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Extensive research has examined socioeconomic factors influencing prostate cancer

(PCa) disparities. However, to what extent molecular and genetic mechanisms may also

contribute to these inequalities still remains elusive. Although various in vitro, in vivo,

and population studies have originated to address this issue, they are often very costly

and time-consuming by nature. In this work, we attempt to explore this problem by

a preliminary study, where a joint deep latent variable model (DLVM) is proposed to

in silico quantify the personalized and race-specific effects that a genomic aberration

may exert on the Gleason Score (GS) of each individual PCa patient. The core of the

proposed model is a deep variational autoencoder (VAE) framework, which follows the

causal structure of inference with proxies. Extensive experimental results on The Cancer

Genome Atlas (TCGA) 270 European-American (EA) and 43 African-American (AA) PCa

patients demonstrate that ERG fusions, somatic mutations in SPOP and ATM, and copy

number alterations (CNAs) in ERG are the statistically significant genomic factors across

all low-, intermediate-, and high-grade PCa that may explain the disparities between

these two groups. Moreover, compared to a state-of-the-art deep inference method, our

proposed method achieves much higher precision in causal effect inference in terms of

the impact of a studied genomic aberration on GS. Further validation on an independent

set and the assessment of the genomic-risk scores along with corresponding confidence

intervals not only validate our results but also provide valuable insight to the observed

racial disparity between these two groups regarding PCa metastasis. The pinpointed

significant genomic factors may shed light on the molecular mechanism of cancer

disparities in PCa and warrant further investigation.
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INTRODUCTION

Prostate cancer (PCa) is the most commonly diagnosed non-
skin cancer and the second leading cause of cancer mortality in
Americanmen (1). In the US, an estimated 164,690 new cases and
29,430 deaths occurred in 2018 (1). Compared with European-
American (EA) men, African American (AA) men experience a
60% higher incidence rate and a 2.4 times higher mortality rate of
PCa (1). Moreover, AA men are diagnosed at an earlier age with
higher Gleason Scores (GSs) and prostate-specific antigen (PSA)
levels (2, 3) and are more likely to have aggressive diseases than
men of other ethnic groups.

There are many factors that influence racial disparities in PCa,
and a number of socioeconomic, cultural, and environmental
factors have been identified (4–8). For example, unequal access
to health care, diet, age, lifestyle, and family history strongly
affect the race-specific PCa incidence and mortality rates. Other
factors, such as poverty, lack of education, stigma, and type
and aggressiveness of treatment have also been suggested as
potential contributors to the disparity (9, 10). However, many
studies have reported that the inequity remains even after those
socioeconomic and treatment differences are adjusted (11). Ever-
increasing evidence, on the other hand, suggests that a number
of intrinsic molecular determinants specific to malignant cells,
including genetic and/or genomic aberrations, must partially
account for the observed health disparities (12, 13). For example,
Edward et al. (14) reported that BRCA2 mutation is a potential
risk factor associated with PCa incidences. Scott et al. (15)
showed a much higher rate of cytochrome c oxidase subunit
I (COI) mutation present in AA individuals, indicating its
importance in racial disparity for PCa.

Compared to other cancer types, PCa is characterized
by extraordinary genetic and genomic complexities (16, 17).
Multiple studies have identified recurrent somatic mutations,
copy number alterations (CNAs), and oncogenic structural
DNA rearrangements in primary PCa (18–23). These include
point mutations in SPOP, FOXA1, and TP53; CNAs involving
MYC, RB1, PTEN, and CHD1; and ERG fusions, among other
biologically relevant genes. Although certain gene mutations
have been reported to be of importance in racial disparity for PCa
(14, 15), the personalized and race-specific causal effects of other
molecular aberrations on PCa aggressiveness (i.e., GS) have not
yet been quantitatively realized, especially given large amounts of
multiple clinical and high-throughput omics data.

