gli2+ positive cells were
identified. The expression of Tbx5, Hcn4 or Bmp2 was
detected in some Gli2+ cardiac progenitors. GO functional
cluster analysis revealed that approximately 780 genes
expressed in Gli2+ cardiac progenitors were involved in car-
diac development (figure 6e,f ). Forty-eight genes expressed
in Gli2+ cardiac progenitors were enriched in the cardiac con-
traction cluster. Of the 48 genes associated with cardiac
contraction, 21 genes were down or upregulated in the
pSHF of the Tbx5−/− mutants (figure 6g) [21]. Mutations in
Mybpc3 lead to abnormal cardiac muscle contraction and
poor relaxation [40]. A scRNAseq analysis revealed that
Mybpc3 expression is downregulated in the Tbx5−/− mutant
hearts (figure 6g). qRT-PCR analyses demonstrated that the
expression of Mybpc3 was reduced in the IFT of the Smo
mKO mutant hearts (figure 6h). Type 2 ryanodine receptor
(RyR2) controls calcium release, and RyR2 mutations have
been implicated in atrial fibrillation [41,42]. RyR2 expression
was markedly reduced in the IFT of the Smo mKO mutants
(figure 6h).

Thus,we identified theGli2–Tbx5–Hcn4andGli2–Bmp2axes,
which control SAN development and AV cushion formation,
respectively, andwe also analysed and validated the genes related
to the cardiac contraction in Gli2+ cardiac progenitors.

4. Discussion
We have demonstrated that Hh signalling is required for the
developmental potential of the cardiac progenitors and their
differentiation towards pacemaker cells within the SAN and
Bmp2+ cells within the AV canal myocardium.

4.1. Hh signalling controls the developmental
potentials of cardiac progenitors in the pSHF

In this study, we found that the inactivation of Smo in the
mesoderm reduces the de novo expression of Tbx5 in the
pSHF. Wnt2, a downstream target of Tbx5 [21], was also
mildly decreased in the Smo mKO mutants. However, the
loss of Smo did not affect the expression of Hcn4 and Isl1 at
the approximately E7.5–E8.0 stage. These results demon-
strated that Hh signalling is required for the developmental
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potentials but not the formation of the cardiac progenitors in
the pSHF. It is reported that Tbx5 acts upstream and parallel
to Hh signalling in the SHF [11]. The previous study [11]
showed that Hh-dependent genes are downregulated at a
later stage (E9.5) and that the defects are confined to the
DMP in Tbx5+/− mutants. Our data along with that obtained
in the previous study suggests that the regulation of the Hh
pathway by Tbx5 might constitute a feedback pathway.
4.2. Hh signalling controls SAN development and
function by regulating genes critical for SAN
progenitor commitment

A differential expression analysis of RNAseq data revealed
that Hcn4, Tbx3, Shox2, Isl1 and Tbx18 are enriched in the
SAN [43,44]. The SAN develops within the IFT domain and
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functions as a pacemaker. The electric impulses generated in
pacemaker cells spread across the atrial myocardium to
initiate contraction of the atria [33,45]. The activation pattern
of the cardiac conduction has been established by E9.5 before
the components of the cardiac conduction system are mor-
phological recognized [33].

Tbx5 and Hcn4 are required for the specification and
maturation of pacemaker progenitor cells, respectively [34].
Tbx3, Shox2 and Isl1 are also needed for SAN formation
and conduction [33,34]. Tbx18 does not modulate the SAN
gene programme but is needed for the formation of SAN pro-
genitor cells [34]. In this study, we demonstrated that Hh
signalling controls the expression of Hcn4, Tbx3, Shox2 and
Isl1. Furthermore, functional assay revealed that the heart
rates are significantly decreased in Smo mutant heart. By con-
trast, the expression of Tbx18 was not affected in the IFT of
Smo mKO mutant heart. These results suggest that Hh signal-
ling controls pacemaker progenitor cell commitment.

In addition, we measured cell proliferation at different
embryonic stages. The proliferation of cardiac progenitor
cells displayed a decreasing trend in the Smo mKO mutant
hearts at E8.25–E8.5 (phospho-histone H3; controls: 3.11 ±
0.41%, mutants: 2.62 ± 0.38%, n = 3, p = 0.2057). By E9.5, a
marked reduction of proliferation was found in the mutant
hearts (EdU incorporation; control: 24.74 ± 0.83%, mutant:
15.34 ± 3.76%, n = 3–4, p = 0.0088) (electronic supplementary
material, figure S7). It has been reported that Tbx5 controls
the expression of cell-cycle progression genes [11]. We thus
reason that Hh signalling might also control cardiac prolifer-
ation through Tbx5.

