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Abstract
Radiomics is undergoing a paradigm shift from single-omics to multi-omics, from single-temporal to multi-
temporal analysis, and from global to subregional analysis. These transformations have shown great potential in 
addressing key challenges related to imaging changes before and after neoadjuvant chemotherapy (NAC) in breast 
cancer. Furthermore, radiomics has achieved remarkable progress in tasks such as exploring tumor heterogeneity 
and uncovering underlying biological mechanisms. Integrating imaging data with gene data offers novel 
perspectives for understanding imaging changes driven by specific genetic alterations. However, current radiomics 
studies on neoadjuvant chemotherapy for breast cancer have not yet achieved a close integration of imaging 
changes with underlying biological mechanisms. They are largely limited to simple associations between models 
and genomic data, without in-depth interpretation of the biological significance inherent in imaging features, 
which is essential to directly link these features with the dynamic progression of the disease. This review seeks to 
explore the spatial-temporal heterogeneity of imaging alterations observed during NAC for breast cancer, while 
assessing their biological implications using established analytical approaches. It highlights the distinct advantages 
of spatial-temporal radiomics in predictive model development and examines potential correlations between 
imaging dynamics and gene expression profiles before and after NAC. Additionally, we critically examines previous 
radiogenomics studies, providing theoretical insights into their limitations. Finally, the review proposes future 
directions and innovative approaches for applying spatial-temporal radiogenomics in NAC for breast cancer, serving 
as a valuable reference and roadmap for researchers and clinical practitioners in this field.
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Introduction
The incidence of breast cancer has significantly increased 
over the past few decades, accounting for 11.6% of all 
newly diagnosed malignant tumors, which is the most 
common cancer among women and one of the lead-
ing causes of cancer-related mortality in this population 
about 6.9% [1]. Advances in diagnostic imaging, such as 
mammography, breast ultrasonography, and magnetic 
resonance imaging, have significantly improved early 
detection rates. Historically, imaging-based diagnosis has 
primarily relied on the clinical expertise of radiologists. 
However, this dependence on human judgment intro-
duces variability in diagnostic accuracy. Factors such as 
economic disparities, geographical limitations, and dif-
ferences in professional experience further exacerbate 
this variability [2, 3].

Despite advancements in imaging that have signifi-
cantly improved early screening, a considerable pro-
portion of patients are already at an advanced stage of 
disease at the time of diagnosis. Statistics show that 
approximately 5–10% of breast cancer patients present 
with metastatic disease at the time of their initial diag-
nosis [4]. For patients presenting with locally advanced 
disease at diagnosis, immediate surgery may not be fea-
sible due to tumor size, nodal involvement, or other 
factors. Traditionally, these patients had limited treat-
ment options and poorer prognoses. As clinical research 
evolved, it became increasingly clear that administering 
chemotherapy before surgery—known as neoadjuvant 
chemotherapy (NAC)—could downstage tumors, thereby 
enhancing the likelihood of successful surgical resection 
and improving long-term outcomes. Since the efficacy 
of NAC varies greatly among individuals, accurate early 
prediction of a patient’s response to NAC is therefore 
of critical clinical importance. It enables oncologists to 
tailor treatment strategies, optimize chemotherapy regi-
mens, avoid unnecessary toxicity in non-responders, and 
ultimately improve survival outcomes. In this context, 
radiomics and artificial intelligence–driven models have 
emerged as promising tools to assist in such individual-
ized decision-making. However, the inherent complexity 
and heterogeneity of breast cancer significantly challenge 
the accuracy of imaging-based assessments of NAC effi-
cacy [5, 6]. Additionally, NAC induces dynamic changes 
in tumor heterogeneity, further altering the tumor’s 
imaging characteristics and complicating the evaluation 
process [7]. Given these challenges, artificial intelligence 
(AI) has gained growing attention as a promising tool for 
analyzing imaging data of malignant tumors, offering the 
potential to improve diagnostic accuracy and optimize 
therapeutic evaluations.

The integration of AI in breast cancer basic research 
and clinical practice encompasses various domains, 
including diagnosis, therapeutic response prediction, 

survival analysis, and image reconstruction [8–10]. To 
address this predictive challenge, the integration of 
advanced imaging biomarkers with machine learning 
has opened new frontiers. Magnetic Resonance Imag-
ing (MRI), as a non-invasive modality providing radia-
tion-free, high-resolution multiparametric visualization, 
including three-dimensional dynamic contrast enhance-
ment and diffusion tensor imaging, has become indis-
pensable for longitudinal monitoring of NAC-induced 
pathophysiological changes [11]. When coupled with 
radiomics– the automated extraction of high-dimen-
sional quantitative features capturing subvisual tumor 
characteristics such as morphological shape irregular-
ity, intratumoral texture heterogeneity, and peritumoral 
spiculation patterns [12, 13]. By applying AI technology, 
enable AI-driven predictive modeling beyond conven-
tional RECIST criteria.

AI-based diagnostic models have demonstrated perfor-
mance levels comparable to, and occasionally surpassing, 
those of experienced radiologists in assisting with diagno-
sis [14]. Breast cancer detection currently relies primarily 
on two main approaches. The first is traditional radiologi-
cal assessment, which is based on visually identifiable fea-
tures such as lesion shape, margin characteristics, aspect 
ratio, and the presence or absence of calcifications. These 
methods are straightforward, cost-effective, and appli-
cable to a wide range of breast lesions. However, their 
accuracy can vary significantly depending on the radi-
ologist’s expertise and experience, leading to potential 
false positives and false negatives [15]. With the advance-
ment of technology, AI-assisted image analysis tools have 
increasingly been integrated into clinical practice. These 
tools, while promising, often rely on predefined features 
or direct pattern recognition, without fully capturing the 
underlying pathophysiological mechanisms. As a result, 
while AI has shown potential to improve consistency and 
sensitivity, many current models still lack interpretabil-
ity and generalizability, especially across diverse patient 
populations and imaging modalities. To bridge this trans-
lational chasm, the convergence of radiophenotypes with 
histopathologic and genomics ground truth is gaining 
momentum. Pathological histology captures early cellular 
changes that radiomics cannot detect, revealing precan-
cerous lesions and alterations in the tissue microenviron-
ment. Genomics provides critical information at a higher 
level of detail, including nuclear morphology, stromal 
tissue distribution, angiogenesis, and molecular expres-
sion, effectively compensating for radiomics’ limitations 
in disease identification and quantification. By integrat-
ing radiomics-predicted tumor invasion patterns with 
genetic mutation analysis, the accuracy of tumor classi-
fication and the personalization of treatment strategies 
can be enhanced [16]. Genomics reveals genetic varia-
tions through whole-genome sequencing, deciphering 
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the genetic drivers of diseases and laying the founda-
tion for precision diagnosis and personalized treatment. 
By detecting gene mutations and epigenetic changes, 
genomics stratifies diseases into molecular subtypes, 
guiding therapeutic strategies. Furthermore, genomics 
delves into disease progression and treatment responses, 
such as tumor mutational burden and microsatellite 
instability, providing critical insights for immunotherapy 
and drug sensitivity [17] (Fig. 1).

This multidimensional analytical framework addresses 
a critical limitation of conventional single-modality 
approaches: the inability to resolve clonal evolutionary 
trajectories masked by bulk tumor sampling. The incor-
poration of multimodal data strategy enables a more 
comprehensive characterization of tumor heterogene-
ity, thereby enhancing the biological significance and 
interpretative power of radiomics models [18–20]. And 
this incorporation of multimodal data strategy enables a 
four-dimensional deconstruction of tumor heterogene-
ity. Intertumoral heterogeneity can manifest as spatial 
heterogeneity and temporal heterogeneity [21]. Tempo-
ral heterogeneity reflects the differences in the tumor 
before and after treatment, while spatial heterogeneity 
represents the heterogeneity of the tumor across different 
regions at a single point in time [22, 23]. These advance-
ments not only refine the scope of radiomics but also 
position AI as a transformative tool in achieving biologi-
cally informed, clinically impactful outcomes in breast 
cancer management. Spatial-Temporal Radiogenomics 
integrates spatial-temporal imaging heterogeneity with 
genomic data, researchers have begun to investigate 
changes in gene expression before and after NAC, as well 
as the relationships between these changes and altera-
tions in distinct tumor subregions. This approach estab-
lishes a robust explanatory framework for predicting the 
efficacy of NAC. A key application of combining genomic 
and imaging data is the identification of biomarkers. 
Genomic data provides insights into the molecular char-
acteristics of tumors, while radiomics captures their 
spatial heterogeneity and phenotypic features. Through 
joint analyses of these datasets, researchers can uncover 
gene-imaging biomarkers associated with therapeutic 
responses or clinical prognoses.

Moreover, tumor subregions often exhibit inconsis-
tent regression before and after treatment, with signifi-
cant heterogeneity within the tumor leading to distinct 
differences among subregions, which in turn result in 
varied responses to therapy. Furthermore, traditional 
methods that rely solely on imaging features to infer 
molecular subtypes fall short in explaining the intricate 
interplay between genetic and imaging characteristics. 
This innovative framework integrates dynamic spatial-
temporal imaging features with genomic data, correlating 
changes in gene expression before and after neoadjuvant 

chemotherapy with alterations in tumor subregions. 
This approach to interpret imaging changes in tumors 
after drug treatment, laying the foundation for improved 
insights and predictive models in tumor biology. To 
elaborate, there is typically 4–6 months interval between 
pre- and post-NAC imaging. During this period, tumors 
undergo dynamic changes in response to systemic ther-
apy—this reflects temporal heterogeneity, referring to 
alterations in imaging features over time under therapeu-
tic pressure. Additionally, following NAC, tumors often 
regress in irregular patterns or asymmetrically, suggest-
ing that different regions within the tumor exhibit varied 
sensitivity to treatment. This is known as spatial hetero-
geneity. When combined, these dimensions—spatial-
temporal heterogeneity—may provide valuable insight 
into tumor biology, therapeutic resistance, and treatment 
outcomes.

