
RESEARCH ARTICLE

Can metabolic prediction be an alternative to

genomic prediction in barley?

Mathias Ruben Gemmer1, Chris Richter2, Yong JiangID
3, Thomas SchmutzerID

1, Manish

L. Raorane2, Björn Junker2, Klaus Pillen1, Andreas MaurerID
1*

1 Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Martin Luther University Halle-

Wittenberg, Halle, Germany, 2 Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle,

Germany, 3 Department of Breeding Research, Quantitative Genetics, Leibniz Institute of Plant Genetics and

Crop Plant Research, Gatersleben, Germany

* andreas.maurer@landw.uni-halle.de

Abstract

Like other crop species, barley, the fourth most important crop worldwide, suffers from the

genetic bottleneck effect, where further improvements in performance through classical

breeding methods become difficult. Therefore, indirect selection methods are of great inter-

est. Here, genomic prediction (GP) based on 33,005 SNP markers and, alternatively, meta-

bolic prediction (MP) based on 128 metabolites with sampling at two different time points in

one year, were applied to predict multi-year agronomic traits in the nested association map-

ping (NAM) population HEB-25. We found prediction abilities of up to 0.93 for plant height

with SNP markers and of up to 0.61 for flowering time with metabolites. Interestingly, predic-

tion abilities in GP increased after reducing the number of incorporated SNP markers. The

estimated effects of GP and MP were highly concordant, indicating MP as an interesting

alternative to GP, being able to reflect a stable genotype-specific metabolite profile. In MP,

sampling at an early developmental stage outperformed sampling at a later stage. The

results confirm the value of GP for future breeding. With MP, an interesting alternative was

also applied successfully. However, based on our results, usage of MP alone cannot be rec-

ommended in barley. Nevertheless, MP can assist in unravelling physiological pathways for

the expression of agronomically important traits.

Introduction

Barley (Hordeum vulgare L.) is the fourth most important crop worldwide after wheat, maize

and rice, with an acreage of 48.1 m hectares in 2017/18 [1]. Approximately 10,000 years ago,

barley was domesticated and is thus one of the oldest crop plants [2]. Domestication and

breeding for yield performance in elite barley (Hordeum vulgare ssp. vulgare) led to a reduc-

tion of biodiversity through allele erosion, the so-called genetic bottleneck effect. This phe-

nomenon also applies to most other crop species [3, 4]. Consequently, further improvement of

the performance of barley becomes increasingly difficult. Moreover, classical selection meth-

ods with several years of field trials are expensive. On top of that, the current climate change
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scenarios and the increasing world population, pose difficult challenges for breeders to use

effective breeding methods that could lead to yield increase and stability.

To accelerate the breeding progress, indirect selection methods are of great importance.

The most common method is the single nucleotide polymorphism (SNP) based estimation of

breeding values through genomic prediction (GP) [5]. The advantage of GP is the early estima-

tion of agronomically relevant traits already at seedling stage of single plants, which accelerates

the selection of the best plants during the breeding process. In contrast to classical methods

like genome-wide association studies (GWAS) or linkage mapping to define trait-specific

molecular markers for subsequent marker-assisted selection (MAS), the approach of GP (also

called genomic selection–GS) is different: Rather than focusing on the single effect and the

position of one marker, the entirety of all markers is taken into account in GP. Ordinarily, for

each marker allele, an effect is estimated and with the combination of all marker effects, a

genomic estimated breeding value (GEBV) is computed. Depending on the model, interac-

tions between alleles may also be included in the calculation of GEBV. This requires a large

number (tens or hundreds of thousands) of markers distributed over the whole genome [6, 7].

The modern methods of genome sequencing and the large number of genotyped SNPs allow a

broad application of GP across different living systems—including animal and plant species as

well as human genetics [8]. GP overcomes the disadvantages of MAS, which mainly relies on

few selected quantitative trait loci (QTL), identified through linkage mapping and GWAS.