To fill this gap, we propose a joint deep latent variable
model, named DLVM, to integratedly estimate the personalized
and race-specific causal effects that a genomic aberration may
exert or not exert on a patient’s GS. The core of DLVM
is a deep variational autoencoder (VAE) framework, which
follows the causal structure of inference with proxies. By deep
learning multi-observational data of patients, DLVM is able to
integrate the potential influence of immeasurable confounders
or latent variables (e.g., interactions among interested genes)
in its inferences. Exploratory studies on The Cancer Genome
Atlas (TCGA) PCa tumor samples demonstrate that DLVM
can pinpoint genomic aberrations that may be of significance
for racial disparities in PCa. Moreover, compared to another

state-of-the-art deep inference method, DLVM achieves much
higher precision in causal inferences. Further validation on an
independent set and the assessment of the estimated genomic-
risk scores not only mutually validate the results but also
elucidate the observed racial disparity between these two groups
regarding PCa metastasis.

MATERIALS AND METHODS

Data and Studied Genomic Aberrations
We downloaded the multi-omics TCGA “Prostate
Adenocarcinoma” (PRAD) dataset from cBioPortal1. The
original dataset contains 270 EAs, 43 AAs, 8 Asians, and 179
patients whose race/ethnicity information is unavailable. To
the best of our knowledge, the TCGA PRAD cohort is the
only publicly available PCa dataset with the self-reported
race/ethnicity information and matched multilevel genomic and
clinical data. Those matched data, especially the clinical features,
mutation profiles, and gene expression values, are essential for
DLVM modeling. As such, we conducted the initial modeling
on the primary set of 270 EA and 43 AA patients. Moreover, an
independent validation was performed on the corresponding
data of 166 patients (i.e., 144 EAs and 22 AAs) whose racial
information is imputed by a published deep learning method
(see Race/Ethnicity Imputation). The details of sources of data
and the utilized features for model training are presented
in Supplementary Text S1. Figure 1 illustrates the patient
distributions with respect to varied grades of GS in the primary
and validation datasets, where the high-risk/aggressive PCa is
defined as GS ≥ 8, intermediate-risk PCa is defined as GS = 7,
and low-risk/non-aggressive PCa is defined as GS ≤ 6 (24).

In this work, without further specifications, the studied
genomic aberrations include ERG fusions; somatic mutations
in SPOP, TP53, FOXA1, ATM, BRCA2, and PTEN; germline
mutations in BRCA1 and BRCA2; and CNAs in LCP1, ERG,
PTEN, and FOXA1. We choose these aberrations because
they are the most frequent genomic alterations as summarized
by cBioPortal1. Nevertheless, the potential values of these
aberrations in PCa racial disparities are largely unknown. It is
worth noting that when a specific genomic aberration is treated as
the intervention variable, its gene expression values are excluded
from the continuous variables to do the inferences.

Race/Ethnicity Imputation
To obtain the unknown race or ethnicity of the 179 patients in
the validation data, we utilized a deep imputation method similar
to RIDDLE (25) to train a predictive model on the primary
data with known racial information. Specifically, a multilayer
perceptron (MLP) network that contains an input layer with 112
nodes (i.e., each node corresponds to a feature as described in
Supplementary Text S1), two hidden layers with 512 Parametric
Rectified Linear Unit (PReLU) nodes, and a softmax output layer
with three nodes (i.e., each corresponds to EA, AA, and Asian)
is designed to impute the racial information. Out of the 179

1Available online at: https://www.cbioportal.org/datasets
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FIGURE 1 | Patient distributions with respect to race and varied grades of Gleason scores in the primary and validation data, respectively.

TABLE 1 | Different scenarios of causal effect inferences: Ideal-World vs. Real-World vs. Model-Inference [e.g., deep latent variable model (DLVM)].

Patients Ideal world Real world Reconstruction and inference (DLVM)

Both true outcomes [a patient’s Gleason

Score (GS)] are known for a genomic

aberration occurs (t = 1) and not occur

(t = 0)

Only one true outcome (a patient’s GS) is

known for a genomic aberration occurs

(t = 1) or not occur (t = 0)

Both outcomes (a patient’s GS) can be

estimated for a genomic aberration occurs

(t = 1) and not occur (t = 0)

1 y1 (0) y1 (1) y1 (0) ? ŷ1 (0) ŷ1 (1)

…. …. …. …. …. …. ….

n yn (0) yn (1) ? yn (1) ŷn (0) ŷn (1)

patients, 144, 22, and 13 patients are predicted to be EAs, AAs,
and Asians, respectively (Figure 1).

