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Abstract: 
Epigenetics has recently emerged as a critical field for studying how non-gene factors can influence the traits and functions of an organism. At 
the core of this new wave of research is the use of computational tools that play critical roles not only in directing the selection of key 
experiments, but also in formulating new testable hypotheses through detailed analysis of complex genomic information that is not achievable 
using traditional approaches alone. Epigenomics, which combines traditional genomics with computer science, mathematics, chemistry, 
biochemistry and proteomics for the large-scale analysis of heritable changes in phenotype, gene function or gene expression that are not 
dependent on gene sequence, offers new opportunities to further our understanding of transcriptional regulation, nuclear organization, 
development and disease. This article examines existing computational strategies for the study of epigenetic factors. The most important 
databases and bioinformatic tools in this rapidly growing field have been reviewed. 
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Background: 
Decoding the genomes of human and other model organisms have 
produced increasingly large volumes of data relevant for 
understanding natural selection, development and evolution, the 
causation of disease, and the interplay between genotypes and 
phenotypes during development. Collectively, this information reflects 
the current state of knowledge on the genetic and genome attributes of 
organisms. The huge amount of accumulated data represents a 
goldmine for the study of molecular evolution [1],[2], disease-specific 
mutations [3], [4], [5] and biodiversity measurements [6], [7]. While 
much progress has been made in genomic research, increasing 
evidence have shown that the study of gene factors by itself is 
insufficient in explaining all aspects of heritable changes in phenotype, 
gene function or gene expression. It is now known that chemical 
modifications of DNA and histones can modify gene activity through 
alterations in chromatin structure that blocks or promotes 
transcriptional initiation [8]. Enzymes involved in this process include 
DNA methyltransferases, histone deacetylases, histone acetylases, 
histone methyltransferases and the methyl-binding domain protein 
MECP2 [9].  
 
The need to identify chemical modifications that can alter gene 
activity and expression has given rise to the field called epigenetics. 
This form of second-order genetics provides a whole new dimension 
to genes beyond the genome, and proposes a control system of genetic 
‘switches’ for regulating gene expression. Epigenetics, first defined by 
Conrad Waddington in 1942, refers to the study of epigenesis, i.e., 
how genotypes give rise to phenotypes through programmed change 
[10]. At the heart of this new wave of research is the “study of 
mitotically and/or meiotically heritable changes in gene function that 
cannot be explained by changes in DNA sequence” [11]. Recent data 
have shown that epigenetic modulations are essential in many 
developmental processes, including tissue formation, organ formation 
and allele-specific gene expression [12]. Changes in these normal 
epigenetic patterns can deregulate patterns of gene expression, 
resulting in adverse clinical outcomes [13]. Increasing evidence 
indicates that such mechanisms play important roles in psychiatric 
disorders [14], obesity [15], life experiences [16] and the etiology of 
diseases such as cancer [17], schizophrenia [18], Beckwith-
Wiedemann syndrome [19] and Alzheimer’s disease [20].  
 
Epigenetics is highly combinatorial in nature due to the array of 
diverse control elements. The human genome contains ~23,000 genes 
that are active in specific cells at precise moments. Cells control gene 
expression by wrapping DNA around clusters of core histone proteins 
to form nucleosomes [21], which are then organized into chromatin. 

Changes to the structure of chromatin affect gene expression patterns: 
genes are inactivated when the chromatin is condensed, and they are 
expressed when chromatin is relaxed [9]. These dynamic chromatin 
states are controlled by DNA methylation [22], histone modifications 
(e.g., methylation, acetylation, phosphorylation, sumoylation and 
ubiquitylation) [23], [24] and DNA-binding proteins (e.g., polycomb 
and trithorax group proteins) [25]. Most of these epigenetic 
modification mechanisms have been shown to be regulated by non-
coding RNAs (ncRNAs), such as microRNAs (miRNAs), small RNAs 
(guide RNAs, piRANS) and large RNAs, which play important roles 
in events including transposon activity and silencing, position effect 
variegation, X-chromosome inactivation and paramutation [26]. 
 