Those methods have achieved great success, also in barley, for instance in the elucidation of

genetic issues like disease resistance and flowering [9–11]. However, the classical methods

have certain weaknesses in the quantification of some polygenic traits that are influenced by

numerous minor QTL with small effects [12]. This circumstance is considered in GP by

assigning effects to all markers tested.

Apart from GP, studies with different species (Arabidopsis thaliana, tomato, rice, potato,

maize) confirmed that a reliable estimation of trait performance is also possible through MP

with metabolite data [13–17]. Metabolites play an important role in all living organism, so in

plants. Estimates for the total number of metabolites in plant kingdom vary from 200,000 to

1,000,000 [18]. A rough classification of metabolites is the differentiation between primary and

secondary metabolites. While the primary metabolites are responsible for growth and develop-

ment, the secondary ones are built in response to various biotic and abiotic stresses. These two

classes are subject of different genetic control. Whereas primary metabolites are mainly con-

trolled by many interacting genes with small effects, the secondary ones are determined by a

small number of genes with large effects [19–22]. The use of metabolite profiling in plant

breeding is interesting as it can provide helpful information about the system under study;

metabolites play a key role in gene expression and help to elucidate the function of genes [23].

Furthermore, metabolites can be used as biomarkers (when no genomic information is avail-

able) or as an addition to SNP markers to predict phenotype expression [16]. With a combina-

tion of gas chromatography and mass spectrometry (GC-MS), a high-throughput method for

untargeted metabolite screening is available. Other high-throughput methods such as liquid

chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance-mass spec-

trometry (NMR-MS) have also been established for metabolite profiling of the experimental

system [24].

In this project we simultaneously characterize the multi-parental wild barley nested associa-

tion mapping (NAM) population HEB-25 [11] with SNPs (50k SNP array [25]) and through

metabolic profiling of 128 metabolites with sampling at two different developmental stages.

We merge SNP, metabolite and phenotype data to alternatively predict phenotypes based on

metabolites, SNPs or a combination of both and compare the prediction accuracies of the dif-

ferent methods.
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Materials and methods

Plant material

The population HEB-25 is the worldwide first NAM population of barley. It was generated by

crossing and subsequent backcrossing of 25 wild barley accessions (24 Hordeum vulgare ssp.

spontaneum and one Hordeum vulgare ssp. agriocrithon) with the German elite spring barley

cultivar Barke (Hordeum vulgare ssp. vulgare). The resulting BC1S3 generation comprises

1,420 individual lines (whereof 1,307 were used in this study) subdivided into 25 families (for a

detailed description see [11]).

Genotypic evaluation

DNA of pooled BC1S3:8 plants of each line was extracted according to the manufacturer’s pro-

tocol, using the BioSprint 96 DNA Plant Kit and a BioSprint work station (Qiagen, Hilden,

Germany), and finally dissolved in distilled water at approximately 50 ng/μl for genotyping

with the recently developed barley Infinium iSelect 50K chip [25] at TraitGenetics, Gatersle-

ben, Germany. SNP markers that did not meet the quality criteria (polymorphic in at least one

HEB family, < 10% failure rate, < 12.5% heterozygous calls) were removed from the data set.

Altogether, 33,005 SNPs met the quality criteria and were analysed in this study. Based on the

Barke reference genotype, the wild barley allele can be specified in each segregating family. To

set up the quantitative identity-by-state (IBS) matrix the state of the homozygous Barke allele

was coded as 0, while HEB lines that showed a homozygous wild barley genotype were

assigned a value of 2. Consequently, heterozygous HEB lines were assigned a value of 1. If a

SNP was monomorphic in one HEB family but polymorphic in a second family, lines of the

first HEB family were assigned a genotype value of 0, since their state is not different from the

Barke allele. Gaps resulting from missing genotypes (0.84%) were estimated by applying the

mean imputation (MNI) approach [26]. The genotype matrix is available at e!DAL [27, 28].

The markers are uniformly distributed over the whole genome with few gaps and decreasing

density in the telomere regions (S1 Fig).