Method and Implementation of Deep
Latent Variable Model
To learn the personalized causal effect of an event or intervention
on a certain outcome, one has to know the true or factual
outcomes with and without the intervention. However, in
reality, one can only observe one of the outcomes and the
other has to be reconstructed and inferred (Table 1). To infer
the unknown outcome from observational data, confounders,
i.e., the factors that affect the intervention, its outcomes and
the observed noisy variables, need to be carefully handled.
In our study, the intervention is an interested genomic
aberration, the outcome is the GS of an individual AA
or EA patient, and the observed noisy variables are the
patients’ multi-omics and clinical data. As PCa disparity is a
multifactorial construct, it is reasonable to assume that multiple
confounders, observed and latent, affect the way that a genomic
aberration impacts a patient’s GS. Specifically, an example of
observed confounders is gene expression data, and examples
of latent confounders include the crosstalk/interactions among

genes or unseen influences between genotypes and clinical
features. As a result, we propose a joint DLVM to tackle
this problem.

Without loss of generality, we assume that the true
intervention is t = 1 and the true outcome is y (1) for a
certain patient (e.g., the n-th patient in Table 1). Figure 2

demonstrates the underlying inference mechanism of DLVM.
In DLVM, y denotes the outcome (e.g., GS of a patient);
t represents the intervention (e.g., a specific genomic
aberration); x1 and x2, respectively, denote the observed
discrete and continuous noisy multi-omics and clinical
variables; z1 and z2, respectively, denote the discrete and
continuous latent confounders, and Z represents the joint
latent confounder. We assume that the joint distribution
p
(

Z, z1, z2, x1, x2, t, y
)

of the latent confounders and the
observed data can be approximately reconstructed from
the observations

(

x1, x2, t, y
)

. As indicated by blue and red,
respectively (Figure 2), there are two processes in DLVM:
reconstruction of the true outcome [i.e., ŷ (1)] and estimation
of the unknown outcome [i.e., ŷ (0)]. More specifically, in both
processes, we first parameterize the discrete prior distribution
p (z1) as a Bernoulli distribution and the continuous prior
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FIGURE 2 | The graphical representation of the proposed deep latent variable model (DLVM) with two processes for reconstruction of the true outcome (in blue) and

estimation of the unknown outcome (in red), respectively. Please see detailed descriptions in Method and Implementation of Deep Latent Variable Model.

distribution p (z2) as a Gaussian distribution. Then, the
conditional distributions p (x1|z1), p (x2|z2), and p (Z|z1, z2)
can be obtained via deep decoders or encoders of the VAEs
(27). After that, we use the graphical representation to compute
p
(

Z,t, y
)

= p (Z) p (t|Z) p
(

y
∣

∣t,Z
)

, whereby the overall joint
distribution can be estimated by p

(

Z, z1, z2, x1, x2, t, y
)

=

p (z1) p (z2) p (x1|z1) p (x2|z2) p (Z|z1, z2) p (t|Z) p
(

y
∣

∣t,Z
)

(Please refer to the detailed discussion in
Supplementary Text S2). Finally, given the assumed true
intervention t = 1, reconstruction of the true outcome [i.e.,
ŷ (1)] and estimation of the unknown outcome [i.e., ŷ (0)]
can be achieved by using the estimated joint distribution
p
(

Z, z1, z2, x1, x2, t, y
)

. In this way, for the outcome of a certain
patient (i.e., GS in our case), the reconstruction precision and
individual causal effect (ICE) can be computed by

∣

∣ŷ (1) − y (1)
∣

∣

and y (1) − ŷ (0), respectively.
In summary, using VAEs as its core inference technique,

DLVM is able to derive the complex non-linear relationships
between (x1, x2) and

(

Z, z1, z2, t, y
)

and approximately
reconstruct p

(

Z, z1, z2, x1, x2, t, y
)

. This capability allows
DLVM to further infer the unknown outcome given an
counterfactual/hypothetical intervention (e.g., t = 0) (via
the deep encoder) and approximate the true outcome
given a truthful/factual intervention (e.g., t = 1) (by the
deep decoder). The details of DLVM modeling, inference,
and optimization (with theoretical proofs) are presented in
Supplementary Text S2. From a technical perspective, DLVM is
a variant of causal effect inference methods with latent variable
modeling capability. The interested readers can refer to Kingma

and Welling (26), Box and Tiao (27), Goodfellow et al. (28), Lee
et al. (29), Louizos et al. (30), and Yoon et al. (31) for reviews of
related work.