With the rapid increase in the number of new modification sites being 
discovered each year, it has been suggested that post-translational 
modification may affect almost every solvent-accessible histone 
residue, allowing a high level of variability for signal transduction 
events [21], [27]. This enormous combinatorial complexity [28] 
requires an extraordinarily large number of experiments, such as DNA 
methylation profiling, for systematic studies. Already, a number of 
large-scale initiatives have been established for the systematic 
mapping of epigenomic and related data. These include projects by the 
Alliance for the Human Epigenome and Disease (AHEAD) Task Force 
[29], the ENCyclopedia Of DNA Elements (ENCODE) Project 
Consortium [30], the Human Epigenome Project (HEP) Consortium 
[31] and the Highthroughput Epigenetic Regulatory Organisation In 
Chromatin (HEROIC) Project Consortium [32]. The huge quantity of 
experimental data generated by these and other projects requires 
appropriate bioinformatics infrastructure spanning general and 
specialist databases, basic bioinformatics tools and sophisticated 
algorithms for meaningful analysis, modeling and prediction of DNA-
protein interactions. Pioneering efforts in the field of computational 
epigenetics have been reviewed by Bock and Lengauer [33]. Here, we 
review major tools and resources that have been developed in this 
rapidly growing field, with special analysis on the latest trends and 
future directions. 
 
Data sources for Epigenetic research: 
Large amount of data relevant for epigenetic research are available in 
scientific literature, molecular databases and case reports. Scientific 
literature serves as the primary source of data, providing high-level 
descriptions of biological entities and processes. As of January 2009, 
PubMed contained over 288,000 records related to epigenetic research. 
This information exists in the form of unstructured free text that makes 
the extraction of biologically meaningful information difficult. As the 
amount of electronically accessible textual material accumulates, the 
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quality of epigenetic research will be increasingly dependent on the 
ability to retrieve quality data to facilitate the discovery of new facts, 
interpretation of results, and design of experiments [34]. 
 
The number and size of molecular databases have been increasing 
steadily. A total of 1,078 molecular biology databases are currently 
(March 2009) described in the Nucleic Acids Research online 
Molecular Biology Database Collection [35]. These include 3 
nucleotide sequence databases, 60 databases on transcriptional 
regulatory sites and transcription factors, 65 databases on microarray 
data and gene expressions, and 114 databases on human genes and 
diseases. The international collaborative GenBank [36], DNA Data 
Bank of Japan (DDBJ) [37] and EMBL [38] serve as worldwide 
repositories for nucleotide sequences of different origins. 
 
A number of epigenetic databases have been reported. We have 
reviewed some of these databases (Table 1 in supplementary 
material). DNA methylation databases are useful for studying the 
covalent modification of a cell’s genetic material, particularly in the 
complex genomes of higher order vertebrates. Important sources of 
DNA methylation databases include MethDB [39], MethPrimerDB 
[40] and MethyLogiX [20], which contains information on DNA 
methylation genes and patterns across different species, individuals, 
tissue and cell types and phenotypes. Histone databases are important 
for research in the compaction and accessibility of eukaryotic and 
probably archaeal genomic DNA. The National Human Genome 
Research Institute (NHGRI)’s Histone Database [41], [42] serves as a 
central data source for histones and histone fold-containing proteins. 
Cancer methylation databases are valuable for analyzing irregular 
methylation patterns that are correlated with various cancers. Major 
data sources include PubMeth [43] and MeInfoText [44], which 
contains information on gene methylation profiles of specific cancer 
types. Online resources for cell-, disease-, organism- and stage-
specific gene expression patterns are also available. The National 
Center for Biotechnology Information (NCBI)’s Gene Expression 
Omnibus (GEO) [45] serves as a central repository for high-
throughput gene expression data. It also stores high-throughput 
functional genomic data such as genome copy number variations, 
chromatin structure, methylation status and transcription factor 
binding. The Gene Expression Nervous System Atlas (GENSAT) [46] 
provides information about the precise distributions of specific genes 
and proteins throughout brain development. StemBase [47] details 
gene expression data of stem cells and derivatives from rat, mouse and 
human. The Gene Normal Tissue Expression (GeneNote) database 
[48] contains complete gene expression profiles in healthy human 
tissues (bone marrow, brain, heart, kidney, liver, lung, pancreas, 
prostate, skeletal muscle, spinal cord, spleen and thymus) using the 
Affymetrix GeneChip HG-U95 set. The BloodExpress database [49] 
details information about mouse blood cell expression profiles, 
including both progenitors and terminally differentiated cells, derived 
from array experiments and independent studies. Such information 
allows for the identification of dynamic changes in gene expression 
during cell differentiation down the hematopoietic hierarchy. Other 
data sources exist and have been reviewed elsewhere [50]. 
 