Field trials

Between 2011 and 2018, eight field trials with HEB-25 were conducted at the Kühnfeld experi-

mental station of the University Halle (51˚29’45.72"N; 11˚59’36.62"E) to gather phenotypic

data. All field trials were sown in spring between March and April with fertilisation and pest

management following local practice. Detailed information about field trials is given in S1

Table and S1 File.

The studies were conducted on land owned by the authors’ institutions. The research con-

ducted complied with all institutional and national guidelines.

Phenotypic evaluation

The following traits were measured in the field trials: time to shooting (SHO), flowering

(HEA) and maturity (MAT); plant height (HEI); number of ears per m2 (EAR); grain number

per ear (GNE); thousand grain weight (TGW); grain yield (YLD). Table 1 shows a detailed

description of the trait assessment. Raw phenotype data is available as S2 File.

Metabolic evaluation

A 2 cm tissue sample from the middle region of the last fully developed leaf of each HEB line

was sampled on 22 May 2017 under a clear sky between nine and ten o’clock. This date repre-

sented the developmental stage BBCH 30–31 (beginning of shooting) for the majority of
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plants. The leaf was cut approximately 1 cm from the stem and was put in an Eppendorf tube.

The protruding leaf was cut off, the Eppendorf tube was closed and put instantly in liquid

nitrogen to stop metabolic processes. All plots were sampled within one hour under constant

weather conditions. In total, 29 people were involved to meet this schedule. Sampling was

repeated under the same circumstances (constantly clear sky, equal time of day, equal sampling

methods) on 22 June 2017. The plants were more heterogeneous at this time, representing

developmental stages BBCH 59–69 (end of ear emergence to end of flowering).

The frozen leaf samples were pulverised using a Retsch-ball mill (MM 400, Retsch, Ger-

many) for 2 minutes at 20 Hz. The homogenised leaf samples were then resuspended in 700 μl

methanol:chloroform:water solution (3:2:4) containing 8 μg/ml 13C-sorbitol as an internal

quantitative standard. The mixture was shaken for 20 min at room temperature and at 500

rpm. The mixture was then centrifuged for 11,000 X g for 5 minutes at 4˚C. After the extrac-

tion, 10 μl of the supernatant was dried in a vacuum concentrator without heating for 45 min-

utes. Online derivatization was performed using the Multi-Purpose Sampler (MPS, Gerstel,

Germany) by adding 30 μl Methoxamine hydrochloride (20 mg/ml in Pyridine) to the samples

and shaken for 30 min at 45˚C. Furthermore, 45 μl N,O-Bis(Trimethylsilyl)trifluoroacetamide

and 5 μl Alkane-Standard (C10-C28; 6 mg/ml) were added and the samples were shaken again

for 120 min at 45˚C. As quality controls for the extraction procedure, leaf samples from 10 ran-

domly chosen Barke reference lines were extracted and pooled together. All the samples along

with 20% of quality controls were analysed with GC-MS (GC-qTOF system -7890B/7200, Agi-

lent, Santa Clara, USA). One μl of the derivatized samples were injected at 250˚C in a splitless

mode with a helium gas flow set to 1 ml min-1. Chromatography was performed with a 30-m

Zebron Capillary GC-Column (ZB-Semi Volatiles, 30 m, 0.25 mm, 0.25 μm). The Helium flow

was constant at 1 ml/min. The temperature program was set to 60˚C followed by a linear ramp

of 10˚C/min to 320˚C and holding at this temperature for 3 minutes. Throughout the run, the

transfer line, source and the quadrupole were set to 290˚C, 230˚C and 150˚C respectively.

The raw data was processed by MassHunter Qualitative Analysis software (Agilent,

B.07.00) and MassHunter Quantitative Analysis software for QTOF (Agilent, B.08.00). The

mass spectra library NIST 14 (National Institute of Standards and Technology) and standard

Table 1. List of evaluated traits for HEB-25 in eight-year field trials.

Abbr.a Trait Unit Method of measurement Years

studied

SHO Time to shooting days Number of days from sowing until first node noticeable 1 cm above soil surface for 50% of all plants of a plot,

BBCH 31 [29].