In this study, we prototype DLVM by two deep VAEs with
three hidden layers for discrete and continuous latent variables.
Each of the first two hidden layers contains 300 neurons, and
there are 100 neurons in the third one. We adopt the sigmoid
activation function in each hidden layer and the softmax function
in the output layer. The dimensions of the latent confounders
Z, z1 and z2 are set as 50, 160, and 160, respectively. The DNN
is trained using the gradient descent algorithm with up to 300
epochs, a batch size of 10, a learning rate of 1e−5, and a decay
rate of 1e−5. ADAM (32) is used as the optimizer, and all
model parameters are determined via a preliminary validation
process. DLVM is implemented by modifying the source code of
CEVAE2 with the utilization of additional Python packages, such
as numpy, sklearn, tensorflow, and PyTorch.

Genomic-Risk Scores Obtained via Deep
Latent Variable Model Estimation
As DLVM is able to estimate the GS for each patient assuming
that an interested genomic aberration does occur (i.e., t =

1), we also compute the genomic risk scores (GRSs) based on
the DLVM’s estimates so that the impacts of these genomic
aberrations can also be interpreted at the population level
regarding PCa metastasis. Specifically, based on the obtained GSs
from DLVM, a genomic risk assessment model as documented

2Available online at: https://github.com/rik-helwegen/CEVAE_pytorch
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FIGURE 3 | Inference precision comparisons measured by root mean square errors (RMSEs): deep latent variable model (DLVM) vs. causal effect variational

autoencoder (CEVAE) on African Americans (AAs) and European-Americans (EAs) in the primary data. CNAs, copy number alterations.

in Mahal et al. (24) and Spratt et al. (33) is first used to compute
the GRSs, and then, we compare these aberration-specific GRSs
between AAs and EAs by a two-sided (α = 0.05) statistical t-
test. The implementations are performed with R 3.6.0 (R package:
EBPRS). It is worth noting that the output GRSs are continuous
between 0 and 1, with higher scores indicating a greater risk of
PCa metastasis.

Measurement Metrics and Experimental
Design
To quantitatively assess to what extent a studied genomic
aberration may affect the GS of each individual patient, we train
DLVM with the GS as the outcome (i.e., y) and each genomic
aberration as a binary intervention variable (i.e., t = 1 or 0). Let
yi (0) and yi (1) be the true outcomes of the ith patient when t = 0
and t = 1 and ŷi (0) and ŷi (1) be the outcomes estimated by
DLVM, the individual causal effect (ICE) for the i-th patient can
be measured by ŷi (1) − yi (0) (if the studied aberration does not
occur, i.e., t = 0) or yi (1) − ŷi (0) (if the studied aberration
occurs, i.e., t = 1). The population causal effect for a racial
group can be estimated by the average ICE (AICE), which is

defined as: AICE =

√

∑

i∈{i|t=0}(ŷi(1)−yi(0))
2
+

∑

i∈{i|t=1}(yi(1)− ŷi(0))
2

n ,

where n is the number of samples in a group. We use root
mean square error (RMSE) defined as follows to measure
the precision of the causal inference process: RMSE =
√

∑

i∈{i|t=0}(ŷi(0)−yi(0))
2
+

∑

i∈{i|t=1}(ŷi(1)−yi(1) )
2

n .

In the experiments, we report the average AICE and RMSE
over 10 replications of 3-fold cross validations on each racial
group. In each fold, ∼47, 20, and 33% of the samples in a
racial group are used for model training, validation, and testing
purposes. This experimental design ensures that all the samples
are used for model performance assessment, i.e., calculations of
AICE and RMSE.