Computational tools for Epigenetic research: 
Numerous computational, mathematical and statistical methods, 
ranging from data mining, sequence analysis, molecular interactions, 
to complex system-level simulations, have been reported in the 
literature. Efforts have been channeled into the text mining of 
epigenetic information, though development in this field is still at an 
early stage. Current efforts are primarily focused on the extraction and 
analysis of DNA methylation patterns in various cancer types [43], 
[44]. Traditional sequence analysis tools, such as ClustalW [51], 
BLAST software suite [52], BLAT (BLAST-Like Alignment Tool) 
[53] and MEGA (Molecular Evolutionary Genetics Analysis) [54], 
allow for the inference of functional, structural, or evolutionary 
relationships between DNA or protein sequences. Such methods are 

employed in diverse applications, and have been applied to homology 
searches of ortholog candidates for the KEGG/GENES database [55], 
predicting the secondary structures of histone deacetylases [56], 
homology modeling of DNA methyltransferases [57], and optimizing 
the activities of histone deacetylase inhibitors [58].  
 
Computational models have been used extensively to support various 
epigenome mapping initiatives such as chromatin immunoprecipitation 
(ChIP)-on-chip [59], ChIP-seq [60] and bisulfite sequencing [61]. 
ChIP-on-chip is a microarray-based platform that allows the 
identification of DNA-protein binding sites on a genome-wide level 
[59]. The main computational tools that have been developed for 
ChIP-on-chip analysis are focused on the identification of ChIP 
enrichment sites. Examples include Chromatin ImmunoPrecipitation 
On Tiled arrays (ChIPOTle) [62], TileMap [63] and Ringo [64]. ChIP-
seq is a variant of ChIP-on-chip that uses high-throughput DNA 
sequencing for detecting differences between sample and control DNA 
[60]. Although such an approach requires minimal data processing and 
allows analysis to be made directly from sequence read counts [65], a 
critical issue that needs to be resolved is the accurate mapping of short 
sequence reads to the reference genome. Algorithms that can identify 
regions of similarity between sequences such as BLASTN [52] and 
BLAT [53] are valuable for speeding up this process. Efforts are also 
channeled into the development of specialized algorithms for short-
read assembly. Examples include QPalma [66] and AMOScmp [67]. 
Bisulfite sequencing [61] employs the use of bisulfite treatment of 
DNA to detect cytosine methylation patterns. Computational tools that 
focus on bisulfite sequencing include methods for data processing and 
quality assessment. The basic methods for bisulfite sequence analysis 
allow the quantitative measurement of cytosine methlylation levels 
[68], estimating the effectiveness of bisulfite treatment [68], and 
visualization of results [69]. Collectively, the developed algorithms 
enable the analysis of DNA methylation patterns of different tissue 
types [70] and the genome-wide comparison of histone modification 
sites identified by various epigenome mapping initiatives [71]. 
 
Computational analysis of DNA methylation: 
DNA methylation plays an important role in the regulation of genomic 
stability and cellular plasticity [72]. It is essential for normal cell 
development and is associated with numerous fundamental processes 
including genomic imprinting [73], X-chromosome inactivation [74], 
maintenance of repetitive elements [75] and carcinogenesis [76]. DNA 
methylation is mainly accomplished by the transfer of methyl groups 
from S-adenosyl-methionine to the 5 position of the cytosine 
pyrimidine ring in a reaction catalyzed by a DNA methyltransferase or 
methylase [77]. In mammals, four active DNA methyltransferases 
(DNMT) have been identified, namely DNMT1, 2, 3A and 3B [78], 
[79]. DNMT1 is the most commonly found DNA methyltransferases 
in mammals, and predominantly methylates hemimethylated CpG di-
nucleotides. DNMT2 has been identified as a DNA methyltransferases 
homolog that methylates cytosine-38 in the anticodon loop of aspartic 
acid transfer RNA instead of DNA [80], while, DNMT3A and 
DNMT3B are de novo methyltransferases that act on both 
hemimethylated and unmethylated CpG sites [78], [79].   
 
