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Abstract: Single-beam acoustic tweezers (SBAT) is a widely used trapping technique to manipulate
microscopic particles or cells. Recently, the characterization of a single cancer cell using
high-frequency (>30 MHz) SBAT has been reported to determine its invasiveness and metastatic
potential. Investigation of cell elasticity and invasiveness is based on the deformability of cells
under SBAT’s radiation forces, and in general, more physically deformed cells exhibit higher levels
of invasiveness and therefore higher metastatic potential. However, previous imaging analysis
to determine substantial differences in cell deformation, where the SBAT is turned ON or OFF,
relies on the subjective observation that may vary and requires follow-up evaluations from experts.
In this study, we propose an automatic and reliable cancer cell classification method based on SBAT
and a convolutional neural network (CNN), which provides objective and accurate quantitative
measurement results. We used a custom-designed 50 MHz SBAT transducer to obtain a series
of images of deformed human breast cancer cells. CNN-based classification methods with data
augmentation applied to collected images determined and validated the metastatic potential of cancer
cells. As a result, with the selected optimizers, precision, and recall of the model were found to be
greater than 0.95, which highly validates the classification performance of our integrated method.
CNN-guided cancer cell deformation analysis using SBAT may be a promising alternative to current
histological image analysis, and this pretrained model will significantly reduce the evaluation time
for a larger population of cells.

Keywords: cancer cell classification; convolutional neural networks; single-beam acoustic tweezers;
high-frequency ultrasound; cell deformation

1. Introduction

Image analysis of cancer cells is an emerging technique with growing applications in cancer
research and plays a vital role in accurate diagnoses of cancer [1–4]. Histological image analysis
has been extensively studied as a clinical diagnostic method of primary cancer cell classification
after biopsy. However, due to the huge variability of the quality of/the condition of histological
images and the subjective nature of manual analysis by experts, several limitations have been
found [5–7]. One limitation, common to all manual image analysis, is observational variation
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among histopathologists and clinicians. Another critical limitation is non-automatic complex analysis
protocols that increase evaluation times without increasing reliability. To overcome those major hurdles,
an accurate and reliable quantitative analysis method that directly measures the physical properties of
cells is gaining attention rapidly.

Over the years, there have been numerous studies that measured cell biomechanics using various
techniques such as atomic force microscopy (AFM) [8–10], optical tweezers (OT) [11,12], magnetic
tweezers [13], and stretchable substrates [14]. It is well documented that cell elasticity is closely linked
to the invasion potential and infectibility of cells. However, the intrinsic limitations of those techniques,
such as direct contact, limited forces, or labeling inside cells hinder reliable measurement at a single-cell
level [15]. Among various attempts to measure cell elasticity, approaches using single-beam acoustic
tweezers (SBAT) have emerged as a promising tool due to its micrometer-sized trapping, non-contact
exertion of the force, no labeling requirement, and nanonewton trapping forces [16–21]. In the last
decade, there has been tremendous success in studying the characteristics of a single cell using
high-frequency ultrasound stimulation and acoustic tweezers [22]. In a study by SBAT, a 200 MHz
ultrasonic transducer measured calcium responses of cultured breast cancer cells using the local cell
membrane deformation [20], and the pattern of deformability of various cancer cells was analyzed for
identifying cancer cell invasiveness [23].

In this study, experiments for cancer cell identification are presented using a high-frequency SBAT
system that offers micrometer resolution spatially. This system is based on trapping and deforming a
single cell using acoustic forces and quantifies the degree of the deformation caused by SBAT. Contrary
to other tweezer techniques, SBAT can generate trapping forces up to a few hundred nanonewtons and
can press the cell against the wall [17,24–26]. The level of cell deformation can be controlled by the input
acoustic parameters. Usually, acoustic pressures lower than 1.0 MPa does not cause significant effects
on the cell condition, as previously proven by live-cell viability tests [27–29]. An earlier examination
of the cell deformation with the SBAT on and off was based on the extraction of boundaries of the
cell image. The difference was clearly visible and was identified with boundary markings, but such
manual analysis methods are time-consuming and are prone to subjective interpretation. The highly
variable shape and structure of cells, as well as the variable locations of cell abnormalities, pose
further challenges. The development of computational imaging analysis that minimizes variability
and subjective analysis is of utmost importance.