By focusing on this concept, we aim to bridge the gap 
between image-based phenotypic changes and their 
potential biological underpinnings, while evaluating 
how advanced AI-driven radiomic approaches can aid in 
uncovering these associations to improve clinical deci-
sion-making. In this review we present an overview of 
radiomics over the years (Fig. 2.) for studying the Spatial 
and Temporal heterogeneity on cancer.

Temporal heterogeneity in neoadjuvant treatment 
of breast cancer
Temporal heterogeneity of neoadjuvant therapy in 
magnetic resonance imaging
The evaluation of the response to NAC is conventionally 
performed through post-treatment imaging assessments. 
However, the clinically driven demand for early efficacy 
prediction can be addressed by employing radiomics 
models that analyze imaging data acquired before and 
after NAT. Temporal heterogeneity enriches the dataset 
and adds extra dimensions, reflecting dynamic changes 
in pathological tissues and allowing for an evaluation 
of physiological alterations in tumors induced by NAC 
[24] (Fig.  3). We have compiled a comparative sum-
mary of representative post-NAC MRI radiomics stud-
ies (Table  1). This table details each study’s cohort size, 
Dataset Num, radiomics modeling strategy and key per-
formance metrics, thereby enabling a direct comparison 
of different approaches and highlighting emerging trends 
in early treatment-response prediction.

Image acquire and time-series analysis method
Imaging data from different time points is typically 
divided into two categories: sequential enhancement 
within a single MRI scan [25] and imaging acquired at 
different therapy time points [26]. Specifically, breast 
MRI is typically performed at three critical time points: 
baseline, midway through treatment and preoperative. 
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Fig. 1  Workflow of mutiomics model. (A) Radiomics Workflow Diagram: A diagram illustrating the steps involved in radiomics analysis. (B) Pathomics 
Workflow Diagram: A diagram showing the process of pathomics analysis. (C) Genomics Workflow Diagram: A diagram outlining the steps in genomics 
data analysis. (D) Metadata Diagram: A diagram displaying the structure of associated metadata. (E) Multi-Omics Data Diagram: A diagram representing 
the integration of multi-omics data
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Table 1  Comparison of Spatial-Temporal genomics research based on magnetic resonance imaging
Outcome Years Num Dataset 

Num
Relationship with spatial-temporal genomics AUC Ref

pCR 2023 1589 5 Tumor subregion construction based on the Gaussian model. 0.87 [22]
pCR 2023 1,262 4 Time-series models of pre-NAC, post-NAC, and delta models. 0.837–0.901 [33]
ALN status 2023 1038 4 Time-series models of pre-NAC, post-NAC. 0.881 [148]
pCR 2024 195 2 Construction of a bi-omics imaging model based on contrast agent 

kinetics.
0.86 [153]

Prognostic risk 2024 1213 3 Multi-omics models and biological mechanisms. 0.716–0.726 [154]
Structural similarity 2025 281 2 Topological model analysis of pathophysiology and treatment response. 0.900-0.926 [155]
pCR 2025 96 1 Models of the tumor and surrounding tumor regions. 0.76 [156]
pCR 2025 2279 4 K-means clustering and the Calinski-Harabasz index are used to construct 

habitat regions.
0.863 [126]

Fig. 3  The structure of Spatial-Temporal heterogeneity in radiomics. A. Spatial Heterogeneity: Tumor Subregions; B. Temporal Heterogeneity: Tumor 
Shrinkage Before and After Neoadjuvant Chemotherapy; C. Spatial-Temporal Heterogeneity: Four Response States of Tumors After Neoadjuvant Che-
motherapy and Subregional Changes; D. Spatial-Temporal Radiomics-Genomics Integrated Model. Diagram D uses partial responders after neoadjuvant 
therapy from Diagram C as an example, integrating tumor subregional changes before and after neoadjuvant chemotherapy with genetic information to 
provide a biological interpretation of these changes. (Complete Response, CR; Partial Response, PR; Stable Disease, SD; Progressive Disease, PD)

 

Fig. 2  Timeline of Spatial-Temporal heterogeneity on radiomics and radiogenomics
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Each of these scans serves a distinct clinical purpose: 
the baseline MRI is used for initial tumor staging and 
surgical planning; the interim MRI can help assess early 
response and guide treatment adjustments; and the post-
NAC MRI is essential for evaluating residual disease and 
determining the appropriate surgical strategy.

MRI acquisition follows standardized protocols, 
including high-resolution dynamic contrast-enhanced 
MRI (DCE-MRI) and diffusion-weighted imaging (DWI). 
DCE-MRI captures enhancement kinetics after intrave-
nous contrast administration, providing detailed insights 
into tumor vascularity and morphology, while DWI 
assesses changes in cellular density by measuring water 
diffusion. These techniques together enable comprehen-
sive, multiparametric assessment of tumor response over 
time.

Temporal heterogeneity of continuous imaging
Sequential enhancement within a single MRI scan cap-
tures tumor signal intensity through tissue enhance-
ment dynamics before, during, and after contrast agent 
administration, reflecting a composite of tumor perfu-
sion, vessel permeability, and the volume of the extra-
vascular-extracellular space. By analyzing the exchange 
interactions between different compartments, it is pos-
sible to evaluate the perfusion and vascular permeabil-
ity in the lesion area, ultimately inferring differences in 
the distribution and metabolism of substances between 
pathological and normal tissues [27]. The study analyzes 
changes in imaging features related to pathophysiologi-
cal characteristics such as tumor infiltration, extramural 
vascular invasion, and lymph node involvement before 
and after NAC. Among patients achieving pathological 

complete response, these prominent imaging character-
istics show a significant reduction, with a decrease of up 
to 88.9% observed within the same patient cohort [28]. 
These approaches collectively offer valuable insights into 
the dynamic processes underlying tumor progression and 
therapeutic response.

For analyzing short-term imaging changes, time-series 
radiomics [29] and dynamic radiomics feature extraction 
[30] are frequently employed. Francesco Prinzi et al. [29] 
conducted a comparative analysis of time series analysis 
methods, including Rocket, MultiRocket, Time Series 
Forest, Supervised Time Series Forest, and K-Nearest 
Neighbors with several distance metrics (Table 2).

These methods use imaging data collected at multiple, 
closely spaced time points. Unlike longitudinal analysis, 
time-series radiomics requires data from several inter-
vals with relatively short gaps to track dynamic trends in 
tumor characteristics. DCE-MRI is one of the most used 
imaging techniques in this method. It enables imaging 
and analysis of microcirculation and perfusion in blood 
vessels through short-term sequential imaging [31]. In 
addition, compared to delta features, the dynamic infor-
mation in DCE-MRI can reflect crucial temporal data 
regarding the directional flow of contrast agents. Based 
on this, it enables exploration of the relationship between 
dynamic information, prognosis, and tumor heteroge-
neity [32]. It is particularly effective in capturing con-
tinuous, nonlinear changes. Dynamic radiomics feature 
extraction, on the other hand, focuses on even shorter 
intervals, such as the temporal patterns of contrast agent 
uptake and blood flow. This method analyzes subtle vari-
ations in imaging signals, making it especially suitable 

Table 2  Time-series analysis method
Technique Description Strength Limitation Paper
The Rand Om 
Convolutional 
Kernel Trans-
form algorithm

A kernel-based classifier that uses convolutional 
filters to extract features from time series data, fol-
lowed by classification using Ridge Classifier CV.

High classification accuracy; effective 
with small datasets; efficient feature 
extraction via convolutional filters.

Limited interpretability; may 
struggle with very short 
time series data.

[157]

Multi Rocket 
algorithm

An enhanced version of ROCKET, incorporating 
fixed kernel lengths, multiple pooling operators, 
and a transformation step, extracting a large num-
ber of features for improved accuracy.

Improved accuracy over ROCKET; gener-
ates a large number of features for more 
detailed analysis; incorporates diverse 
pooling operators and transformations.

Computationally intensive 
due to high-dimensional 
feature space; less effective 
for very short time series.

[158, 
159]

The Time 
Series Forest 
algorithm

An interval-based classifier that extracts statistical 
features from time series intervals for training a 
random forest model.

Simple and interpretable; efficiently 
extracts statistical features from intervals; 
performs well on moderate-length time 
series.

May overlook finer details in 
data; limited by reliance on 
fixed interval statistics.

[160]

Supervised 
Time Series 
Forest (TSF)

An improved version of TSF that uses a supervised 
approach to select discriminative intervals and in-
troduces additional statistical features like median 
and interquartile range.

Higher efficiency than TSF; includes 
more diverse features; selects only the 
most discriminative intervals.

Computationally more com-
plex than TSF; performance 
depends on effective 
interval selection.

[161]

The K-Nearest 
Neighbors 
classifier

A distance-based classifier for time series, relying 
on distance metrics such as Dynamic Time Warp-
ing (DTW) and its variations to measure sample 
similarity.

Easy to implement; no need for exten-
sive parameter tuning; flexible with 
multiple distance metrics like DTW.

Computationally expensive 
for large datasets; sensitive 
to noise and irrelevant 
features.

[29]
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for detecting rapid physiological changes in the tumor 
microenvironment.