2011–2018

HEA Time to heading

(flowering)

days Number of days from sowing until emergence of 50% of ears on main tillers of a plot, BBCH 49 [29]. 2011–2018

MAT Time to maturity days Number of days from sowing until hard dough: grain content firm and fingernail impression held, BBCH 87

[29].

2012–2018

HEI Plant height cm Average plant height of all plants of a plot measured from soil surface to tip of the erected ear without awns at

maturity.

2011–2018

EAR Ears per m2 n Number of ears per m2, counted in a representative 50 cm frame in the middle of a row and extrapolated to one

m2.

2014–2018

GNE Grain number per ear n Number of grains per ear, calculated by use of MARVIN seed analyser (GTA Sensorik GmbH, Neubrandenburg,

Germany) based on a representative sample of 10 ears.

2014–2018

TGW Thousand grain

weight

g Weight of 1000 grains, calculated after harvest by use of MARVIN seed analyser based on a 200 seeds sample of

each plot (2011–2013). Before, seeds were cleaned and damaged seeds were sorted out.

2011–2018

YLD Grain yield dt/

ha

Total grain yield determined after harvest of the whole plot (2014–2016) or derived from the three yield

components EAR, GNE and TGW (2017/18) and extrapolated to dt/ha.

2014–2018

a Abbreviations of traits.

https://doi.org/10.1371/journal.pone.0234052.t001
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compounds were used for identification and confirmation of the chromatographic peaks. Peak

areas were normalized with the internal standard and fresh weight.

This resulted in data for 1,307 lines where 158 metabolites (alkanes, amino acids, organic

acids, sugars and unknowns) could be defined (S3 File). Metabolites with> 10% missing val-

ues were removed from the data set so that 128 metabolites were used for prediction (S2

Table). Samples from the 2nd sample date resulted in data for 1,229 lines with 159 metabolites

(one additional unknown metabolite). After data cleaning 122 metabolites remained for the

subsequent analyses (S3 Table). Remaining missing values were replaced with the minimum

value of the respective metabolite.

Statistical analyses

All statistical analyses were performed with SAS 9.4 [30] and R [31]. Broad-sense heritabilities

were computed using R software with the lmerTest package [32] across treatments and years

as h2 ¼
VG

VGþ
VGY
y þ

VR
yr

, where VG, VGY and VR represent the genotype, genotype × year, and error

variance components, respectively. The terms y and r indicate the number of years and repli-

cates, respectively. To estimate variance components, all effects were assumed to be random.

Best linear unbiased estimates (BLUEs) of all traits were calculated using the PROC HPMIXED

procedure in SAS for each genotype assuming fixed genotype effects. Pearson’s correlation

coefficients were calculated with R software with the corrgram package [33]. The box-cox

power transformation [34] was applied to metabolic data using SAS PROC TRANSREG with λ
ranging from -3 to 3 by steps of 0.25. The genomic heritabilities of metabolites (also called

SNP-based heritabilities, [35]) were estimated with the R package sommer [36] as

h2
SNP ¼

s2
Aþs

2
Dþs

2
I

s2
Aþs

2
Dþs

2
Iþs

2
R
, where s2

A; s
2
D; s

2
I and s2

R represent the additive, dominance, epistatic and

residual variance components, respectively. Additionally, repeatability of metabolites was cal-

culated as rep ¼ VG

VGþ
VR
r

for the subset of 17 genotypes (elite cultivars, control lines) where multi-

ple metabolite measurements were available. Euclidean distance matrices with SNP and

metabolite data were calculated using R package stats. Subsets of SNPs or metabolites for GP

and MP were created using R package dpylr [37]. Descriptive statistics for metabolites were

calculated with R package psych [38]. Two-sided t-tests were carried out to detect significant

differences between the models and datasets. The significance level was set to p < 0.01. All fig-

ures were created with R using the package ggplot2 [39].