A variety of methods for the modeling and prediction of DNA 
methylation patterns have been reported. An example is the use of 
linear discriminant analysis and artificial neural networks (ANN) for 
the classification of individual lung cancer cell lines [81]. The use of 
support vector machines (SVM) for genomic mapping of methylation 
patterns for all 22 human autosomes has also been described [82]. In 
recent years, there has been increasing focus on the development of 
computational technologies that facilitates the prediction of protein 
methylation sites. These include procedures based on support vector 
machines (SVM), hidden Markov models (HMM), ANNs, naïve 
bayes, logistic regression, K-nearest neighbors and decision trees [83], 
[84], [85]. However, the implementation of such systems is difficult 
due to the lack of publicly available experimental data for model 
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construction. Many such systems are currently focused on arginine and 
lysine methylations as their mechanisms are currently the best 
understood and experimental data is most readily available [84], [85]. 
Epigenome prediction pipeline that integrates DNA methylation, 
polymerase II preinitiation complex binding, histone H3K4 di- and 
trimethylation, histone H3K9/14 acetylation, DNase I hypersensitivity 
and SP1 binding has also been reported [86]. Currently, the relative 
value of such computational tools remains unknown. As experimental 
data becomes increasingly available, the usefulness of these 
technologies will become clearer and it should be expected that more 
integrative models will be made available and that current models will 
also be refined. 
 
Computational analysis of histone modifications: 
Histones are the main protein components of chromatin. They play a 
key role in the compaction and accessibility of eukaryotic and 
probably archaeal genomic DNA [41], and are subject to a wide 
variety of post-translational modifications including methylation, 
acetylation, phosphorylation, sumoylation and ubiquitylation [23], 
[24]. Covalent modifications of the histone proteins take place 
primarily within the histone amino-terminal regions that protrude from 
the surface of the nucleosome as well as the globular core region [87], 
[88]. Histone modifications may affect chromosome function via two 
distinct mechanisms [89]. First, they may alter its electrostatic 
properties, resulting in a change in the histone structure or its DNA-
binding activity. Second, they may generate binding surfaces for 
protein recognition modules, and help engage specific functional 
complexes to their relevant sites of action. 

There is intense interest in the use of informatics for the analysis, 
modeling and prediction of histone modifications in DNA sequences. 
Cellular automata have been described for examining a variety of 
epigenetic modifications. For example, Sneppen and coworkers [90] 
reported the use of a simplified stochastic model to examine the 
conditions for bistability and heredity of nucleosome modification-
based epigenetic memory. The team demonstrated that robust 
bistability required cooperativity of two or more modified 
nucleosomes in the modification reactions, and that nucleosomes 
occasionally stimulate modifications beyond their neighbor 
nucleosomes. Comparative genomics has taken advantage of new 
technologies to help identify histone marks and regulatory elements in 
higher eukaryotic genomes. Schübeler and colleagues [91] have 
performed a genome-wide comparison of chromatin structures in 
higher eukaryotes. Their work revealed the existence of a binary 
pattern of histone modifications among euchromatic genes, with active 
genes being hyperacetylated at H3/4 and hypermethylated at H3, and 
inactive genes being hypomethylated and deacetylated at the same 
locations. Roh et al. [92] reported a genome-wide mapping technique 
to determine the distribution of lysine-9/14-diacetylated histone H3 in 
human peripheral T cells. The team showed that this form of 
chromatin modification is correlated with active gene promoters and 
with regulatory elements associated with gene expression. In a follow-
up study, the team extended their work to the genome-wide screening 
of conserved and non-conserved enhancers by histone acetylation 
patterns [93].  

 

 
Figure 1: The computational epigenetics paradigm. Existing data sources from epigenetic-related experiments are analyzed with computational 
strategies and methods for the simulation and prediction of epigenetic patterns. Computational data analysis generates new hypothesis and 
knowledge for the development of therapeutic, diagnostic and prophylactic clinical tools.
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The design of machine-learning algorithms for locating histone-
occupied as well as acetylation, methylation and phosphorylation 
positions in DNA sequences has also been well reported [71], [94], 
[95], [96], [97]. Some of these tools have also been applied to ChIP-
on-chip and ChIP-seq datasets. An example is the use of HMMs to 
infer the states of histone modification changes at each genomic 
position based on ChIP fragment counts [71]. The use of wavelet 
analysis combined with HMMs for the discovery of activating and 
repressive histone modifications using selected ChIP-on-chip datasets 
from the ENCODE project was also reported [98]. These algorithms 
allow the screening of histone marks in large sets of protein sequences, 
such as those encoded by the complete genomes of higher complexity 
organisms. In recent years, a number of structure-based techniques, 
including quantitative structure-activity relationship (QSAR) analysis 
[99], [100], homology modeling [101] and molecular docking 
techniques [102], for the design of epigenetic inhibitors were also 
described. Dynamic activities over the past two years have seen the 
development of at least five computational methods for the functional 
annotation of epigenetic factors [96], [103]. These tools are 
particularly useful for the understanding of epigenetic events, both 
within specific cell types and in an evolutionary context.  