Temporal heterogeneity of imaging at different treatment 
time points
Methods for capturing and quantifying tumor imag-
ing differences before and after NAC often rely on lon-
gitudinal image analysis, which leverages imaging data 
from pre- and post-NAC stages to build efficacy predic-
tion models and describe specific tumor characteristic 
changes through delta features generated by imaging 
differences [33]. This method focuses on point-by-point 
comparisons and is well-suited for studies involving a 
limited number of time points (e.g., before treatment, 
during treatment, and after treatment). Its primary 
advantage lies in its ability to effectively interpret signifi-
cant changes over extended periods.

Other approaches include temporal dimension mod-
eling with deep learning and multi-time-point feature 
fusion. Li et [34]. analyzes multi-temporal data using 
a single-temporal feature extraction network, a Co-
attention module, and a GAN-based image generation 
network. The single-temporal network extracts unique 
features from the first and third temporal images, while 
the Co-attention module fuses features from different 
temporal images, capturing remote pixel dependencies 
to create hybrid feature maps. Saba et [35]. uses a many-
to-one Gated Recurrent Unit (GRU) model to capture 
temporal relationships between feature vectors from 
four prior examinations. GRU addresses the vanishing 
gradient problem in standard RNNs using update and 
reset gates. It processes the four feature vectors (each 
size 1 × 4096) as a time series input and outputs a 1 × 128 
feature vector, effectively capturing dynamic temporal 
relationships for improved diagnostic prediction. These 
advanced techniques integrate complex temporal data, 
offering innovative tools to enhance the understanding of 
tumor response and refine predictions in diverse clinical 
settings.

Image registration and temporal heterogeneity analysis in 
medical imaging
From a temporal perspective, MRI can accurately moni-
tor the dynamic changes of tumors during NAC, spe-
cifically manifested as the gradual reduction in tumor 
volume, which represents a morphological response, 
changes in vascular permeability, with a decrease in 
Ktrans values indicating the effect of anti-angiogenic 
therapy, and changes in cell density [36]. An increase 
in ADC values reflects tumor cell necrosis or apoptosis 
[37]. These changes provide important information for 
evaluating treatment efficacy, predicting outcomes, and 
adjusting therapeutic strategies. For example, a reduc-
tion in tumor volume typically indicates cell death or 

suppression of proliferation, changes in vascular perme-
ability reveal the effects of anti-angiogenic treatments on 
tumor blood supply, and changes in cell density reflect 
the cytological alterations within the tumor microenvi-
ronment, further revealing tumor response during the 
treatment process.

From a spatial perspective, MRI can reveal the hetero-
geneity patterns within different tumor regions, reflecting 
the varying sensitivities of the tumor to chemotherapy. 
Different regions of the tumor may respond differently to 
chemotherapy; some areas may be highly sensitive, while 
others may show resistance or minimal response. For 
example, DCE-MRI can detect changes in the uptake and 
washout patterns of contrast agents within tumor regions 
[38], highlighting areas with different perfusion and vas-
cular permeability characteristics.

The combination of these imaging techniques allows 
MRI to provide a comprehensive evaluation of tumors 
from multiple angles, not only capturing the dynamic 
changes of the tumor during treatment but also revealing 
its spatial heterogeneity, thus offering crucial insights for 
personalized treatment.

Temporal heterogeneity based on image registration
The analysis of temporal heterogeneity in medical imag-
ing leverages multi-time-point imaging data to reveal 
dynamic changes in pathological lesions, such as tumors, 
and plays a critical role in treatment monitoring and 
evaluation. In recent years, advancements in imaging 
technologies, computational power, and data processing 
algorithms have significantly expanded the use of tem-
poral heterogeneity analysis in tumor radiomics. This 
approach goes beyond examining spatial morphologi-
cal and structural differences, focusing on the temporal 
evolution of tumors to better capture disease progression 
and therapeutic responses. Key technological advance-
ments in this field include enhanced image registration 
techniques, the integration of multi-modal fusion analy-
sis, and the use of deep learning algorithms for tempo-
ral feature extraction. These innovations are driving the 
development of more sophisticated and precise methods 
for analyzing tumor dynamics and evaluating treatment 
efficacy over time, paving the way for improved clinical 
decision-making and personalized care.

To ensure reliable temporal analysis, the first step is 
spatially aligning multi-time-point images with high 
accuracy. Recent deep learning–based registration 
frameworks such as VoxelMorph and MIRNet have out-
performed traditional rigid or elastic methods by learning 
complex local and global nonlinear deformations directly 
from large-scale training data [39, 40], thereby improv-
ing alignment in non-rigid scenarios. However, the soft, 
highly deformable nature of breast tissue and the need 
to reconcile multimodal imaging modalities introduce 
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additional complexity. In response, the Learn2Reg chal-
lenge benchmarks few-shot learning, large-deformation 
estimation, and cross-modal alignment specifically on 
breast MRI tasks—fostering robust, generalizable reg-
istration solutions across varied clinical conditions [41]. 
Beyond these deep learning approaches, classic feature-
based [42] and region-based registration [39] techniques 
further enrich the toolbox for achieving precise align-
ment, forming the cornerstone of accurate temporal het-
erogeneity analysis (Table 3).

Region-based registration and feature-based registration
Region-based registration methods do not rely on spe-
cific image feature points but instead use image inten-
sity information or statistical properties directly, aligning 
images by optimizing similarity metrics such as mutual 

information or mean squared error. These methods are 
particularly suitable for images with sparse textures and 
multi-modal imaging scenarios, such as PET-CT registra-
tion. PET/CT registration demonstrates high adaptabil-
ity and robustness in complex tasks, primarily due to the 
complementary nature of multimodal imaging: PET pro-
vides metabolic functional information, while CT offers 
high-resolution anatomical structures, supplying stable 
feature matching references for registration.

In comparison, feature-based registration methods 
achieve geometric alignment by identifying and match-
ing distinctive feature points, such as corners and edges, 
across images. Techniques like Scale-Invariant Feature 
Transform (SIFT) [43] and Speeded-Up Robust Fea-
tures (SURF) [44] are particularly effective for manag-
ing geometric transformations and are widely used for 

Table 3  Image registration methods
Method Description Strength Limitation Relation to Spatial temporal 

Heterogeneity
Ref

Rigid 
Registration

Only translation and rotation, 
suitable for images with no 
significant deformation

Fast computation, 
suitable for small 
deformations

Cannot handle deformation, 
limiting use for large tumor 
changes

Suitable for situations where 
tumor morphology does not 
change significantly, cannot ad-
dress dynamic changes.

[162]

Affine 
Registration

Includes translation, rotation, 
scaling, and shearing, suitable 
for simple deformations

Broad applicabil-
ity, efficient for linear 
deformations

Limited to linear defor-
mations, cannot capture 
complex deformations, 
accuracy depends on initial 
alignment

Suitable for tumors with small 
shape changes, limited for tumors 
with large dynamic changes.

[163]

Non-Rigid 
Registration

Allows for complex deforma-
tions, suitable for dynamic 
image registration

Handles large deforma-
tions, suitable for tumors 
with significant changes

Computationally complex, 
requires high-quality initial 
alignment

Suitable for analyzing tumor 
dynamic deformations during 
treatment.

[164]

Feature-Based 
Registration

Aligns images by extracting 
key features, suitable for im-
ages with distinct features

Efficient, works for differ-
ent modalities

Poor performance with low-
contrast or blurred images, 
feature extraction accuracy 
directly impacts registration 
quality

Suitable for tumors with distinct 
features, effectively captures 
tumor evolution over time.

[165]

Region-Based 
Registration

Aligns images by comparing 
intensity, color, or texture of 
different regions, typically for 
large region registration

Efficient computation, 
suitable for large region 
changes

Poor performance for 
regions with small details or 
few features, high depen-
dency on initial alignment

Effective for tumors with signifi-
cant overall shape changes over 
time.

[166]

Intensity-Based 
Registration

Aligns images by measuring 
similarity, suitable for images 
with no distinct features

Does not rely on feature 
extraction, suitable for 
low-contrast images

High computational load, 
requires high initial align-
ment accuracy

Especially effective for tumor 
images or low-contrast images 
after treatment, assists in dynamic 
change analysis.

[167]

Deformation 
Registration

Uses local deformation models 
to refine image alignment, 
optimizing image matching

Handles complex local 
deformations, especially 
suitable for tumors or or-
gans with local changes

Computationally complex, 
requires high-resolution 
local adjustments

Helps accurately align small tumor 
changes during treatment, suit-
able for local deformation analysis.

[168]

Variational 
Registration

Aligns images by minimizing 
variations, typically for non-
rigid deformations

High precision, suitable 
for large deformations, 
especially for tumors or 
organs with dynamic 
changes

High mathematical com-
plexity, long computation 
time, requires good initial 
conditions

Precisely aligns non-rigid tumor 
deformations, supporting dynamic 
progression and treatment re-
sponse analysis.

[169]

Multiresolution 
Registration

Accelerates registration by 
progressively lowering image 
resolution and then increasing 
it, commonly using pyramid 
methods

Significantly reduces 
computation time, espe-
cially for large datasets or 
high-resolution images

May sacrifice precision, 
especially when handling 
detailed regions

Speeds up registration process for 
time-series data, suitable for image 
alignment at different time points, 
especially for large datasets or 
high-resolution images.

[170]
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registering texture-rich single-modal images. These algo-
rithms are not only robust in handling scale and rotation 
variations but are also computationally efficient, making 
them well-suited for large-scale image processing tasks.

On the other hand, region-based methods excel in 
scenarios such as medical or remote sensing image reg-
istration, where images may lack clear texture details or 
display substantial appearance variations due to differ-
ences in imaging modalities or sensors. In these cases, 
feature-based approaches often struggle to identify reli-
able matching points. However, region-based methods, 
which leverage statistical properties or intensity values 
for alignment, provide a robust alternative. Despite their 
strengths, these methods can face challenges when deal-
ing with significant geometric distortions or highly local-
ized deformations, which may require supplementary 
techniques or advanced pre-processing for improved 
performance.