Genomic/metabolic prediction

Based on BLUEs of the 1,307 HEB genotypes (1,307 lines with complete datasets of SNP and

metabolite data at the 1st sampling date, 1,229 lines at the 2nd sampling date), two approaches

for genomic prediction were applied considering additive effects: ridge regression best linear

unbiased prediction (RR-BLUP) [40] and BayesB [41]. All statistical procedures for genomic

prediction approaches were executed using R. The R code for RR-BLUP was developed in-

house [42]. For the BayesB model, the package BGLR [43] was used. The models are briefly

described in the following.

Let n be the number of genotypes, m be the number of markers and l be the number of

years. The RR-BLUP model has the form y = 1nμ+Xg+e, where y is the vector of BLUEs of the

respective trait for all HEB genotypes across years, 1n denotes the vector of 1’s, μ is the com-

mon intercept term, g = (g1,g2,. . .,gm)0 is the vector of marker effects, X is the matrix of marker

information and e is the residual term. In the model we assumed that g � Nð0; s2
gIÞ,

e � Nð0; s2
e IÞ, where σ2

g = σ2
G / m for SNP markers and σ2

e = σ2
R / l. Here σ2

G and σ2
R are the
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genotypic and residual variance components obtained in the mixed model in the phenotypic

data analysis. The penalty parameter is λ = (σ2
R / l) / (σ2

G / m). The estimation of marker effects

is then given by the mixed model equations [44]. The basic model of BayesB is the same as

RR-BLUP. However, all parameters are treated as random variables in a Bayesian framework

and we do not assume the same variance for all marker effects. More precisely, we defined the

prior distributions as g � Nð0;DÞ; e � Nð0; s2
e IÞ, where D ¼ diagðs2

g1
; s2

g2
; . . . ; s2

gp
Þ. For the

intercept term μ we assume a flat prior. For each i, the prior distribution of s2
gi

is assumed to be

zero with probability π and a scaled inverse chi-squared distribution with probability (1-π). The

prior of π is a beta distribution. The prior of σ2
e is also a scaled inverse chi-squared distribution.

A Gibbs sampler algorithm was then applied to infer all the parameters in the model.

The accuracy of the prediction by the models was evaluated using five-fold cross-validation

[45]. In each run of cross-validation, the training set included 80% of HEB lines, randomly

selected per HEB family, while the remaining 20% of HEB lines were assigned to build the test

set. The prediction ability (rab) is the correlation between observed and predicted values, aver-

aged over all 100 cross-validation runs. Prediction accuracy (rac) is defined as rac ¼
rabffiffiffi
h2

p [17].

Pairwise t-tests were carried out in R to determine significant differences in prediction accu-

racy between models and prediction methods. The significance level was set to p < 0.01.

Genomic prediction was realised for the agronomic traits measured in the field with 33,005

SNPs coded as 0,1,2 in the RR-BLUP model and -1,0,1 in the BayesB model to meet the specific

requirements of the applied R packages.

For metabolic prediction (MP) of the agronomic traits measured in the field, the values of

128 metabolites (first sampling date) or 122 metabolites (second sampling date) were used in

both models. In the combined approach, all 33,005 SNPs and 128 metabolites (or 122) were

included in the prediction model.

Results and discussion

Phenotypic data

Descriptive analysis of the phenotypic data showed a high variation between lines and between

years, resulting in high coefficients of variation (S4 Table). For instance, the difference for the

trait HEA was 71 days between the minimum and maximum value. This reflects the high

diversity of the HEB-25 population within and across years (S2 Fig). Heritabilities for all traits

calculated over 4–8 years were > 0.8 with the exception of EAR (0.41) and YLD (0.58,

Table 2). In summary, this reflects the high quality of phenotypic data and the genotype impact

on traits, underlining the suitability for genetic analyses such as GP and MP.

