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Cognitive impairment (CI) is a common complication of Parkinson’s disease

(PD). The major features of Parkinson’s disease with cognitive impairment

(PD-CI) include convergence of α-Synuclein (α-Syn) and Alzheimer’s disease

(AD)-like pathologies, neuroinflammation, and dysbiosis of gut microbiota.

Porphyromonas gingivalis (P. gingivalis) is an important pathogen in

periodontitis. Recent research has suggested a role of P. gingivalis and

its virulence factor in the pathogenesis of PD and AD, in particular

concerning neuroinflammation and deposition of α-Synuclein (α-Syn) and

amyloid-β (Aβ). Furthermore, in animal models, oral P. gingivalis could cause

neurodegeneration through regulating the gut-brain axis, suggesting an oral-

gut-brain axis might exist. In this article, we discussed the pathological

characteristics of PD-CI and the role of P. gingivalis in them.
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Introduction

Parkinson’s disease (PD) is a prevalent neurodegenerative disease caused by the

death of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Cognitive

impairment (CI) is a common complication of PD non-motor symptoms, including PD

with mild cognitive impairment (PD-MCI) and PD dementia (PDD). PD-MCI, as an

independent risk factor for PDD (1), is characterized by the transitional state that fails

to meet the diagnostic criteria for PDD. A 5-year follow-up study of patients with PD

showed that the cumulative incidence of PD-MCI in patients aged ≥ 65 years is 41.3%

after 5 years, and the conversion rate of patients with PD-MCI progressing to PDDwithin

5 years is about 39–50% (2).

The pathogenesis of PD-CI is unclear. Current studies have found that PD-

CI-related pathologies include the deposition of α-Synuclein (α-Syn), Alzheimer’s

disease-type pathologies (amyloid-β, tau, and neurofibrillary tangles), and

neuroinflammation (3–5). Recently, many studies have shown a correlation

between Porphyromonas gingivalis (P. gingivalis) infection and PD (5–8).

Interestingly, P. gingivalis has recently been shown to be associated with cognitive
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impairment and a potential microbial driver in Alzheimer s

disease (AD) (9–15). Therefore, this review summarizes the

literature on the potential role of P. gingivalis in PD-CI

development and is aimed as a reference for further research

and therapy.

Porphyromonas gingivalis

Porphyromonas gingivalis is a Gram-negative, anaerobic,

and rod-shaped bacteria that colonizes the oral epithelium and

is an important component of subgingival microbiomes. P.

gingivalis is responsible for the chronic form of periodontitis

through its capacity to remodel the commensal bacterial

community, which promotes a state of dysbiosis (16). It

can engineer its environment or modify the host’s immune

response to modulate the entire ecosystem. It can also persist

in host tissues through unique and intricate mechanisms,

such as the alteration of inflammatory signaling pathways, the

complement system, the cell cycle, apoptosis, and the interaction

with various host receptors (17). During common activities,

such as brushing, flossing, chewing, and dental procedures

(18), P. gingivalis invades the vasculature from the infected

periodontal pocket. Furthermore, a study using an animal model

showed that it can also increase the permeability of the blood-

brain barrier (BBB) and facilitate access of bacteria into the

brain (19).

The strategies and pathogenicity of P. gingivalis largely rely

on its various virulence factors. Among these, the secretory

components and gingipains are major virulence factors,

consist of lysine-gingipain (Kgp) and arginine-gingipain (Rgp),

which play essential roles in host colonization, host defense

deactivation, tissue destruction, and nutrient acquisition (20).

In addition, lipopolysaccharide (LPS), a structural component,

is also a crucial pathogenic factor that can trigger the innate

immune response via the activation of toll-like receptors (TLRs),

leading to more lasting destruction of periodontal tissues

(21). P. gingivalis LPS induces the expression of interleukin

(IL)-6 and C-C motif chemokine ligand 2 (CCL2) in the

brain microvascular endothelial cells, which may contribute to

dysfunction of the BBB and subsequent neurological disorders

(22, 23). Furthermore, P. gingivalis LPS can induce IL-8

elevation (24) and IL-10 decline (25) in the brain, which is

consistent with cytokine changes in the cerebrospinal fluid

(CSF) of patients with PD (26). Indeed, gingipains and LPS

have attracted growing attention as virulence factors of P.

gingivalis and recent studies have found that these two factors

are present in the blood circulation and brain of PD and

AD populations (5, 27). In addition to neurodegenerative

diseases, studies have shown that P. gingivalismay be associated

with other systemic inflammatory diseases, such as type 2

diabetes mellitus, rheumatoid arthritis, and cardiopulmonary

disease (28).