While feature-based registration methods are highly 
effective, their performance is heavily reliant on the qual-
ity of feature point extraction. In scenarios with sparse 
textures or significant noise, these methods may strug-
gle to identify reliable feature points, leading to reduced 
accuracy or even registration failure. This dependency on 
well-defined features makes them less suitable for images 
with low contrast or those affected by substantial vari-
ability, such as multi-modal medical imaging or heavily 
degraded datasets [39].

Multimodal image matching: bridging imaging gaps for 
interpretation
After receiving NAC, breast cancer patients often experi-
ence four distinct outcomes, each associated with specific 
imaging changes. Relying solely on imaging data from 
a single time point inevitably leads to the omission of 
critical patient information. Unfortunately, this missing 
information often represents the most significant aspect 
of imaging changes induced by NAC. Despite growing 
awareness of the importance of imaging changes in medi-
cal image research, existing studies on temporal hetero-
geneity primarily focus on differences in whole-tumor 
imaging, with limited attention to subregional changes. 
Understanding the impact of subregional heterogeneity 
on treatment efficacy and clarifying the underlying bio-
logical mechanisms will enable us to target specific treat-
ment strategies for tumors with distinct heterogeneity, 
thereby achieving precision medicine.

Current methods focus on unimodal feature detection 
and description becomes insufficient when confronting 
the modality gap paradox– where MRI T2-weighted sig-
nals and ultrasound elastography measurements exhibit 
fundamentally different physical representations of the 
same tumor biology. This limitation is being overcome 
through three generations of multimodal matching 

evolution [45], has showcased remarkable potential by 
integrating information from diverse imaging modali-
ties, correcting errors, enhancing details, and broaden-
ing the scope of applications. By incorporating unified 
frameworks, feedback mechanisms, and advanced deep 
learning models, multi-modal image matching not only 
improves accuracy in matching and data fusion but also 
facilitates the efficient and comprehensive use of multi-
modal data. These methods include patch-based learn-
ing, Long Short-Term Memory (LSTM) networks, and 
Graph Neural Networks (GNNs), significantly enhance 
diagnostic precision by aligning data from different imag-
ing modalities. These approaches enable a more com-
prehensive understanding of pathological conditions, 
facilitating the effective integration of information across 
modalities.​.

Convolutional neural networks and patch-level image 
matching
Based on image learning methods, convolutional neu-
ral networks (CNNs) are widely employed for extract-
ing hierarchical latent features, measuring similarity, 
and estimating geometric relationships from images 
[39]. Within this framework, patch-based learning has 
emerged as a popular extension for region-level image 
registration and stereo matching [46]. Unlike traditional 
sliding window approaches, patch-based learning lever-
ages deep learning techniques to streamline the similarity 
measurement process, significantly reducing computa-
tional complexity.

Multi-time-point dynamic feature extraction and temporal 
modeling
As the understanding of temporal heterogeneity deep-
ens, the extraction of imaging features has expanded 
beyond static attributes. The focus now lies on analyzing 
the temporal evolution patterns of these features. State-
of-the-art approaches integrate temporal modeling with 
multi-modal imaging data and enabling the extraction 
of dynamic features across multiple time points [47]. For 
instance, in DCE-MRI, researchers quantify hemody-
namic properties by examining the rates of contrast agent 
uptake and washout within tumors [48, 49]. Temporal 
data modeling techniques, including LSTMs [50–52], 
have been extensively employed to discern dynamic pat-
terns in temporal features. These models effectively cap-
ture morphological and functional changes in tumors 
both pre- and post-treatment, facilitating predictions 
about future tumor behavior and therapeutic outcomes.

Application of graph neural networks in tumor evolution and 
therapeutic response prediction
Moreover, recent research has investigated the appli-
cation of GNNs for predicting responses to NAC [53, 
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54]. Unlike conventional artificial intelligence methods, 
which predominantly process Euclidean-structured data, 
GNNs are uniquely designed to handle graph-structured 
data. These networks learn features from both the nodes 
and edges within a graph, enabling the capture of intri-
cate relationships and structural information among 
entities. By representing tumor imaging data collected at 
various time points as graph structures, GNNs can effec-
tively model the dynamic interactions and evolutionary 
patterns of tumor cells. This innovative approach lever-
ages the relational properties of graph data to enhance 
analytical accuracy, offering a powerful framework for 
understanding tumor dynamics and optimizing thera-
peutic strategies.

Transformer models: overcoming limitations of LSTM, GNN, 
and Patch-based learning in complex tasks
The methods mentioned earlier all have certain draw-
backs. Traditional patch-based learning methods typi-
cally neglect global context and spatial information [55], 
limiting their performance in complex tasks. Long Short-
Term Memory (LSTM) networks face challenges such 
as high computational complexity and limited ability to 
capture long-range dependencies when processing long 
sequence data [56–58]. Graph Neural Networks (GNNs), 
when handling graph-structured data, suffer from theo-
retical limitations in expressive power, particularly in 
graph isomorphism discrimination [59]. The Transformer 
model, through its self-attention mechanism and global 
context modeling capability [60], effectively addresses 
the challenges faced by traditional patch-based learning 
methods, LSTM, and GNNs in complex tasks. Through 
the self-attention mechanism, the Transformer not only 
captures global dependencies when processing image 
data, thereby effectively integrating global context infor-
mation, but also handles long sequence data efficiently, 
capturing long-range dependencies and enhancing model 
performance [61, 62]. Furthermore, the Transformer 
is capable of capturing complex global relationships 
between nodes in a graph, providing stronger expres-
sive power and overcoming the limitations of traditional 
GNNs in graph isomorphism discrimination [63].​.

Medical image segmentation and Spatial 
heterogeneity analysis in medical imaging
Medical image segmentation
Segmentation of conventional medical images
Region of Interest (ROI) segmentation is a critical step 
in radiomics analysis, as its accuracy directly affects the 
reliability of subsequent feature extraction and model 
evaluation. Radiomics segmentation methods are typi-
cally categorized into three main types: manual delin-
eation, semi-automatic segmentation, and automatic 
segmentation.

Manual delineation offers high accuracy and is par-
ticularly effective for complex or irregularly shaped 
lesions. However, it is time-consuming and heavily 
dependent on the operator’s subjective judgment, result-
ing in variability between users. To address these chal-
lenges, semi-automatic methods, such as 3D Slicer [64], 
and fully automatic segmentation approaches [65] have 
been developed. These methods allow for the efficient 
processing of large-scale datasets while ensuring better 
standardization and reproducibility. Despite these advan-
tages, their performance relies heavily on the quality of 
training data and can be limited when dealing with com-
plex or low-contrast images.

In breast cancer imaging, the evaluation of segmenta-
tion algorithms is paramount and is based on rigorous 
benchmarks. The CBIS-DDSM dataset [66], comprising 
2,620 pathologically confirmed digital mammograms 
with ROI labels, serves as the gold standard for mam-
mography segmentation. Additionally, the BC-MRI-SEG 
dataset [67], which includes multi-center, multi-sequence 
breast MRI, offers both supervised and zero-shot evalu-
ation tracks. This diversity in data enables the testing of 
deep learning models under varied clinical conditions, 
ensuring a comprehensive assessment of segmentation 
performance.

Once the ROI is accurately segmented, various features 
are extracted for further analysis. These features are typi-
cally categorized into three main types: shape features, 
texture features, and intensity features. Shape features 
describe the geometric structure of the ROI, providing 
metrics such as volume, surface area, and boundary com-
plexity to characterize the tumor’s morphological attri-
butes. Texture features, derived from techniques like the 
gray-level co-occurrence matrix (GLCM) and gray-level 
run-length matrix (GLRLM), capture the heterogene-
ity of tissue structures and are widely applied in tumor 
classification and prognosis analysis. Intensity features 
represent the distribution of gray values within the ROI, 
including metrics like mean gray level and standard devi-
ation, which reflect the enhancement patterns and den-
sity variations of the lesion.

Tumor subregion construction methods
Effective clustering analysis in radiomics relies on rig-
orous benchmarking to ensure method validity across 
diverse scenarios. Two notable platforms exemplify this 
effort. Simulation-based Benchmarking in R generates 
7,000 heterogeneous datasets spanning seven controlled 
scenarios—varying sample size, cluster count, variable 
types, noise level, and correlation—and integrates real 
EPHESUS clinical data to evaluate algorithms such as 
Kamila, latent class analysis, latent class model, and Mix-
Mod using metrics like the adjusted Rand index, con-
cordance index, and log hazard ratio [68]. The HAWKS 
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framework employs evolutionary algorithms to flex-
ibly produce synthetic benchmarks of tunable difficulty, 
enabling targeted testing and fair, comprehensive com-
parison of clustering methods [69].

For tumor subregion imaging, clustering is then 
applied to group similar features from shape, texture, and 
intensity categories for deeper analysis. This step enables 
a more nuanced evaluation of tumor heterogeneity by 
isolating subregions with distinct characteristics. Table 4 
provides an overview of commonly used clustering meth-
ods employed in this process, illustrating their utility in 
radiomics-driven investigations.