Genomic and metabolic prediction

All results described below (including figures, tables and supplementary files) refer to the

metabolite set of the first sampling date unless it is mentioned otherwise. Generally, in geno-

mic prediction with SNP data, we observed a slight advantage of BayesB over RR-BLUP

regarding prediction performance, which was significant for all traits (Fig 1). With metabolite

data both models performed almost equal (S5 Table, S3 Fig). With the exception of EAR (bet-

ter performance of RR-BLUP) and YLD (better performance of BayesB), no significant differ-

ences were detected. The better performance of BayesB depends on the genetic architecture of

the target trait [46]. It is superior to RR-BLUP when the trait is controlled by few large QTL

effects, which is true and well-studied for HEA [11] as well as for GNE and TGW [47] in the

HEB-25 population. With SNP data high prediction accuracies (� 0.91) for all traits were

reached with BayesB (Table 2). It is noticeable that the accuracies for the traits EAR and YLD
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Table 2. Summary of genomic and metabolic prediction, BayesB model.

SNPs Metabolites SNPs + Metabolites

Trait h2 rab rac SD rab rac SD rab rac SD Sig.

SHO 0.91 0.88 0.93 0.02 0.57 0.59 0.05 0.89 0.93 0.02 -

HEA 0.93 0.87 0.91 0.02 0.59 0.61 0.05 0.88 0.91 0.02 -

MAT 0.83 0.87 0.95 0.02 0.55 0.61 0.06 0.88 0.96 0.01 �

HEI 0.91 0.93 0.97 0.01 0.37 0.39 0.05 0.93 0.97 0.01 -

EAR 0.41 0.74 1.14 0.04 0.38 0.59 0.09 0.74 1.15 0.04 -

GNE 0.84 0.88 0.96 0.04 0.27 0.29 0.07 0.88 0.96 0.03 -

TGW 0.83 0.86 0.94 0.02 0.26 0.28 0.06 0.86 0.94 0.02 -

YLD 0.58 0.77 1.01 0.03 0.35 0.46 0.08 0.77 1.01 0.03 -

BayesB model was applied using SNP and/or metabolite data. Prediction abilities (rab) and prediction accuracies (rac) for selected traits, averaged over 100 cross-

validation runs and the standard deviation of rac (SD) are shown. In addition, heritabilities (h2) for the traits are given. Sign. indicates the significance (�: p < 0.01, -: not

significant) of a t-test between rac of SNPs and rac of SNPs + metabolites for the respective traits. Not indicated here: SNPs and SNPs + metabolites generally performed

significantly better than metabolites alone for all traits. Trait abbreviations are given in Table 1.

https://doi.org/10.1371/journal.pone.0234052.t002

Fig 1. Cross-validated prediction accuracies of traits with SNP data using RR-BLUP and BayesB, respectively. Boxplots contain all 100 prediction values of the

cross-validation runs. Red boxes show results of BayesB, while blue boxes show results of RR-BLUP. BayesB performed better for all traits. Prediction accuracies

with BayesB were significantly better than with RR-BLUP for all traits.

https://doi.org/10.1371/journal.pone.0234052.g001
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were> 1, which is caused by the low h2 estimates of these traits. Nevertheless, the usage of rac

is common in GP, as it corrects rab for nongenetic effects of the target trait [17]. The correla-

tion between h2 and rab was highly positive (r = 0.95) and, consequently, the correlation

between h2 and rac was highly negative (r = -0.94). This underlines the importance of high-

quality phenotypic data, resulting in high prediction performance. The observed prediction

accuracies are comparable to other studies in wheat, maize and barley [8, 17, 48].

The concept of estimating SNP-based heritability [35], also called genomic heritability, was

applied to the metabolite data resulting in values of up to 0.50 with a mean value of 0.10 (S6

and S7 Tables, S4 Fig). Repeatabilities of metabolite measurements showed high variation

across metabolites (0.00–0.87) with a mean value of 0.26 (S6 and S7 Tables), hinting on limited

data quality for several metabolites that may affect metabolic prediction.