Pathological characteristics of PD-CI

α-Syn and AD-type pathologies

Current neuropathological studies indicated that the

convergence of α-Syn and AD-type pathologies is the major

pathological features of PD-CI (4).

The misfolding and aggregation of aberrant α-Syn in the

patients’ brain are the major characteristics of PD (29) that

result in neuron loss and the clinical syndrome of idiopathic

PD (30). Moreover, it was found that pathogenic α-Syn can

transfer between cells leading to neurodegeneration (30–32).

The importance of α-Syn is further emphasized in PD-CI studies

which showed that α-Syn pathology is more extensive and severe

in PDD than in PD without dementia. PDD cases are almost

exclusively of the predominant stage of α-Syn pathology in

the limbic system or neocortex and α-Syn pathology level can

distinguish between PD and PDD (3, 33, 34). The progression

of α-Syn pathology stage or cortical α-Syn pathology burden is

highly correlated with the cognitive level decline (35–37).

However, despite α-Syn pathology being the major driving

force of the development in cognitive impairment in patients

with PD, AD pathology was also found to play an important

role in PD-CI (4). Many clinical studies revealed that the

tau concentration in the CSF is associated with cognitive

impairment in Parkinson’s disease (38–41). In some studies,

AD neuropathology seemed to be even more associated with

PDD than with α-Syn pathology, but most of these patients

with PD were assigned a diagnosis of PDD + AD (3, 4, 33).

In fact, α-Syn pathological levels in the cortex and limbic

system of patients with PDD + AD appeared to be higher

than those of patients with PDD without AD comorbidities. An

increased severity of cortical senile plaques (SPs) and burden of

neurofibrillary tangles (NFTs) were also related to an increased

cortical α-Syn pathological density (3, 33, 36, 42). Recently, Bassi

et al. demonstrated that amyloid-β (Aβ) deposits dramatically

accelerate α-Syn pathogenesis and spread throughout the brain

after injecting α-Syn preformed fibrils into mice with abundant

Aβ plaques. Recent pathological studies in vitro showed that

AD-related pathologies could exacerbates α-Syn seeding activity

and neurotoxicity (43, 44), suggesting an interaction between

α-Syn pathology and AD-type pathologies in PD-CI.

Neuroinflammation

In addition to α-Syn and AD pathology, neuroinflammation

is also a crucial factor in PD-CI. Although it is not

clear how inflammation contributes to the pathogenesis of

PD-CI, it is universally acknowledged that both central and

peripheral inflammations contribute to the progression of

neurodegeneration in PD-CI. A study by Lindqvist et al. (45)

indicated that PD non-motor features were associated with
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higher CSF levels of inflammatory markers. The C-reactive

protein (CRP) level in the CSF of patients with PDD was

significantly higher than that of patients with non-demented

PD (p = 0.032) (45). In addition, a large cohort study of

newly diagnosed patients with PD showed that higher levels

of interferon gamma (IFN-γ), TNF-α, and CRP in blood

are associated with a lower Mini-Mental State Examination

(MMSE) score in patients with PD, and that IL-1β and IL-2

are related to a faster rate of cognitive decline (46). Recently,

an animal study demonstrated that peripherally induced

neuroinflammation potentiates the harmful effects of α-Syn.

Furthermore, in genetic pathologic PD models, LPS-induced

neuroinflammation aggravated cognitive deficits (47).

Neuroinflammation is mainly promoted by microglia and

astrocytes. Under chronic peripheral inflammation, microglial

and astroglial cells are overactivated by toll-like receptors

(TLRs), resulting in the release of various inflammatory

cytokines (e.g., TNF- a, IL-6, and CXCL1), leading to chronic

neuroinflammation (48, 49). Neuroinflammation induces and

exacerbates α-Syn and AD-type pathologies. Activated glial

cells interact with α-Syn and AD-type pathologies (48, 50),

and mediate their detrimental effects on both memory and

neuroinflammation (47). These processes can promote a vicious

circle and lead to PD-CI.