EXPERIMENTAL RESULTS

Inference Precision Comparison to a
Benchmark Method on the Primary Data
To demonstrate the inference precision of DLVM, we
first compare it with one of the state-of-the-art inference
methods [i.e., causal effect VAE (CEVAE) (30)] w.r.t. the
RMSE metric using the primary data. As shown by Figure 3

and Supplementary Table S1, for each racial group, DLVM
consistently achieves lower RMSEs than CEVAE in causal effect
inferences over all studied genomic aberrations with p < 0.0001.
Compared to CEVAE, the overall average reductions in inference
RMSEs achieved by DLVM on AAs and EAs are 19.03 and
22.98%, respectively. Specifically, in terms of ERG fusions, the
average RMSEs of DLVM on AAs and EAs are 8.54 and 27.02%
lower than those of CEVAE. With respect to the studied somatic
mutations, the average RMSEs of DLVM on AAs and EAs are
21.03 and 19.01% lower than those of CEVAE. As to the germline
mutations (or CNAs), the average RMSEs of DLVM on AAs
and EAs are 14.26 and 28.70% (or 21.03 and 25.06%) lower
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than those of CEVAE. These results indicate that, compared
to CEVAE, DLVM is more precise and reliable in inferring the
race-specific causal effects that a genomic aberration may pose
on GS.

Identifying Race-Specific Genomic
Aberrations via Average Individual Causal
Effects on the Primary Data
To determine potential genomic aberrations of significance for
racial disparities in PCa aggressiveness, we compare the race-
specific AICEs of the studied genomic aberrations for low-grade
(GS ≤ 6), intermediate-grade (GS = 7), and high-grade (GS ≥

8) EA and AA patients on the primary data. It is worth noting
that AICE can assess the population causal effect of a genomic
aberration with respect to different GSs. In addition to AICE,
DLVM is able to estimate the ICE for each patient (see Materials
and Methods).

From Figure 4 and Supplementary Figure S1, we have the
following observations. First, for low-grade patients, AICEs of
AAs are statistically significantly higher than those of EAs
over most of the studied genomic aberrations, including ERG
fusions, somatic mutations in SPOP, FOXA1 and BRCA2,
BRCA2 and BRCA1 germline mutations, and CNAs in ERG and
FOXA1. The AICE of EAs is statistically significantly higher
than that of AAs only on somatic mutations in ATM. There
is no statistically significant difference in AICEs of AAs and
EAs for TP53 and PTEN mutations as well as LCP1 and
PTEN CNAs. Second, regarding intermediate-grade patients,
AICEs of EAs are statistically significantly higher than those
of AAs on ERG fusions, somatic mutations in SPOP, PTEN,
ATM and TP53, BRCA2 germline mutation, and CNAs in
LCP1, ERG, and PTEN. There is no statistically significant
difference in AICEs of AAs and EAs for FOXA1 and BRCA2
mutations, BRCA1 germline mutation, and FOXA1 CNAs.
Third, for high-grade patients, AICEs of AAs are statistically
significantly higher than those of EAs on BRCA2 germline
mutation, BRCA2 and FOXA1 somatic mutations, and CNAs
in FOXA1; while AICEs of EAs are statistically significantly
higher than those of AAs on ERG fusions, somatic mutations
in SPOP, PTEN, ATM, and TP53 and CNAs in ERG and
LCP1. There is no statistically significant difference in AICEs
of AAs and EAs for BRCA1 germline mutation and CNAs
in PTEN. The results for each grade of PCa patients suggest
that: (1) Those identified significant genomic aberrations could
be important molecular determinants of the racial disparity
in the corresponding grade of tumors; and (2) For patients
within the same grade category, each of those aberrations may
pose a larger impact on AAs (or EAs) than EAs (or AAs)
depending on which racial group of a higher AICE. Lastly,
AICEs are statistically significantly differentiated between AAs
and EAs across all three grades of GS with respect to ERG
fusions, somatic mutations in SPOP and ATM, BRCA2 germline
mutation, and CNAs in ERG compared to other genomic
aberrations. The details of all estimated race-specific AICEs and
related statistics for different grades of GS are summarized in
Supplementary Table S2.

Genomic Risk Score-Based Assessment
on the Primary Data
To further explore the impacts of the studied genomic
aberrations at the population level regarding PCa metastasis, we
report the genomic aberration-specific GRSs of EAs and AAs
in the primary data w.r.t. different grades of GS in Figure 5,
Supplementary Figure S2, and Supplementary Table S3. In fact,
as shown by Supplementary Table S4, the race-specific GRS
patterns that the genomic aberrations impact patients’ GSs
are quite similar to the race-specific patterns observed for
AICEs. Please see the implications of such a similarity in the
Discussion section.