The relationship between Spatial heterogeneity and tumor 
subregions
Temporal heterogeneity provides valuable insights into 
differences in tumor characteristics before and after NAC 
in breast cancer patients, it does not clarify changes in 
the tumor’s specific location. Significant changes in the 
tumor microenvironment and internal structure can 
occur before and after NAC, leading to the development 
of spatial heterogeneity [70]. Peritumoral edema, which 
arises in the surrounding tissues during tumor progres-
sion, represents a distinct pathological feature from the 
tumor’s imaging characteristics. Patients with peritu-
moral edema exhibit significantly higher rates of lymph 
vascular invasion (44.1% vs. 17.6%, P < 0.001), marked 

vessel ectasia (64.7% vs. 20.6%, P < 0.001), and moder-
ate to severe stromal fibrosis (32.4% vs. 10.8%, P = 0.003) 
compared to those without peritumoral edema [71]. 
These spatial changes reflect the complexity of the tumor 
microenvironment, the heterogeneity of tumor cells, and 
their adaptive capabilities to environmental shifts, all of 
which are closely associated with tumor biology, thera-
peutic response, and prognosis [72].

Spatial heterogeneity in radiomics is closely related 
to tumor subregions. By identifying imaging features 
within distinct tumor subregions, researchers can gain 
a deeper understanding of tumor biology and treatment 
responses. Spatial heterogeneity refers to differences in 
imaging characteristics across various tumor locations, 
such as changes in cell density, blood supply, and meta-
bolic states [73]. These differences result in the formation 
of multiple subregions within a tumor, each potentially 
possessing unique biological properties and varying sen-
sitivity to treatment.

The potential biological significance of spatial 
heterogeneity
Spatial evaluation approaches in imaging
Texture-based spatial feature has shown excellent per-
formance in assessing intratumoral heterogeneity from 
imaging, which may correlate with tumor biology and 
behavior. Spatial evaluation approaches in imaging are 

Table 4  Tumor subregion construction methods
Method Relationship with Spatial heterogeneity Strength Limit Ref
k-means 
Clustering

Divides lesions into heterogeneous subre-
gions by extracting texture, kinetic, and mor-
phological features; reveals dynamic changes 
in tumor subregions.

Computationally efficient for large-
scale medical imaging data and intui-
tive visualization of functionally distinct 
subregions

Requires predefined cluster numbers 
and is sensitive to initial centroids, 
Struggles with overlapping or gradient 
features between subregions

[125, 
171–
173]

Gaussian 
Mixture 
Model 
Clustering

Evaluates tumor ecological diversity; extracts 
radiomic features from intra- and peri-tumor-
al regions for treatment response prediction.

Handles overlapping subregions or 
ambiguous boundaries, Provides 
probabilistic membership for heteroge-
neity quantification

High computational complexity, requir-
ing large training datasets, Sensitive to 
noise; prone to overfitting with small 
samples

[22]

Histogram-
based 
Distribution 
Metrics

Quantifies spatial heterogeneity of CD8-
Rscore in pretreatment lesions, assessing 
inter-lesion immune response variability.

Simple computation for rapid clinical 
screening, No need for complex spatial 
modeling

Ignores spatial patterns, Fails to 
distinguish localized heterogeneous 
subregions

[174]

Consensus 
Clustering

Quantifies intertumoral heterogeneity using 
multi-sequence imaging matrices; predicts 
breast cancer recurrence-free survival.

Enhances clustering stability by reduc-
ing random errors, Multiparametric 
analysis improves heterogeneity 
interpretation

Computationally intensive and 
time-consuming, Requires empirical 
parameter selection

[175]

Hierarchical 
Clustering

Clusters pixels or supervoxels in imaging 
data into distinct subregions for tumor 
segmentation.

No need to predefine cluster numbers, 
Generates dendrograms for flexible 
cluster-level selection, Adapts to vari-
ous distance metrics.

High computational complexity, 
especially for large datasets, Sensi-
tive to noise, may misclassify outliers, 
Struggles with irregular cluster shapes

[176]

Density-
Based 
Clustering

Segments tumor regions with varying density 
features, particularly effective for irregularly 
shaped or highly heterogeneous boundaries.

No predefined cluster numbers 
required, Robust to noise and irregular 
shapes, Handles uneven data density

Parameter-sensitive, Inefficient for high-
dimensional data, Performs poorly with 
large density variations

[177]

Spectral 
Clustering

Leverages graph theory to cluster data by 
constructing similarity matrices and embed-
ding eigenvectors of Laplacian matrices.

Handles arbitrarily shaped clusters, Cap-
tures global data structures, Effective 
for high-dimensional data.

High computational cost, Sensitive to 
similarity metric design and normaliza-
tion, Challenging to determine optimal 
cluster numbers

[178]
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generally divided into two categories: spatial filtering and 
neighborhood-based methods. Spatial filtering enhances 
regions of interest by detecting areas with rapid gray-
level changes, emphasizing edges and textures in the 
image. Spatial filters are particularly effective in enhanc-
ing spatial features of interest, such as edges and textures, 
within the image [74]. High-pass filters enhance local 
heterogeneity by highlighting rapid gray-level transitions, 
while low-pass filters smooth broader patterns to reveal 
macro-scale heterogeneity [75]. By enabling directional 
and scale-specific analysis, spatial filters capture hetero-
geneity across multiple orientations and granularities. 
Metrics derived from filtered outputs, such as variance, 
entropy, and gradient magnitudes, provide quantitative 
measures of spatial heterogeneity. The most commonly 
used neighborhood-based methods, such as the GLCM 
[76], local binary patterns (LBP) [77], and gradient mag-
nitude analysis [78], are intrinsically linked to spatial 
heterogeneity as they quantify local variations in gray-
level intensities within a specified spatial range. GLCM 
captures the directional and distance-based dependency 
of gray levels, revealing the texture heterogeneity within 
a region. LBP encodes the micro-level gray-level dif-
ferences into binary patterns, effectively characterizing 
local irregularities and fine-scale heterogeneity. Gradient 
magnitude methods measure the intensity of gray-level 
transitions, highlighting abrupt changes and identify-
ing boundaries in highly heterogeneous regions. These 
methods provide crucial tools for characterizing tumor 
heterogeneity, offering valuable insights into its biological 
behavior and therapeutic implications.

However, traditional image feature extraction meth-
ods, such as Spatial Filtering, GLCM, LBP, and Gradi-
ent Magnitude Analysis, have several limitations when 
processing complex images. Spatial filtering methods 
tend to cause the loss of image details, are sensitive to 
parameter adjustments, and lack adaptability, while tra-
ditional assumptions fail to handle non-stationary noise 
effectively. To address these issues, non-local means fil-
tering and deep learning-based denoising methods can 
be employed. GLCM suffers from high computational 
complexity, a single texture scale, and sensitivity to rota-
tion and lighting changes. Improvements include the 
use of multi-scale GLCM and rotation-invariant texture 
descriptors. LBP is sensitive to noise, has poor rotational 
invariance, and lacks global context. Improvements can 
include multi-scale LBP, GCN, and Vision Transformers. 
Gradient Magnitude Analysis faces issues such as noise 
interference, loss of directional information, and poor 
background adaptability. Improved approaches include 
combining directional consistency constraints with deep 
learning methods. These improvements aim to enhance 
the robustness and accuracy of image feature extraction, 

particularly in applications involving complex back-
grounds and multi-scale analysis.

Histological heterogeneity in tumor subregion
The spatial heterogeneity of tumors, grounded in their 
internal microenvironment and structural characteris-
tics, is elucidated through various radiomics methods. 
These approaches reveal regional differences in cell den-
sity, blood supply, metabolic state, morphological fea-
tures, and immune microenvironment. Fusco et al. [79] 
demonstrated that combining morphological characteris-
tics of breast lesions with dynamic information from con-
trast-enhanced scans could achieve a diagnostic accuracy 
of 91.7% in binary classification tasks.

Structural heterogeneity at the tissue level is commonly 
analyzed through image segmentation techniques and 
voxel, providing insights into cytological changes within 
tumors. In tissue structure analysis, images are typi-
cally decomposed into fundamental units, followed by 
identifying the rules required to reconstruct the image. 
For instance, fractal dimension (FD) provides an objec-
tive metric for evaluating the self-similarity of shapes by 
quantifying the relationship between image details and 
scale variations, assessing image complexity, and mea-
suring uniformity within the region of interest through 
self-repeating structural patterns [80, 81]. This method 
provides a powerful tool for capturing and quantifying 
spatial patterns, advancing the understanding of tumor 
heterogeneity and its implications for diagnosis and 
treatment.

In subregion analysis, structural heterogeneity within 
tumors can be evaluated by analyzing the texture and 
signal intensity of distinct subregions, such as the core, 
margin, and necrotic zones [82, 83]. Fliedner et al. iden-
tified a significant correlation between ADC values and 
apoptotic status in the CT26 model (P = 0.0031). A strong 
correlation was observed between two measurements 
of ADC values and apoptotic status in both models, and 
this correlation also extended to the comparison between 
ADC values and cell density [84]. Cellular prolifera-
tion and death are significantly influenced by blood flow 
and oxygen supply, which can be characterized through 
dynamic contrast-enhanced imaging and blood oxygen 
level-dependent functional analysis. These techniques 
provide detailed insights into the hemodynamic prop-
erties and oxygenation status of different tumor regions 
[85, 86], facilitating an evaluation of the tumor’s resis-
tance to therapy.

Blood and oxygen heterogeneity in tumor subregion
Heterogeneity in blood flow and oxygen supply reflects 
the complexity of the tumor microenvironment and is a 
valuable predictor of therapeutic response [86]. Meta-
bolic heterogeneity, shaped by tissue oxygenation, can be 
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assessed through PET-CT and magnetic resonance spec-
troscopy to analyze intratumoral metabolic activity [87–
90]. Closely linked to genetic mutations, especially those 
involving abnormal activation of metabolic regulatory 
pathways such as PI3K/AKT/mTOR, metabolic imaging 
offers critical insights into potential genetic abnormali-
ties [87].