Dysbiosis of gut microbiota

Increasing evidence from studies of the gut–brain axis has

suggested that the gut microbiome plays a critical role in

neurodegenerative diseases, such as AD and PD (51). Previously,

our research (52) has found that the gut microbiota of patients

with PD-MCI was significantly altered compared with those

healthy controls (HCs) and patients with PD with normal

cognition (PD-NC). This is particularly manifesting in enriched

genera from Porphyromonadaceae family, providing powerful

evidence that the dysbiosis of gut microbiota may contribute to

PD-CI (52).

Although the role of intestinal flora alteration in PD-CI

is not completely known, we can still deduce hints from the

results of recent studies. First, according to Braak’s hypothesis

(53), the accumulation of aberrant α-Syn is initiated in the gut

and propagates via the vagus nerve to the brain. Furthermore,

growing evidence showed that α-Syn may be transmitted in

a prion-like manner (54–57). Recent studies also supported

Braak’s hypothesis in the etiology of PD and the prion-like

theory (58), and indicated that the prion-like seeding activity

of aberrant α-Syn may be related with its post-translational

modifications (such as, carboxy-truncation) or oligomerization

(59, 60). Several factors, such as antibiotics, diet, birth mode,

or stress may trigger or promote the translocation of intestinal

microorganisms and microbial products (such as, LPS), which

would cause oxidative stress and mucosal inflammation, and

promote the accumulation of α-Syn in the enteric nervous

system (ENS) (61–63). Indeed, recent experiments have shown

that the LPS of intestinal microorganisms can regulate the

aggregation and toxicity of α-Syn and lead to cognitive

decline (47, 64). Second, LPS from gut microbiota can disrupt

the integrity of the BBB (62, 65, 66), which may promote

neuroinflammation and SNpc damage. Finally, an experiment

using a mouse model showed that microbiome disturbances

have influences on microglia-mediated brain Aβ deposition

(67). Collectively, these results suggest that alterations in

the intestinal flora may facilitate the deposition of α-Syn

and Aβ, and neuroinflammation, resulting in the induction

induce PD-CI.

P. gingivalis and PD

In earlier studies, the view was that motor and cognitive

disturbances that are caused by PD, could contribute to

the progression of periodontal disease (68, 69). However, as

periodontal disease is gradually found to be related to the

onset and progression of AD (10), a reverse correlation between

periodontal disease and PD is increasingly attracting attention

(68, 70). The studies by Chen et al. (6, 71) showed that the risk

of developing PD in patients with periodontitis is significantly

higher than that in controls [adjusted hazard ratio (HR)= 1.431,

p = 0.002] and patients without periodontitis who had a

significantly lower risk of developing PD after dental scaling

over 5 consecutive years [adjusted odds ratio (OR) = 0.204, p

= 0.0399]. Another similar study by Jeong et al. (7) suggested

a weak association between periodontitis and PD (log rank p

< 0.001).

Recently, a study by Adams et al. (5) showed that gingipain

R1 (RgpA), produced by P. gingivalis, is present in the

blood circulation, highlighting the potential involvement of P.

gingivalis in Parkinson’s disease. In addition, Adams et al. found

that the whole blood of patients with PD is hypercoagulable,

due to the presence of hyperactivated platelets and fibrin(ogen)

amyloid features. These results are consistent with previous

finding (72) that clots are denser and hyperclottable in patients

with PD. Moreover, preliminary data suggested a role of P.

gingivalis LPS and gingipain in the systemic inflammatory and

hypercoagulable pathology of PD.