Specifically, for low-grade patients, we also find that: (1) GRSs
of AAs are statistically significantly higher than those of EAs on
ERG fusions, somatic mutations in SPOP, FOXA1 and BRCA2,
BRCA2 and BRCA1 germline mutations, and CNAs in ERG and
FOXA1; (2) The GRS of EAs is statistically significantly higher
than that of AAs only on somatic mutations in ATM; and (3)
There is no statistically significant difference in GRSs of AAs
and EAs for TP53 and PTEN mutations as well as LCP1 and
PTEN CNAs. As to intermediate-grade patients, GRSs of EAs
are also statistically significantly higher than those of AAs on
ERG fusions, somatic mutations in SPOP, PTEN, ATM, and
TP53, BRCA2 germline mutations, and CNAs in LCP1, ERG, and
PTEN. There is no statistically significant difference in GRSs of
AAs and EAs for BRCA2mutations, BRCA1 germline mutations,
and FOXA1 CNAs. Compared to the AICE patterns of this grade
category, one difference is that the GRS of AAs is statistically
significantly higher than that of EAs on somatic mutations in
FOXA1. For high-grade patients, GRSs of AAs are statistically
significantly higher than those of EAs on BRCA2 and FOXA1
somatic mutations and CNAs in FOXA1, while GRSs of EAs
are statistically significantly higher than those of AAs on EGR
fusions, somatic mutations in SPOP, PTEN, ATM, and TP53,
and CNAs in ERG and LCP1. There is no statistically significant
difference in GRSs of AAs and EAs for BRCA1 and BRCA2
germline mutations and CNAs in PTEN. Across all three grades
of GS, GRSs are statistically significantly differentiated between
AAs and EAs with respect to ERG fusions, somatic mutations in
SPOP, FOXA1, and ATM, and CNAs in ERG compared to other
genomic aberrations.

Validation of the Identified Race-Specific
Genomic Aberrations
We further test our proposed method on the validation
data containing 144 EAs and 22 AAs, where patients’ racial
information is inferred using the deep imputation method (25).
Similarly, we compare the race-specific AICEs of the studied
genomic aberrations for low-grade (GS ≤ 6), intermediate-grade
(GS= 7), and high-grade (GS ≥ 8) EA and AA patients.

From Figure 6 and Supplementary Figure S3, we have the
following observations. First, for low-grade patients, AICEs of
AAs are statistically significantly higher than those of EAs on
ERG fusions, somatic mutations in SPOP, FOXA1 and BRCA2,
BRCA2 and BRCA1 germline mutations, and CNAs in ERG
and FOXA1. AICEs of EAs are statistically significantly higher
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FIGURE 4 | Box plots of six genomic-aberration specific average individual causal effects (AICEs) of African Americans (AAs) and European-Americans (EAs) in the

primary data for different grades of Gleason Score (GS). The paired t-test with the significance level α = 0.05 is utilized for hypothesis testing, where the null

hypothesis is “H = 0: genomic aberration-specific AICEs are not differentiated over racial groups” and the alternative hypothesis is “H = 1: genomic aberration-

specific AICEs are differentiated over racial groups.” CI, confidence interval.

than those of AAs only on somatic mutations in ATM. There
is no statistically significant difference in AICEs of AAs and
EAs for TP53 and PTEN somatic mutations as well as LCP1
and PTENCNAs. Second, regarding intermediate-grade patients,

AICEs of EAs are statistically significantly higher than those of
AAs on somatic mutations in TP53, ATM, and PTEN, BRCA2
germline mutation, and CNAs in LCP1, ERG, and PTEN. There
is no statistically significant difference in AICEs of AAs and
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FIGURE 5 | Box plots of six genomic aberration-specific genomic risk scores (GRSs) of African Americans (AAs) and European Americans (EAs) in the primary data

for different grades of Gleason Score (GS). The paired t-test with the significance level α = 0.05 is utilized for hypothesis testing, where the null hypothesis is “H = 0:

genomic aberration-specific GRSs are not differentiated over racial groups” and the alternative hypothesis is “H = 1: genomic aberration-specific GRSs are

differentiated over racial groups.” CI, confidence interval.