Structural heterogeneity, characterized by spatial varia-
tions in cellular proliferation and necrosis, is closely 
linked to differences in blood flow and oxygen sup-
ply. These variations profoundly affect metabolic activ-
ity in tumor cells, creating a dynamic interplay between 
structural, blood flow, oxygen supply, and metabolic 
heterogeneities. Together, they underscore the intricate 
complexity of the tumor microenvironment and its influ-
ence on therapeutic response.

Immuno-microenvironment heterogeneity in tumor 
subregion
Immuno-microenvironment heterogeneity, character-
ized by the infiltration and spatial distribution of immune 
cells within tumors, can be inferred using multimodal 
imaging technologies and deep learning models. These 
insights are essential for understanding tumor responses 
to immunotherapy, particularly in relation to PD-L1 
expression and immune checkpoint inhibitor-related 
gene expression [91, 92].

Morphological and structural heterogeneity in tumor 
subregion
Morphological and structural heterogeneity is primar-
ily analyzed through shape analysis and three-dimen-
sional reconstruction techniques. He et. demonstrates 
the effectiveness of machine learning models based on 
morphological MRI radiomics for classifying parotid 
gland tumors. Using a dataset of 298 patients, radiomic 
features were extracted and selected with Select K Best 
and LASSO algorithms, followed by the development of 
three-step models using XGBoost, SVM, and DT. Perfor-
mance evaluation showed that XGBoost outperformed 
other models, achieving the highest AUC in most steps 
(up to 0.908 in training and 0.826 in testing), and its over-
all accuracy (70.8%) surpassed that of radiologists (49.2%) 
[93]. Yang et al. developed an MRI morphological feature 
model (MRI-MF) based on edge markers and peritu-
moral edema, combined with radiomic features extracted 
from post-contrast DCE-MRI images and deep learning 
methods. This approach achieved the best diagnostic 
performance (AUC = 0.857) for assessing lymph vascular 
invasion (LVI) status in breast cancer patients [94]. Chen 
et al. utilized MRI morphological features, including 
tumor number, tumor margin, and tumor necrosis, com-
bined with radiomic features extracted from T2-weighted 
fat-suppressed imaging and diffusion-weighted imaging. 

By applying the LASSO method to generate Rad_Scores, 
they further enhanced the model’s performance. The 
resulting nomogram demonstrated excellent predictive 
capabilities in both the training group (MVI AUC = 0.874; 
tumor grading AUC = 0.827) and the validation group 
(MVI AUC = 0.869; tumor grading AUC = 0.848) [95]. 
These methods uncover insights into tumor growth 
patterns and spatial morphological changes, offering 
valuable indicators of tumor progression and potential 
predictive value for therapeutic outcomes.

Challenges in tumor imaging and future research 
directions
During the NAC process for breast cancer, the inter-
nal properties of the tumor often vary across different 
time points. Spatial heterogeneity is typically composed 
of multiple factors, including but not limited to tissue 
composition, structure, shape, blood flow, oxygen sup-
ply, and immune heterogeneity. However, most stud-
ies focus on clustering and analyzing tumor subregions 
without delving into how these heterogeneities reflect 
potential biological mechanisms in tumor imaging. 
Moreover, temporal and spatial heterogeneity are inher-
ently interconnected. In fact, spatial heterogeneity in 
blood flow and oxygen supply is closely linked to treat-
ment response. In tumors with good treatment response, 
the reduction in tumor size is often accompanied by 
decreased blood flow and oxygen supply, indicating 
simultaneous changes in temporal and spatial heteroge-
neity. Additionally, tumor shape, tissue composition, and 
structure undergo significant alterations before and after 
treatment. Therefore, disregarding any dimension of spa-
tiotemporal heterogeneity and analyzing the remaining 
dimensions in isolation will inevitably result in the loss of 
critical information. When developing imaging models, 
it is crucial to emphasize the spatiotemporal heteroge-
neity of tumors and refine the underlying logical frame-
work linking imaging features to biological mechanisms, 
thereby enhancing the model’s scientific rigor and clinical 
applicability.

Although the combination of spatial-temporal het-
erogeneity has, to some extent, elucidated the potential 
relationship between imaging changes before and after 
neoadjuvant chemotherapy and therapeutic outcomes, 
this insight remains at a macroscopic level and cannot be 
conclusively validated through well-established biological 
mechanisms. Therefore, future studies should incorpo-
rate genomics for in‑depth analyses, enabling the eluci-
dation of fundamental biological mechanisms and their 
intrinsic links to therapeutic efficacy.
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Spatial-temporal radiogenomics
Genomics for explaining tumor biological mechanisms
The advancement of genomics has established a robust 
foundation for understanding the genetic basis of dis-
eases, uncovering individual genomic characteristics, 
and driving personalized medicine [96]. In recent years, 
breakthroughs in high-throughput sequencing technolo-
gies and computational biology have propelled genomics 
to the forefront of research on complex diseases such as 
cancer [97]. Techniques such as whole-genome sequenc-
ing [98], whole-exome sequencing [99], and single-cell 
genomic sequencing have enabled researchers to dis-
sect tumor genomic heterogeneity, identify driver muta-
tions, analyze copy number variations, and uncover gene 
expression regulatory mechanisms at multiple levels.

Genomic heterogeneity analysis primarily investigates 
genetic mutation differences both among individuals and 
within distinct cellular subpopulations in tumors. Tumor 
genomic heterogeneity is recognized as a key contributor 
to recurrence, metastasis, and treatment resistance [21, 
100]. Recent advancements in single-cell genomics [101] 
have introduced transformative tools for studying tumor 
heterogeneity and evolutionary dynamics. For example, 
whole-genome sequencing of individual glioblastoma 
cells has revealed significant variations in EGFR copy 
number at the single-cell level. Moreover, the single-cell 
sequencing approach allowed researchers to deduce that 
the coexistence of two oncogenic EGFR variants encod-
ing truncated EGFR forms in the bulk tumor was driven 
by distinct subclonal tumor cell populations harbor-
ing non-overlapping variants [102]. By revealing genetic 
mutation differences among tumor subpopulations, sin-
gle cell sequencing sheds light on tumor evolution and 
resistance mechanisms. Studies tracking tumor evolution 
through serial biopsy samples have demonstrated that 
chemotherapy can reshape the molecular composition of 
tumors by altering their mutational spectrum. Mutations 
in key genes involved in replication and cell cycle regula-
tion, particularly those contributing to genomic instabil-
ity, play a pivotal role in this process [21]. For example, 
treatment of glioblastomas with temozolomide may lead 
to the accumulation of transition mutations in mismatch 
repair genes, resulting in the development of a hypermu-
tated phenotype [103]. When applied to tumor samples 
collected at multiple time points, this technology allows 
researchers to trace genomic changes before and after 
treatment, providing critical insights into the spatial-
temporal aspects of tumor heterogeneity.

Genomics serves as a powerful tool to decode the spa-
tial-temporal complexities of tumor biology, paving the 
way for precision medicine strategies and improved ther-
apeutic interventions.

Temporal heterogeneity and radiogenomics
Temporal heterogeneity facilitates dynamic observation 
of changes in cellular density and gene expression over 
time, offering critical temporal data for understanding 
cellular processes. Variations in blood flow and oxygen 
supply, influenced by both regional vascular differences 
and temporal changes, emphasize the dynamic complex-
ity of the tumor microenvironment. By analyzing blood 
flow and oxygen supply across tumor regions at various 
time points, researchers can link cellular behaviors to 
angiogenesis-related genes, such as VEGF, and identify 
poorly responsive tumor regions [104–106]. Matsub-
ayashi et al. [104] evaluated the relationship between 
early and delayed edge enhancement, as well as delayed 
internal enhancement, and histological features in 35 
patients using subtraction imaging. Their findings dem-
onstrated a significant association between early edge 
enhancement and high peripheral VEGF expression, 
along with a high peripheral-to-central microvascular 
density ratio. Julia et [106]. employed [18  F]-FMISO-
PET/MRI to assess hypoxia indices in estrogen receptor-
positive (ER+) breast cancer, focusing on their association 
with histological markers, including CD31, HIF-1α, and 
CAIX. The findings revealed a significant negative cor-
relation between [18  F]-FMISO Ki and CAIX expres-
sion, vessel diameter, and microvascular density (MVD) 
(p = 0.002, 0.03, and 0.02, respectively). These results 
suggest that reduced blood flow and oxygen supply, as 
indicated by [18 F]-FMISO Ki, play a key role in promot-
ing increased CAIX expression, further emphasizing the 
relationship between hypoxia and tumor vascular charac-
teristics. These findings are vital for tailoring treatment 
strategies and optimizing therapeutic outcomes.

Spatial heterogeneity and radiogenomics
Links between metabolic heterogeneity and biological 
mechanisms
Metabolic heterogeneity reflects spatial-temporal varia-
tions within tumors, with metabolic characteristics such 
as glucose uptake and lactate production dynamically 
regulated over time and influenced by genetic muta-
tions, particularly via the PI3K/AKT/mTOR pathway 
[107–109]. MRI enables spatial detection of metabolites, 
reflecting metabolic changes during therapy [110]. Met-
abolic imaging is a critical tool for identifying potential 
genetic abnormalities and serves as a valuable basis for 
personalized treatment planning, while also highlight-
ing metabolic heterogeneity as a key indicator of tumor 
responsiveness to therapy [111, 112]. Genetic mutations 
are linked to tumor metabolic profiles, enabling adap-
tation or resistance to therapies [113]. This metabolic 
reprogramming is intertwined with endovascularization, 
which facilitates the transition of cancer cells from a pro-
liferative to an invasive and migratory phenotype, often 
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associated with epithelial-mesenchymal transition and 
partially regulated by TGFβ-dependent transcriptional 
changes [114]. This dynamic interplay between metabolic 
changes and genetic alterations underscores the impor-
tance of integrating metabolic imaging into therapeutic 
assessments, offering insights into tumor adaptation and 
strategies to overcome treatment resistance.