4.3. Hh signalling is required for appropriate AV cushion
formation by regulating Bmp2 expression

Multiple signalling pathways are involved in the EndMT of
the endocardium, and these pathways include Bmp/Tgfβ,
Notch, Vegf and calcineurin/NFAT [46]. In this study, we
demonstrated that Hh signalling controls myocardial Bmp2
expression, which is required for activation of the Bmp
pathway and initiation of the EndMT. Moreover, the admin-
istration of Bmp2 to the Smo mKO mutant AV cushion
rescued the transition defect, which suggested that Bmp2 is
both necessary and sufficient for induction of the EndMT
by Hh signalling.

It has been reported that the specification of the AV cush-
ion and the initiation of the EndMT proceed normally in
Shh−/− hearts [10]. Shh is expressed in the notochord and
node, and Ihh is expressed in the definitive endoderm and
node [47]. Shh and Ihh compound mutants arrest shortly
after gastrulation and phenocopy Smo mutants. Shh and Ihh
compound mutants or Smo mutants exhibit a more severe
phenotype than Shh−/− mutants [8]. We speculate that Shh
and Ihh are both required for Smo-mediated EndMT during
heart development.

4.4. Analyses of the Hh signalling pathway in the pSHF
We identified the Gli2Tbx5–Hcn4 axis which is essential for
pacemaker progenitor cell differentiation and cardiac conduc-
tion. Although the expression of Tbx5 in the pSHF was
reduced in the Smo mKO mutants, its expression in the
anterior heart field was less affected. These results suggest
that the regulation of Tbx5 by Hh signalling is context-
dependent. We noted that the expression levels of Hcn4 in
the heart field were comparable between the control and
Smo mKO mutant embryos at E8.0. As the embryo develops,
the expression of Hcn4was decreased in the IFT and common
atrium of the mutant hearts, which suggested Tbx5 is
required for the maintenance of Hcn4 expression.

The cardiac progenitor cells in the pSHF contribute to the
AV canal myocardium, atrium and IFT. The specific
expression of Bmp2 in the AV canal myocardium induces
the EndMT by lateral induction. We demonstrated that the
overexpression of Gli2 enhanced Bmp2 expression. The results
indicate that Gli2 is required in cardiac progenitors for Bmp2+

cell lineage determination.
At E8.5 and E9.5. Gli1-lacZ, Gli2-lacZ and Gli3 mRNA are

dominantly expressed in the lateral plate mesoderm (pSHF)
and contribute to atrium/IFT development [48]. In Gli2−/−;
Gli3−/− double knockout embryos, the expression of Tbx5 is
reduced in the lateral plate mesoderm [48], which is consist-
ent with our findings in Smo mKO mutants. These results
indicate that Gli2 and Gli3 redundantly regulate the
expression of Tbx5 (figure 6d ). In future study it would be
interesting to explore whether Bmp2 expression is downregu-
lated in the AV canal myocardium of the Gli2 and Gli3
compound mutant embryos. Gli1 and Gli2 exhibit similar
expression patterns during cardiogenesis. Gli1zfd/zfd and
Gli1lz/lz are viable with no obvious defects [49,50]. Both Gli1
and Gli2 were downregulated in the developing heart of
the Smo mKO mutants (figure 4a–d ), and the overexpression
of Gli2 in P19CL6 cells increased the expression of Gli1
(figure 6c), which is consistent with the in vivo results [25].
Unlike Gli2, the overexpression of Gli1 did not alter the
expression of Tbx5 and Bmp2 in the cell model (figure 6c).
Thus, the in vivo and in vitro results indicate that Gli1
might not be essential for the formation of the SAN and
AV cushion. In this study, we also found that Hh signalling
controls other core transcriptional factors required for SAN
node development. Single-cell ChIP-seq would be a powerful
tool for dissecting the regulatory mechanism in the future.

We analysed scRNAseq data from the E8.5 mouse
embryonic heart [39]. Isl1, Tbx5, Hcn4, Mef2c, Fgf8, Wnt2,
Osr1 and Hoxb1 were expressed in Gli2+ cells, which
suggested that Hh responding cells contribute to both the
aSHF and pSHF. Moreover, we predicted the potential down-
stream genes in the pSHF regulated by Gli2. Among these
target candidates, Hcn4 was validated by a gain-of-function
assay. The qRT-PCR results demonstrated that the expression
of Mybpc3, a potential downstream target gene, was reduced
in the IFT of the Smo mkO heart. Gli2+, Tbx5+, Shox2+ triple-
positive cells were identified in E8.5 cardiomyocytes. We
found that the expression of Shox2 was reduced in Tbx5−/−

and Smo mKO pSHF cardiomyocytes. The data suggest that
Gli2 might regulate the expression of Shox2 via Tbx5.

In summary, our data demonstrate that Hh signalling in
the pSHF controls the activity of Gli2 to regulate the develop-
ment of the SAN and the formation of the AV cushion.
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