Prediction accuracies with metabolite data instead of SNPs were generally lower. The high-

est accuracies were observed for the developmental parameters (rac up to 0.61 for HEA and

MAT), while for HEI and especially the yield parameters GNE and TGW low accuracies of no

more than 0.29 were obtained (Table 2). The decay of rac for yield parameters seems logical

since sampling took place early on during the shooting phase of plants. The assumption is that

metabolites which are involved in plant development are more reflected in the early metabolite

profile than the ones responsible for grain filling and yield formation and vice versa. To pursue

this question, it is worth to compare rac of the first sampling with rac of the second sampling

(S8 Table). Actually, based on the second metabolite sampling the prediction accuracies for

developmental traits were worse (ca. 0.10 less for SHO and HEA), but also for yield parameters

no notable improvements could be achieved. Metabolic prediction with data from the first

sampling date performed significantly better for the traits SHO, HEA and HEI. MAT and EAR

showed no significant differences. Slight, but significant improvements at the second sampling

date could be achieved for the yield parameters GNE, TGW and YLD. In conclusion, sampling

during a young and more homogeneous plant stage seems more effective, also in terms of time

management.

To our knowledge, there exists no study on MP in barley. Prediction accuracies of MP

were, depending on the trait, below the accuracies reported in studies with other species [15–

17]. However, the comparability of different studies on MP is difficult, since metabolite deter-

mination is highly sensitive. Steinfath et al. [16] predicted blackspot susceptibility of potatoes

with correlations between observed and predicted values ranging from 0.68 to 0.82. Riedelshei-

mer et al. [17] reached accuracies of up to 0.80 for female flowering in maize. The use of both

SNPs and metabolites in the combined approach did not lead to an improvement in prediction

compared to the sole use of SNPs. This applies to our study as well as to Riedelsheimer et al.

[17].

To gain insights which metabolites are decisive for different trait predictions, Pearson’s cor-

relations between metabolite measurements and agronomic traits across all lines were calcu-

lated. As expected, correlations were comparably low (-0.36 < r< 0.30, S9 Table), showing

that single metabolites generally exert only a moderate impact on trait expression. Interest-

ingly, one of the strongest negative correlations was observed for TMET101 and HEA (r =

-0.35), indicating that this unknown metabolite might be directly involved in flowering time

regulation. This is confirmed by the high effect estimation for TMET101 in the MP model for

HEA (S9 Table). In general, there was the trend that metabolites with a high effect estimated in

MP also had a higher correlation with the respective agronomic trait, as exemplified for HEA

(S5 Fig). Similar observations could be made in the metabolite set of the second sampling (S10

Table). This indicates that MP effect estimates can give hints to metabolites that are involved

in trait expression and thus might be worth further investigation for instance to deepen the

understanding of molecular pathways.
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The accuracies with metabolite data seem to be low compared to the accuracies with SNP

data. However, it is important to remember that 128 metabolites face 33,005 SNPs (approxi-

mately 260 times more SNPs). Moreover, metabolites were sampled in an early developmental

stage of the plants, reflecting just a snapshot in the highly dynamic system of plant metabolism,

and used for prediction of eight-year phenotypic data. This raises the question of whether the

metabolites are used to predict something they cannot provide. Therefore, the MP model was

run again, restricting the phenotypic data to the season 2017, the year in which also the metab-

olite samples were collected. Surprisingly, this resulted in almost equal or even slightly lower

prediction accuracies compared to eight-year phenotypes (S11 Table). With rac = 0.47 for

MAT, the prediction accuracy was even worse. However, the metabolite-trait correlations

were quite similar to the complete set (S12 Table). Like SNPs, metabolites seem to fix informa-

tion about the underlying genotype, which seems to be environmentally stable. Our results

support the assumption that a prediction of phenotypic traits is possible even with metabolite

data from one year at one sampling date.

A closer look on the estimated effects in GP and MP showed that there was a clear correla-

tion pattern between the estimated effects of different traits (S6A and S6B Fig). Both in GP and

MP, the marker and metabolite effects for SHO, HEA and MAT were highly correlated

(0.88< r< 0.95), indicating that the same genes and metabolites are responsible for the

expression of these traits. Interestingly, the correlation plot of the phenotypic traits (S6C Fig)

reflected the same patterns like the plots for the estimated effects of GP and MP. For instance,

the negative correlations between TGW and the developmental parameters (-0.22 < r < -0.37)

were quite close to the correlations of their estimated effects, the same applies to the correla-

tions among developmental parameters. Apparently, the GP and MP models were able to

quantify these phenotypic connections in their estimation of effects with high precision and

therefore they reflected the underlying genetic and metabolic mechanisms. Remarkably, the

genetic and metabolic distance matrices were not correlated (r = 0.04, S7 Fig). It seems that

they contain similar information, though based on different backgrounds.