The R1441G mutation in the leucine-rich repeat kinase 2

(LRRK2) gene results in late-onset PD (73). A recent animal

study by Feng et al. found that (8), orally administrating live

P. gingivalis to LRRK2 R1441G mice three times a week for

1 month, can induce a mutant LRRK2-dependent reduction

of dopaminergic neurons in the substantia nigra, an increase

in mutant LRRK2 expression, and the activation of microglia,

leading to peripheral IL-17A secretion and IL-17 receptor A

(IL-17RA) upregulation. These results provide further evidence

on the correlation between P. gingivalis and PD.
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P. gingivalis and cognitive
impairment

Alzheimer’s disease is the most common neurodegenerative

disorder that causes cognitive impairment (49). Many studies

have revealed that periodontitis increases the risk of AD

(9–11). P. gingivalis, the main pathogen in periodontitis, was

shown to play an important role in AD. In a cross-sectional

study, patients with high P. gingivalis IgG had worse

delayed verbal memory and impaired subtraction in a

dose-response relationship (12). The study by Stein et al.

indicated that after adjusting for confounders, such as

age and smoking, serum antibody levels of P. gingivalis

were higher in AD patients with cognitive impairment and

positively correlated with the stage of AD development (13).

Furthermore, P. gingivalis DNA, LPS (14), and gingipains

(15) have been recently detected in the brains of patients

with AD.

Amyloid-β plaques, neurofibrillary tangles, and

neuroinflammation are the major hallmarks of AD. P.

gingivalis may promote the progression of AD by contributing

to these pathologies. The study by Wu et al. (74) showed that

chronic exposure to P. gingivalis LPS for 5 consecutive weeks

causes AD-like phenotypes, such as learning and memory

deficits, microglia-mediated neuroinflammation and Aβ

accumulation in neurons of middle-aged wild-type mice. In

addition, cathepsin B (CatB) may be crucial for this process,

as P. gingivalis LPS-induced AD-like phenotypes were found

to be CatB-dependent. Interestingly, CatB plays a critical

role in peripheral Aβ generation, as P. gingivalis infection

induces the production of Aβ in inflammatory macrophages

via activating the CatB/NF-κB signaling (75). Subsequently, a

study by Zeng et al. (76) indicated that P. gingivalis infection

can promote the CatB/NF-κB-dependent receptor for advanced

glycation end (RAGE) expression in cerebral endothelial

cells, which mediates the influx of peripheral Aβ into the

brain across the BBB. These results revealed a potential

pathogenesis of AD, associated with P. gingivalis induction

of induced peripheral Aβ production and influx, resulting in

AD-type pathologies in the brain, and in which CatB plays an

important role.

To the best of our knowledge, no study has directly

demonstrated the correlation between P. gingivalis and

PD-CI. However, in a report by La Vitola et al. (47), it

was shown that Escherichia coli (E. coli) LPS-induced

neuroinflammation can aggravate the toxic effects of

α-Syn and cognitive deficits. However, in the study by

Zhang et al., although either P. gingivalis LPS or E. coli

LPS was shown to impair spatial learning and memory in

the MWM test, no significant differences were observed

between the effects of the two LPS species (24). These

results suggest that, despite their structural differences, P.

gingivalis LPS may have similar mechanisms to those of E.

coli LPS in exacerbating the α -Syn detrimental effects and

cognitive impairment.

P. gingivalis and gut microbiota

According to previous reports, the density of P. gingivalis

in saliva of patients with severe periodontitis can reach to

106/ml (77–79). Since humans produce 1–1.5 L of saliva a day,

about 1012-1013 P. gingivalis bacteria might be daily swallowed

by patients with severe periodontitis (80). Animal studies

showed that the oral administration of P. gingivalis at simulated

doses causes gut microbiota dysbiosis and gut permeability

impairment, resulting in systemic inflammation inmice (80, 81).

It was reported that P. gingivalis-induced dysbiosis is related to

arthritis (65, 82), type 2 diabetes (83), and non-alcoholic fatty

liver disease (NAFLD) (84).

As gut microbiota plays an important role in the gut-brain

axis, whether P. gingivalis promotes neurodegenerative diseases

through regulating the gut-brain axis, is still under research.