 
Cancer informatics: 
Cancer progression is a form of somatic evolution in which certain 
mutations provide cancer cells with a selective growth advantage. It is 
now known that DNA methylation patterns in cancers generally 
display more variation compared with that of normal tissues [104]. 
Several studies have shown that aberrant methylation occurs in a 
tumor type-specific manner [105].  A number of cancer epigenetic 
projects are currently underway to identify novel methylation patterns 
that correlate with progression to malignancy. An example is the 
CancerDip Consortium, a research initiative funded by the 7th 
Framework Programme for Research and Technological Development 
of the European Commission (FP7), which employs the use of Methyl-
DNA immunoprecipitation (MeDIP) assays for identifying 
methylation patterns in different tumor types and the epigenetic 
machinery involved in establishing these abnormal patterns [106]. 
Genome-wide analysis of MeDIP data from colon (Caco-2) and 
prostate (PC3) cancer as well as several tumor cell lines have shown 
that tumor-specific methylated genes belong to distinct functional 
categories, possess common sequence motifs in their promoters and 
occur in clusters on chromosomes [107]. Abnormal DNA methylation 
within CpG islands is among the most frequent form of alterations in 
cancers. Experiments have now shown that entire CpG islands may 
become aberrantly methylated in cancer [108], and is mechanistically 
linked to histone methylation [109]. Bock and coworkers [110] have 
performed a detailed analysis of inter-individual stability and 
variations of DNA methylation profiles among healthy individuals 
using linear regression models and the EpiGRAPH web service 
(http://epigraph.mpi-inf.mpg.de/WebGRAPH/). This work showed 
that CpG islands may act collectively as emergent and bistable 
epigenetic switches for maintaining a CpG-island-wide ‘on’ or ‘off’ 
state. An example for tumor class prediction in human cancers was 
reported by Olek and colleagues [111], in which SVMs were trained to 
recognize the difference between T and B cell leukaemias and CD19+ 
B cells and CD4+ T cells obtained from healthy donors using a set of 
selected CpG sites. Other computational models for classifying cancer 
subtypes based on epigenetic marks were also reported. Specific 
examples include the use of SVMs for discriminating between acute 
lymphoblastic leukemia and acute myeloid leukemia [112], as well as 
the use of Manhattan distance and average linkage algorithms for 
hierarchical cluster analysis of human colorectal tumors [113]. 
 
Stem cell informatics: 
Stem cells are unspecialized cells that can either renew themselves 
through mitotic cell division or undergo differentiation into more 
specialized cells [114]. Two classes of mammalian stem cells are 
available: 1) embryonic stem (ES) cells, which are blastocyst-derived, 

pluripotent cells that can differentiate into all cell types except the 
extra-embryonic tissue [114], [115], and 2) adult stem cells, which act 
as a repair system for the body, replenishing specialized cells and 
regenerating damaged tissues [116]. Recent studies have shown that 
DNA methyltransferases [117] and Polycomb/Trithorax group 
response elements (PRE/TRE) [118], [119] possess epigenetic 
signatures that are important for the differentiation of both human ES 
cells and germ line stem cells. Of particular interest is the revelation 
that stem cells are the target cells for cancer, and epigenetic changes 
may occur long before they are distinguishable as tumor cells [120]. 
By unraveling the nature of epigenetic modifications, it is expected 
that this will lead to improved culture and differentiation technologies, 
as well as next-generation drugs that can directly manipulate stem 
cells in patients.  
 
Bioinformatic analysis of epigenetic marks in stem cells is at its 
formative stages. Analyses of up- and down-regulated gene clusters 
provide valuable information on the effect of exogenous control on ES 
cell state in human. Stanford and colleagues [121] have recently 
performed temporal expression microarray analyses of ES cells after 
the initiation of commitment and integrated these data with known 
genome-wide transcription factor binding. This work revealed a 
repressive model of ES cell maintenance, and helped define the 
regulatory balance that is needed for maintaining ES cell state. 
Ringrose and coworkers [122] performed an analysis of PRE/TREs in 
the Drosophila melanogaster genome and defined the sequence 
criteria that distinguish PRE/TREs from non- PRE/TREs. Using a 
series of weighted motifs, the team identified 167 candidate PRE/TRE 
sequences, which map to genes involved in development and cell 
proliferation. Position-specific matrices for predicting cis-regulatory 
elements were also reported, and used for studying PRE/TREs in 
Drosophila melanogaster [123]. 
 