Links between morphological and structural heterogeneity 
and biological mechanisms
Morphological and structural heterogeneity, assessed 
through three-dimensional reconstruction and shape 
analysis, reveals temporal changes in geometric features 
of tumors, such as volume growth, boundary irregulari-
ties, and rates of volumetric change. Although the rela-
tionship between such spatial-temporal heterogeneity 
and genetic mutations is generally weaker, certain mor-
phological characteristics are strongly associated with 
specific genetic alterations. For instance, He et al. showed 
that AEBP1 expression is associated with smaller nuclear 
size and lower nuclear density (P < 0.01) [115]. Acinar and 
papillary growth patterns are indicative of EGFR muta-
tions, whereas solid growth patterns and large nuclei sug-
gest TP53 mutations [79, 116]. These findings highlight 
the importance of temporal changes in morphological 
features as reflections of tumor growth patterns driven by 
specific genetic mutations.

Links between immune heterogeneity and biological 
mechanisms
Tumor heterogeneity is often associated with immune-
related genes. Thorsson et al., through immunogenomic 
analysis, identified that TGF-β dominance is associated 
with immune characteristics characterized by a balanced 
distribution of both type I and type II T cells [117, 118]. 
Radiogenomics integrates imaging data with immune-
related gene expressions, such as PD-L1 and other 
immune checkpoint genes, to predict tumor respon-
siveness to immunotherapy by tracking immune cell 
dynamics over time [119, 120]. This approach provides 
a comprehensive framework for assessing tumor immu-
noreactivity, offering critical insights into tumor-immune 
dynamics.

Radiogenomics integrates spatial heterogeneity fea-
tures derived from radiomics with genomic analyses, 
providing deeper insights into the molecular mechanisms 
underlying tumor growth, metabolism, and immune 
response. Structural heterogeneity reveals variations in 
cellular density and proliferation linked to mutations in 
cell cycle-regulating genes, while vascular heterogeneity, 
reflected in blood flow and oxygen supply variations, cor-
relates with angiogenesis-related mutations. Metabolic 
heterogeneity exposes abnormalities in tumor metabolic 
pathways, particularly involving the PI3K/AKT/mTOR 

signaling cascade. Immune microenvironment heteroge-
neity, assessed through advanced imaging and its associa-
tion with immune-related genes, enhances the precision 
of evaluating tumor responses to immunotherapy.

Spatial-Temporal heterogeneity and radiogenomics
Radiogenomics integrates spatial-temporal heterogeneity 
captured through radiomics with genomic data, enabling 
a deeper mechanistic analysis of their interaction. By 
incorporating imaging features from different types of 
data—such as cellular density, blood supply, metabolic 
states, and the immune microenvironment—genomics 
establishes connections with tumor genetic mutations 
and molecular characteristics. The combined analysis of 
genomic data and radiomics across multiple temporal 
phases provides a comprehensive understanding of the 
relationship between tumor microenvironment changes 
and genetic abnormalities. Cellular density, texture, and 
signal intensity within tumors are closely associated 
with changes in gene expression. Changes in cell den-
sity induce mechanical deformation of cells and nuclei, 
activating protective mechanisms and leading to DNA 
damage and nuclear envelope rupture, which release 
cytoplasmic DNA. This triggers the cGAS-STING sig-
naling pathway, altering gene expression and promoting 
malignant traits such as epithelial-mesenchymal plastic-
ity and chemotherapy resistance. These findings highlight 
that cell density fluctuations influence cancer invasive-
ness through gene regulation [121]. Subtle grayscale tex-
ture variations in foundational imaging features may 
correlate with genetic and phenotypic differences [122, 
123], particularly in genes regulating cell proliferation 
and apoptosis, such as TP53 and RB1 [124]. Over time, 
these spatial variations evolve, driving distinct tumor bio-
logical behaviors at different stages.

Zhou et [125]. constructed an imaging-genomics 
model by integrating the variant allele frequency (VAF) 
of the REL and MED23 genes from genomic data with 
imaging model features. In the validation cohort, the 
model achieved an AUC of 0.93, significantly outper-
forming the imaging model alone (AUC = 0.86). Kaplan-
Meier analysis showed that the disease-free survival 
(DFS) in the pCR prediction group was significantly 
better than in the non-pCR group (P = 0.034, 0.001, and 
0.019), highlighting the potential of the imaging-genom-
ics model in prognostic assessment. However, their study 
only established the model by incorporating gene-related 
features, without investigating the relationship between 
imaging and genomic data. Huang et [126]. explored the 
relationship between spatial habitat radiomics features 
and the tumor immune microenvironment, revealing the 
biological basis of the multimodal model through single-
cell RNA-seq analysis. Using k-means clustering and the 
Calinski-Harabasz index, tumors were divided into three 
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subregions: the high metabolic subregion (Region I), the 
junction subregion (Region II), and the marginal subre-
gion (Region III). Heatmap analysis showed significant 
correlations between B cells and multiple imaging fea-
tures (such as Rad5, Rad6, Rad9, Rad10), especially in 
patients with high Clin-SHR scores, where B cell infiltra-
tion significantly increased. B cell proportions rose from 
0.28 to 1.49% in the low Clin-SHR group to 14.55–42.65% 
in the high Clin-SHR group. Gene Ontology enrichment 
analysis revealed that immune response-related path-
ways, including the B cell receptor signaling pathway, 
were significantly enriched in the high Clin-SHR group, 
emphasizing the role of B cells in the tumor immune 
microenvironment. The study found that patients with 
high Clin-SHR scores exhibited higher B cell infiltra-
tion and better treatment responses, suggesting that a 
B cell-driven immune microenvironment may play a 
pivotal role in tumor response to NAC. This approach 
offers a robust framework for evaluating tumor biological 
alterations before and after NAC, shedding light on the 
dynamic processes of tumor adaptation and response.

This integrated framework of radiogenomics offers a 
holistic molecular and imaging-based approach for per-
sonalized treatment. By combining insights from struc-
tural, vascular, metabolic, and immune heterogeneities, 
it enables more accurate predictions of therapeutic 
responses and supports the development of optimized 
treatment strategies, ultimately improving patient 
outcomes.

Multiomics data and potential interconnections
Radiogenomics has found significant application in using 
imaging to predict the mutation status of genes. Previ-
ous research has demonstrated its strong performance in 
assessing correlations between imaging features and the 
molecular subtypes of breast cancer [127–130]. More-
over, radiogenomics has shown remarkable success in 
evaluating relationships between imaging features and 
genetic mutations [131–136]. For instance, Ji et al. identi-
fied associations between features extracted from DCE-
MRI and the molecular classification of breast cancer. 
This underscores the pivotal role of radiogenomics in 
enhancing the accuracy of breast cancer diagnosis and 
classification [137].

As radiogenomics continues to evolve, a key research 
focus has emerged: decoding the biological mecha-
nisms underlying newly identified imaging biomarkers. 
Establishing robust associations between imaging and 
genomic features is essential to uncovering the processes 
that drive these biomarkers. For example, Lai et [138]. 
employed univariate logistic regression to analyze cor-
relations between differential gene expression levels and 
axillary lymph node status, excluding highly correlated 
genes and ultimately identifying 16 potential predictive 

genes. Similarly, Yu et [139]. applied t-tests to identify 
differentially expressed genes linked to imaging fea-
tures, uncovering connections between MRI radiomics 
and tumor microenvironment characteristics. These 
included immune cell profiles, long non-coding RNAs, 
and methylation site types, illustrating the complex inter-
play between imaging phenotypes and molecular biol-
ogy. In another study, Shaveta et [140]. investigated the 
relationships between gene expression scores, DCE-MRI 
parameters such as Ktrans, clinical variables, and immu-
nohistochemistry (IHC) parameter scores. Using Spear-
man analysis for continuous variables and Kruskal-Wallis 
tests for categorical variables, they identified significant 
differences in gene expression between responders and 
non-responders. Among responders, genes involved in 
angiogenesis and extracellular matrix pathways, such 
as VEGF and ECM-related genes, were notably down-
regulated, indicating that effective treatment reduced 
angiogenesis. Conversely, non-responders exhibited 
activation of axon guidance and mTOR signaling path-
ways, suggesting potential mechanisms underlying treat-
ment resistance. These findings underscore the ability 
of Ktrans changes to reflect not only treatment efficacy 
but also the molecular mechanisms at play. By linking 
imaging parameters with gene expression profiles, the 
study highlights the potential of radiogenomics to pro-
vide insights into the biological processes driving tumor 
responses, paving the way for more targeted and effec-
tive therapeutic interventions. Fan et [141]. conducted a 
genomic analysis to identify the top 2,000 most variable 
genes, excluding those with low expression or minimal 
changes, to investigate their association with treatment 
response. Functional roles of these significant genes and 
their potential impact on treatment outcomes were fur-
ther analyzed using Gene Set Enrichment Analysis and 
KEGG pathway evaluations. Regression models estab-
lished clear relationships between gene expression pat-
terns and tumor shrinkage, offering valuable insights into 
treatment dynamics.