Interestingly, a reduction of used SNPs and metabolites in the prediction model can lead to

an improvement or at least to no decay in prediction accuracy. For instance, the prediction

accuracy for HEA was steadily increased when reducing the number of SNP markers to subsets

of 50%, 25% and 10%, provided that the markers with the biggest effects in GP from the model

with the whole marker set were selected. But even with 25% randomly selected markers (8,251

SNP markers) of the complete set a small increase in rac was observed (Fig 2). Selecting the

best markers increased the rac for all investigated traits whereas random selection, especially by

selecting only 10%, clearly reduced the accuracy (S8 Fig). The reason for enhanced prediction

accuracy with best markers may be the reduction of SNPs causing background noise in the

model. But even random selection did not worsen the accuracy up to a certain point suggesting

that fewer markers are sufficient for a reliable coverage of genome information.

For MP, randomly selected metabolites reduced rac but when selecting those 50% of metab-

olites with the highest effects in MP using the whole metabolite set, the accuracy increased to

up to 0.65 for HEA (Fig 3). This trend applied to most of the traits (S9 Fig). Traits with a gener-

ally weaker rac in the MP based on all metabolites (EAR and TGW) even increased their pre-

diction accuracy when only 10% of the most impactful metabolites were selected (S9 Fig). The

model was not as robust against reduction when using metabolites instead of SNPs. This may

be due to the fact that much less metabolites than SNPs are available and thus a further reduc-

tion has a stronger impact on accuracy of the model, especially with random selection. The

reason for the enhancement in rac by selecting 50% of the best metabolites is probably due to

the reduction of noise in the model resulting from metabolites with questionable determina-

tion quality. A study in rapeseed also showed that high prediction accuracies are possible with
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a reduced marker set [49]. These findings allow the consideration of using reduced and

selected marker sets for GP, this way reducing computation time and costs as fewer markers

have to be evaluated.

The high accuracies, especially in GP, may partly be attributed to the population design of

HEB-25, which is genetically highly diverse due to the crossings with 25 different wild barley

accessions. Breeding populations usually have a much smaller genetic variability [17]. More-

over, the large sample size influences the accuracies [50]. Nevertheless, the high accuracies in

Fig 2. Variation of prediction accuracy for HEA with BayesB after reduction of the number of SNP markers. The black reference line indicates the prediction

accuracy using all SNP markers in the model. The red line indicates the trend of prediction accuracy by selecting the best markers (markers with the highest effects in

BayesB model), the blue line indicates the trend of prediction accuracy by selecting random markers.

https://doi.org/10.1371/journal.pone.0234052.g002

Fig 3. Variation of prediction accuracy for HEA with BayesB after reduction of the number of metabolites. The black reference line indicates the prediction

accuracy using all metabolites in the model. The red line indicates the trend of prediction accuracy by selecting the best metabolites (metabolites with the highest effects

in BayesB model), the blue line indicates the trend of prediction accuracy by selecting random metabolites.

https://doi.org/10.1371/journal.pone.0234052.g003
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this study confirmed the value of applying GP in barley breeding, especially the time and cost

savings are mentioned here. Results of MP indicate it as an interesting alternative to GP under

certain circumstances, but according to the current status, its practical use in barley breeding

is not recommendable. Metabolites as predictor variables are an attractive alternative to SNPs

when no genotypic data is available, as it is the case in many orphan crop species [16]. More-

over, MP has the potential to detect metabolites involved in the expression of important agro-

nomic traits, which might assist in unravelling the involved molecular pathways. Further

research in HEB-25, like GWAS on metabolite expression, to investigate metabolite-trait asso-

ciations is in progress. This promises to achieve a deeper knowledge of the complex interaction

between genes, metabolites and plant physiology.
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