Feng et al. (8) have found that the oral administration of

P. gingivalis can lead to gut permeability impairment and an

increase in the accumulation of α-Syn in the colon neurons of

LRRK2 R1441Gmice. Although the authors did not detect α-Syn

in the brain or small intestine, this finding supports the previous

point that the accumulation of aberrant α-Syn is initiated in the

gut (53, 58). In addition, emerging evidence by Chi et al. (85)

shows that oral P. gingivalis induces gut microbiota dysbiosis,

exacerbates neuroinflammation, and ultimately lead to a decline

in cognitive function. Furthermore, the number of neurons

in the hippocampal and cortical regions was significantly

decreased, and amyloid plaques appeared in brain. The results

from these two studies are consistent with the characteristics

of PD-CI mentioned above, indicating an oral-gut-brain axis

may exist and contribute to PD-CI, which is worthy of further

confirmation in future studies.

How is P. gingivalis involved in
PD-CI?

Based on the evidencementioned above, we hypothesize that

P. gingivalis may be involved in PD-CI through two pathways

(Figure 1).

On the one hand, daily activities, such as tooth brushing

and chewing, as well as dental procedures in patients with

severe periodontitis can promote the entry of P. gingivalis

into the vasculature from the periodontal pocket through

ulcerated epithelium and lymphatic vessels (18, 28, 86).

Additionally, P. gingivalis can destroy oral tissues to enter the

bloodstream by gingipain (20). The entry of P. gingivalis into

the bloodstream leads to bacteremia and the activation of the
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FIGURE 1

The potential pathways of P. gingivalis involvement in Parkinson’s disease with cognitive impairment (PD-CI). (A) P. gingivalis enters the

vasculature from the periodontal pocket, leading to bacteremia and systemic inflammation. (B) Gingipain and lipopolysaccharide (LPS) produced

by P. gingivalis are present in the blood. (C) P. gingivalis infection induces the production of peripheral amyloid-β (Aβ) in inflammatory

macrophages. (D) P. gingivalis impairs the function of the blood-brain barrier (BBB) by facilitating LPS, gingipain, and peripheral Aβ entry to the

brain more easily, which causes neuroinflammation and Alzheimer’s disease (AD)-type pathologies. (E) P. gingivalis is swallowed and enters the

intestine. (F) P. gingivalis induces dysbiosis of the gut microbiota and intestinal inflammation, contributing to the accumulation of aberrant

α-Synuclein (α-Syn) in the gut. (G) Aberrant α-Syn propagates from the gut to the brain via the vagus nerve. (H) Neuroinflammation, AD-type

pathologies, and α-Syn promote each other e�ect in the brain, leading to a vicious cycle and resulting in PD-CI.
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host immune response. Peripheral cytokines are subsequently

increased (e.g., IL-1β, IL-2, IL-17A, and TNF-α), and systemic

inflammation is induced, which facilitates the generation of

peripheral Aβ. As P. gingivalis would impair the function of

BBB, virulence factors, such as LPS, gingipain, and peripheral

Aβ can easily enter the brain, resulting in the activation of

microglia and astrocytes, causing neuroinflammation through

TLRs. Ultimately neuroinflammation promotes aberrant α-Syn

aggregation and AD-type pathologies in brain.

On the other hand, the oral-gut-brain axis may be another

crucial mechanism. Patients with severe periodontitis can

swallow large amounts of P. gingivalis each day. When

entering the intestine, P. gingivalis may induce dysbiosis of

gut microbiota, which simultaneously activate TLRs in the

intestine, leading to intestinal inflammation and increased

intestinal permeability. In addition to exacerbating systemic

inflammation, the gut dysbiosis also contribute to the

accumulation of aberrant α-Syn in the gut. Subsequently, α-Syn

could propagate from the gut to the brain via the vagus nerve

in a prion-like manner, aggravating α-Syn deposition and

misfolding in the brain.

Discussion

Collectively, the pathology of PD-CI has three major

characteristics: convergence of α-Syn and Aβ pathologies,

neuroinflammation, and dysbiosis of the gut microbiota. The

currently available studies showed that P. gingivalis infection

correlates with these features of PD-CI, underlining the

association between P. gingivalis and PD, and between P.

gingivalis and cognitive impairment, respectively. However,

these studies have indirectly shown that P. gingivalis is associated

with PD-CI, while no study has provided direct evidence of

the association between P. gingivalis and PD-CI. Thus, the

correlation between P. gingivalis and PD-CI needs further

confirmation in subsequent studies.
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