Addressing gaps and future directions in radiogenomics
The exploration of metabolism, morphology, structure, 
immunity, and spatial-temporal heterogeneity has gradu-
ally become a focal point of attention among research-
ers. However, current methodologies primarily focus on 
whole-tumor imaging features, often overlooking the 
spatial-temporal heterogeneity within tumors driven 
by genomic variations. To address this gap, integrating 
multidimensional data from spatial-temporal radiomics, 
genomics, and pathology could allow for a more compre-
hensive evaluation of the effects of NAC. This systematic 
framework for genomic-radiomic integration not only 
enhances the application of multimodal data in precision 
medicine but also fosters innovation by providing deeper 
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insights into the biological and clinical implications of 
integrated data.

However, the existing high-quality studies typically 
establish only one-dimensional relationships between 
macro-level imaging features and micro-level pathology 
or genetics. A critical gap remains: while genes are often 
used to explain outcomes, the intermediate processes 
that lead to these outcomes are still poorly understood 
and remain opaque.

In two other studies [142, 143], researchers conducted 
reverse validation of radiogenomics using animal models, 
further strengthening the rigor and reliability of the find-
ings. Current investigations in this domain are sparse, 
underscoring the tremendous opportunities for progress 
in this promising yet largely untapped field. The integra-
tion of spatial-temporal heterogeneity with radiogenom-
ics, coupled with validation through animal experiments, 
presents a promising approach to address this challenge. 
By systematically interpreting the temporal and spatial 
heterogeneity within tumor imaging, this review could 
help explain the progression from underlying biological 
processes to clinical outcomes, thereby enhancing the 
interpretability and predictive power of tumor models.

Spatial-temporal radiogenomics: opportunities 
and challenges
Spatial-temporal radiogenomics uniquely bridges the gap 
between imaging changes and biological mechanisms, 
granting imaging features a deeper biological interpret-
ability. Tumor development is inherently dynamic, with 
breast cancer undergoing continuous changes in imaging 
characteristics throughout its progression—from diagno-
sis to treatment. These changes encompass alterations in 
shape, texture, size, contour, and heterogeneity, reflecting 
the evolving biology of the tumor.

Imaging changes observed before and after NAC often 
correlate with therapeutic efficacy, which is heavily influ-
enced by variations in gene expression (Fig.  2). Tumors 
responding to treatment may exhibit reductions in size 
or heterogeneity, while non-responders may display dis-
tinct patterns of resistance-driven changes. Despite these 
associations, effectively integrating the spatial-temporal 
dynamics of imaging features with genomic information 
remains a critical challenge.

Addressing this question requires the development of 
advanced computational frameworks capable of cap-
turing the interplay between imaging phenotypes and 
underlying genomic variations over time. Such frame-
works could provide deeper insights into treatment 
response mechanisms, enhancing the precision of radi-
ogenomic analysis and supporting the design of per-
sonalized therapeutic strategies. Future research must 
focus on the integration of longitudinal imaging and 

multi-omics data to unravel these complex relationships 
and maximize the clinical utility of radiogenomics.

The main challenges facing the integration of radioge-
nomics in clinical practice are as follows:

The challenges spatio-temporal radiogenomics
High cost of acquiring paired genomic data
Obtaining genomic data paired with imaging remains 
prohibitively expensive. Consequently, most radiogenom-
ics studies are limited to single-center investigations with 
small sample sizes, often lacking adequate external vali-
dation. To address this limitation, future research should 
emphasize standardized, large-scale, prospective studies 
involving multi-center patient cohorts. This approach 
would improve the generalizability of findings and estab-
lish a more robust foundation for clinical applications.

Time-consuming and subjective nature of radiomics research
Current radiomics studies frequently depend on manual 
image segmentation, which is not only time-intensive 
but also susceptible to operator variability, potentially 
undermining the reproducibility and validity of models. 
To overcome this challenge, future research must focus 
on the development of automated, efficient, and reliable 
segmentation techniques. Such advancements would sig-
nificantly enhance the clinical applicability of radiomics 
by improving accuracy, reducing variability, and increas-
ing efficiency.

Limited exploration of biological mechanisms
​Many radiomics and radiogenomics studies have pri-
marily focused on correlating imaging features with 
genomic data, often lacking a deeper exploration into the 
biological mechanisms driving these associations. This 
limitation hinders our understanding of how imaging 
phenotypes reflect underlying tumor biology. To address 
this gap, future research should integrate imaging data 
with functional biological studies, utilizing animal mod-
els to validate radiomic features and elucidate their bio-
logical significance. For instance, preclinical studies using 
murine models have demonstrated that radiomic features 
derived from imaging modalities like MRI and PET can 
correlate with gene expression profiles, providing insights 
into tumor heterogeneity and response to therapy. By 
combining imaging data with molecular and histologi-
cal analyses in animal models, researchers can identify 
specific biological processes, such as angiogenesis or 
immune cell infiltration, that correspond to radiomic fea-
tures. This integrative approach not only enhances the 
interpretability of radiomic data but also facilitates the 
development of imaging biomarkers that are biologically 
relevant and clinically applicable. Ultimately, bridging the 
gap between imaging, genomics, and functional biology 
through the use of animal models will pave the way for 
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more precise and personalized therapeutic strategies in 
oncology [144].

Addressing these challenges will require a collaborative 
and multidisciplinary effort, combining advancements in 
imaging, genomics, computational biology, and clinical 
research. By overcoming these barriers, radiogenomics 
can fulfill its potential as a transformative tool in preci-
sion medicine, paving the way for deeper insights into 
cancer biology and more effective patient care.

Future outlook
Radiomics allows for the high-throughput extraction of 
multidimensional features from tumors, while genomics 
reveals the molecular characteristics and genetic muta-
tion patterns of the tumor. Technological innovations 
are expected to bring breakthroughs in this field. Spatial 
transcriptomics enables the precise localization of gene 
expression changes within tumor tissues and provides 
spatial references for imaging data, greatly enhancing 
our understanding of the tumor microenvironment and 
treatment responses. Single-cell multi-omics is promis-
ing for revealing tumor cell heterogeneity, which could 
help predict the early emergence of drug-resistant cells. 
When combined with dynamic MRI monitoring, it allows 
for more precise therapeutic interventions. Addition-
ally, the integration of explainable deep learning and 
GNN enables the deep fusion of multimodal imaging and 
genomic data on a single platform. Through attention 
mechanisms, the model’s interpretability is improved, 
making it easier for clinicians to trust AI-driven pre-
dictions. To promote this process, federated learning 
holds significant promise for multi-center data sharing, 
enabling large-scale data collaborative modeling while 
protecting patient privacy, thus enhancing the general-
ization capabilities of models.

In the future, the combination of digital twin technol-
ogy and virtual clinical trials will make treatment plan 
selection more scientific. By constructing digital models 
of patients, different treatment strategies can be simu-
lated in a virtual environment to predict drug responses 
and adverse effects, optimizing personalized treat-
ment plans. Real-time liquid biopsy, in conjunction with 
radiomics, offers a new approach for dynamic tumor 
monitoring, allowing for the timely detection of disease 
progression or signs of resistance, thus supporting the 
timely adjustment of NAC treatment.

Looking ahead, the integration of radiomics, pathol-
ogy, and genomics to model and analyze patient response 
is poised to become a cornerstone of cancer research 
and clinical practice. These complementary approaches 
address distinct informational gaps—particularly by 
illuminating the underlying mechanisms driving imag-
ing changes—and thereby accelerate the clinical transla-
tion of AI models. However, despite the promise that AI 

may one day outperform radiologists, several challenges 
must be acknowledged. First, AI performance critically 
depends on the quality and diversity of training data: 
while models excel on common lesions, they can mis-
diagnose rare cases, necessitating rigorous validation to 
ensure broad applicability. Second, radiologists incorpo-
rate not only imaging data but also clinical context and 
patient history—judgment that AI cannot yet fully rep-
licate in complex cases. Third, AI’s “black-box” nature 
remains a barrier: clinicians require transparent, inter-
pretable decision processes before trusting AI outputs. 
Therefore, the most effective approach currently is to 
use AI as a decision-support tool, rather than replacing 
human expertise [145].

To bolster AI credibility, we recommend training on 
representative, diverse datasets [146]. Commonly, data 
are split 80∶20 into training and validation sets—or 
80∶10∶10 when external validation is available—but lim-
ited datasets may warrant 70∶30 splits [147] or cross-
validation strategies [33, 148]. Small, imbalanced datasets 
significantly increase the risk of overfitting [149], which 
can be detected by a large discrepancy between training 
and validation errors [150]. To mitigate overfitting, meth-
ods such as cross-validation, dataset augmentation, and 
regularization should be employed [150, 151]. Finally, 
evaluating model performance across multiple, indepen-
dent datasets provides a more comprehensive assess-
ment, thereby enhancing trustworthiness and promoting 
generalizability in both clinical and real-world settings 
[152].

Conclusion
This review analyzes the role of temporal and spatial het-
erogeneity in artificial intelligence-assisted prediction of 
neoadjuvant chemotherapy efficacy. We summarize the 
current research methods for analyzing time series and 
constructing tumor subregions, focusing on the tempo-
ral heterogeneity of imaging changes before and after 
neoadjuvant treatment and their associated biological 
mechanisms. Furthermore, we discuss the spatial het-
erogeneity and its biological significance revealed by 
research hotspots such as tumor subregion analysis. 
Based on this, we explore the potential of integrating 
spatial-temporal heterogeneity with imaging genom-
ics to enhance the interpretability of radiomics mod-
els. In the future, a deeper exploration of the biological 
mechanisms underlying pre- and post-treatment imaging 
changes and the biological significance of imaging varia-
tions in patients with different treatment responses will 
contribute to more precise individualized treatment and 
promote the clinical application of artificial intelligence 
models.
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