Conclusion: 
Realizing the full benefits of the informatics revolution will require 
significant advances in the efficiency of which new data is discovered, 
processed, interpreted and made accessible to researchers. With the 
huge amount of epigenetic-related experimental data generated by 
high throughput methodologies, the future will witness a shift towards 
the computational epigenetics paradigm (Figure 1). With the paradigm 
shift, one crucial issue lies in effective data annotation and 
management. Currently, a centralized repository for epigenetic-related 
data is still lacking. Resources like such will greatly facilitate 
computational studies on epigenetics. Another challenge in the field of 
computational epigenetics lies in the efficient processing of 
experimental data, which includes normalization and interpretation of 
data across various experiments from different research groups.  
 
To date, computational algorithms that model different aspects of 
epigenetic modifications [81]-[86] and disease [107]-[110] have been 
described. On the other hand, cellular automata have also been 
proposed for exploring a variety of epigenetic modifications [90]. 
With the explosion in the number, variety and sophistication of 
resources and analysis tools, the challenge lies in integrating the 
strengths and not the weaknesses of each approach. The next few years 
will see increased interest in the use of cluster computing, central 
(cloud) computing and distributed systems for large-scale epigenetic 
data analysis and screening. Computing grid technologies harnessing 
the resources of multiple computers in a network have been developed 
rapidly to solve high-throughput scientific research problem [124]. On 
the other hand, cloud computing technologies, which offers scalable 
resources on demand, have emerged in recent years to complement the 
rate of data output and drive the rate of data analysis and knowledge 
discovery [125]. The different bioinformatic and mathematical 
modeling approaches, in combination with advances in computational 
infrastructures, clearly could lead to improved understanding of 
epigenetic modifications at multiple levels of complexity, from the 
sub-cellular molecular level, to the cellular and systems level, and 
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beyond.  More importantly, research efforts in computational analysis, 
identification and classification of variations in epigenetic 
modifications contribute to further understanding of epigenetic-
associated diseases and consequently, the design of relevant 
diagnostic, therapeutic and prophylactic tools. One exciting 
possibility, based on the highly combinatorial nature of epigenetics, is 
the cataloguing of individuals’ genome and epigenome and the 
development of personalized or more specific drugs with lower 
toxicity and less side effects, paving the way for personalized 
medicine and a new era of “personal”-omics [126]. 
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Supplementary material 
Table 1. Some epigenetic and related databases reviewed in this article. 

 
 

Database  Description URL Ref 
MethDB Contains information on 19,905 DNA methylation content data 

and 5,382 methylation patterns for 48 species, 1,511 individuals, 
198 tissues and cell lines and 79 phenotypes. 

http://www.methdb.de [39] 

PubMeth Contains over 5,000 records on methylated genes in various 
cancer types. 

www.pubmeth.org/ [43] 

REBASE Contains over 22,000 DNA methyltransferases genes derived 
from GenBank. 

http://rebase.neb.com/rebase/ 
rebase.html 

[127] 

MeInfoText Contains gene methylation information across 205 human cancer 
types. 

http://mit.lifescience.ntu.edu.tw/ [44] 

MethPrimerDB Contains 259 primer sets from human, mouse and rat for DNA 
methylation analysis. 

medgen.ugent.be/methprimerdb/ [40] 

The Histone Database Contains 254 sequences from histone H1, 383 from histone H2, 
311 from histone H2B, 1043 from histone H3 and 198 from 
histone H4, altogether representing at least 857 species. 

http://genome.nhgri.nih.gov/ 
histones/ 

[42] 

ChromDB Contains 9,341 chromatin-associated proteins, including RNAi-
associated proteins, for a broad range of organisms.  

http://www.chromdb.org/ [128] 

CREMOFAC Contains 1725 redundant and 720 non-redundant chromatin-
remodeling factor sequences in eukaryotes.  

 
http://www.jncasr.ac.in/cremofac/ 

[129] 

The Krembil Family 
Epigenetics Laboratory 

Contains DNA methylation data of human chromosomes 21, 22, 
male germ cells and DNA methylation profiles in monozygotic 
and dizygotic twins. 

http://www.epigenomics.ca − 

MethyLogiX DNA 
methylation database 

Contains DNA methylation data of human chromosomes 21 and 
22, male germ cells and late-onset Alzheimer's disease. 

http://www.methylogix.com/ 
genetics/database.shtml.htm 

[20] 