EAs for nearly one third of the studied genomic aberrations,
i.e., somatic mutations in SPOP and FOXA1, BRCA1 germline
mutations, and CNAs in FOXA1. Lastly, for high-grade patients,
AICEs of EAs are statistically significantly higher than those of
AAs on ERG fusions, SPOP, TP53, ATM, and PTEN somatic
mutations, and CNAs in LCP1, ERG, and FOXA1, while AICEs
of AAs are statistically significantly higher than those of EAs on
somatic mutations in FOXA1 and BRCA2 and BRCA2 germline
mutation. There is no statistically significant difference in AICEs
of AAs and EAs for BRCA1 germline mutation and CNAs
in PTEN. The details of all estimated race-specific AICEs and
related statistics for different grades of GS using the validation
data are summarized in Supplementary Table S5.

In addition, as shown by Supplementary Table S6, the race-
specific AICE patterns obtained on the primary data are quite
similar to those obtained on the validation data. Among 39
comparisons with respect to 13 genomic aberrations and three
grades, there are only three differences. They are somatic
mutations in SPOP and BRCA2 for intermediate-grade patients

and CNAs in FOXA1 for high-grade patients. Over 92%
consistency rate between race-specific AICE patterns obtained
on the primary and independent validation data further
demonstrates the efficacy and robust capability of DLVM in
causal inference.

DISCUSSION

Remarkable racial disparities have been reported in PCa
incidence and mortality rates. In spite of these recognitions,
precise mechanisms underlying these prevailing racial disparities
remain poorly understood. Although socioeconomic factors
play critical roles in such health disparities, increasing
efforts have begun to explore molecular mechanisms in
tumor biology and ancestry-related aspects that may be
attributed to the observed PCa health disparities. However,
most of these efforts are confined to expensive and time-
consuming in vitro, in vivo, and population studies, where
non-omics features and high-throughput multi-omics
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FIGURE 6 | Box plots of six genomic aberration-specific average individual causal effects (AICEs) of African Americans (AAs) and European Americans (EAs) in the

validation data for different grades of Gleason Score (GS). The paired t-test with the significance level α = 0.05 is utilized for hypothesis testing, where the null

hypothesis is “H = 0: genomic aberration-specific AICEs are not differentiated over racial groups” and the alternative hypothesis is “H = 1: genomic aberration-

specific AICEs are differentiated over racial groups.” CI, confidence interval.

data cannot be well-integrated to infer potential race-
specific causal biological determinants in an efficient and
cost-effective manner.

To our knowledge, this is the first study to apply the machine
learning approach (i.e., deep learning) to integratedly examine
the personalized and race-specific causal effects that molecular
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aberrations may pose on classic PCa phenotypic risk factors (i.e.,
GS) via multi-omics and non-omics data. For 13 well-known
molecular aberrations in PCa biology, we computationally
explore their potentials as biological determinants of racial
disparities in PCa via a novel DLVM and multiple population-
level evaluation metrics (i.e., RMSEs, AICEs, and GRSs). By
scrutinizing the TCGA PCa patients in different grades of GS
and over all grades, we report race-specific AICEs, GRSs, related
statistics, as well as the studied genomic aberrations that could
contribute to PCa racial disparities. Some of the findings are
consistent with what has been reported in the literature, which
validates the results to a certain extent. For example, we find that
for low-grade PCa, both AICEs and GRSs of AAs are statistically
significantly higher than those of EAs over most of the studied
genomic aberrations (i.e., ERG fusions, somatic mutations in
SPOP, BRCA2, and FOXA1, germline mutations in BRCA2 and
BRCA1, and CNAs in ERG and FOXA1). This indicates that
AAs with low-grade PCa may suffer from higher tumor burdens
and risks. As such, special care in addition to active surveillance
should be given to AA men as they are more likely to die from
low-grade PCa (34). This perception is consistent with the latest
recommendations made byMahal et al. (25, 35), National Cancer
Institute (34), and Tsivian et al. (36).

Moreover, it is worth noting that the race-specific GRS
patterns that the genomic aberrations affect patients’ GSs highly
resemble the race-specific patterns observed for AICEs. There
are only two differences when these two sets of patterns are
compared with respect to different grades of GS. One is that for
intermediate-grade patients, AAs’ GRS is statistically significantly
higher than EAs’ GRS on somatic mutations in FOXA1, while
there is no statistically significant difference in AICEs of the
two groups for the same aberration. The other is that for high-
grade patients, AAs’ AICE is statistically significantly higher
than EAs’ AICE on BRCA2 germline mutations, while there
is no statistically significant difference in GRSs of the two
groups for this alternation. Such a high similarity between these
two result sets not only provides mutual verification but also
indicates that the genomic aberrations directly identified as race-
specific causal factors for PCa aggressiveness may also offer
insights to PCa metastasis. We further compare the results
obtained from AICEs and GRSs across patients in all three
grades. We find that four shared genomic aberrations, ERG
fusions, somatic mutations in SPOP and ATM, and CNAs
in ERG, are the statistically significant genomic factors that
may contribute to the disparities between these two groups.
Some of these findings are largely consistent to the ethnic
differences observed for ERG gene fusions and SPOP mutation
(37, 38).

Compared to previous research, our study also leads to some
new findings. For example, we find that: (1) for intermediate-
and high-grade PCa, most of the studied aberrations (i.e.,
ERG fusions, somatic mutations in SPOP, TP53, ATM, and
PTEN, CNAs in LCP1 and ERG) affect EAs more than AAs
and (2) somatic mutations in ATM consistently impact EAs
more over all three grades. In contrast to prior studies (11,
39), we do observe that somatic mutations in TP53 impacts
intermediate- and high-grade patients, which is especially true

for EAs. Part of this observation is consistent to the reported
critical role of TP53 mutations in PCa tumor progression
and metastasis (40, 41), which suggests that this gene might
serve as a marker of disease aggressiveness and progression for
PCa. All of these findings depict a small part of a complex
picture of causal relations between race and tumor burden
across the spectrum of PCa. Further efforts are warranted to
validate the results and to enhance the capacity of the proposed
deep model.

Due to some privacy and socioeconomic concerns of AA
patients, most of the PCa data in the public domain belong
to the European ancestry. To the best of our knowledge, the
TCGA PRAD cohort is the only publicly available PCa dataset
that contains a decent number of AA and EA patients with
self-reported race/ethnicity as well as the matched multilevel
genomic and clinical data. Those clinical and multi-omics data,
especially the mutation profiles and gene expression values,
are necessities for DLVM modeling. As a result, we carried
out the model training on the primary data of 270 EA and
43 AA patients. Furthermore, an independent validation was
performed on the corresponding data of 166 patients (including
144 EAs and 22 AAs), whose race/ethnicity was predicted by
a deep imputation method (25). Over 92% consistency rate
between the race-specific AICE patterns obtained on the primary
and independent validation sets further demonstrates DLVM’s
ability in unbiasedly inferring the true causal effects between
GS and an interested genomic aberration. As part of future
work, we will impute PSA levels missing in the TCGA cohort
using established methods so that our study can be extended
to this widely used component of nearly all risk stratification
methods for PCa. The co-effects of multiple alternations as
the intervention will be further explored by coupling DLVM
with some robust frequent pattern mining techniques (42, 43).
Lastly, we will refine the proposed algorithm to take into
account other variables, such as germline single-nucleotide
polymorphisms (SNPs) and critical race-relevant socioeconomic
and/or environmental factors in the modeling process for
population-focused cancer research.

CONCLUSION

In this paper, we introduce the first deep learning-based
approach (i.e., DLVM) to inferring the personalized and
race-specific causal effects that genomic aberrations (i.e.,
gene fusions, somatic mutations, germline mutations, and
CNAs) may exert on PCa aggressiveness (i.e., GS). As PCa
disparity is a multifactorial construct, DLVM assumes that
multiple confounders, observed and latent, influence the way
that genomic aberrations affect a patient’s GS. As such, by
jointly learning multi-observational data of patients, DLVM is
able to incorporate the potential influence of immeasurable
confounders or latent variables (e.g., interactions among
interested genes) in its inferences. Thorough empirical studies
and multiple evaluation metrics on 313 TCGA primary
PCa and 166 samples (i.e., 144 EAs and 22 AAs) in an
independent validation set demonstrate the efficacies of DLVM
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in identifying significant genomic factors that may contribute
to the molecular basis of PCa racial disparities. Findings
obtained through this study, once further validated, will shed
light on developing molecular markers of predictive and
prognostic values and therapeutic targets for men of African or
European descent.
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