A convolutional neural network (CNN) offers a better solution than previous manual analysis of
cancer cell invasiveness. Using numerous convolutional filters, CNN can compare cell deformability
in images with the SBAT on and off. Since CNN can train the optimal filters for classifying cancer cells,
we can obtain much higher accuracy than the conventional handcrafted filters. The accuracy of CNN
can be improved continuously as new cases are added.

The present study demonstrates the fabrication of a highly focused ultrasonic transducer at
50 MHz, the cell deformation phenomenon based on the radiation and trapping force of the SBAT,
and the investigation of cell invasiveness using CNN. Two cell lines with different degrees of metastasis:
MDA-MB-231 (highly invasive) and MCF-7 (weakly invasive) were deformed under the SBAT.
For analysis of the deep learning CNN model, cell images were preprocessed to emphasize cell
boundaries and reduce noise. CNN model was then trained to classify the images as MDA-MB-231 and
MCF-7. The proposed model has shown significant accuracy (precision: 0.96, recall: 0.99, F1 measure:
0.97). Derived values of cell membrane deformation under the static state demonstrate the capability
of classification of human breast cancer cells. The integration of ultrasonic devices and CNN models
may serve as meaningful groundwork offering a high precision rate for the development of a new
diagnostic approach for cancel cell classification.

2. Results

Highly invasive and weakly invasive cancer cells have been implicated in different forms of
metastatic potential, so numerous in-depth studies have investigated the invasiveness properties of
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cancer cells using various tools. The major challenges were related to cell safety issues caused by
mechanical contact and to limited forces they can generate. On the contrary, SBAT with the benefit of
having micro-trapping and strong-trapping force, can trap and press the cell leading to deformation
along the transverse axis as depicted in Figure 1. For single-cell deformation, a focused ultrasonic
transducer with a beam width comparable to a cell diameter was fabricated. Detailed profiles of the
final product are demonstrated in Figure 2.

Figure 1. Schematic diagram of the experimental system. (a) Photograph of the experimental system.
(b) The single-beam acoustic tweezers (SBAT) was driven at 50 MHz by sinusoidal bursts from a
function generator amplified with a 50 dB amplifier. A single cell or a single sphere could be deformed
by the SBAT.

Biophysical characteristics i.e., the elasticity of cells and accurate detection of their morphological
changes, can serve as a new diagnostic approach for cancer conditions. We investigated MDA-MB-231
(higher metastatic potential) and MCF-7 (weaker metastatic potential) in a suspended state floating
above the Petri dish and monitored the cell lines during the SBAT. Increasing acoustic power facilitates
cell deformation, causing area changes that are directly proportional to the applied acoustic pressure.
Acoustic pressure was gradually increased from 0.0 to 1.0 MPa with the driving conditions of the
fixed duty factor of 1%, the fixed pulse repetition frequency (PRF) of 1 kHz, and various peak-to-peak
input voltages (Vpp). As shown in Figure 3, the MDA-MB-231 was imaged with the SBAT on and off.
Figure 4 presents the comparison between the shapes of the MDA-MB-231 and MCF-7 with the SBAT
on and off. Figure 5 is an example of fluorescence live-cell images. A similar tendency was shown for
both cells; however, MDA-MB-231 still exhibited more deformation properties under the SBAT, which
validates that the Young’s modulus of MDA-MB-231 cells was lower than that of the MCF-7 [9,30–35].

Previously, the deformability of a human breast cancer cell was measured relatively with an
acoustic trap. The researchers still required manual analysis to track the change in the area of the cell
after SBAT was turned on, drawing out the boundaries of the cell before and after deformation [23].
In this study, we developed a classification method using CNN to distinguish whether cells are highly
or weakly invasive. For fast, precise, and automatic classification and detection of cancer cells after
the SBAT experiment, we applied the CNN model to 40 cells that consist of 20 MDA-MB-231 and
20 MCF-7 cells.
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Figure 2. Fabrication of a highly focused 50 MHz transducer. (a) Receive-echo response. (b) Frequency
spectrum. (c) 2D acoustic intensity field of spatial peak temporal average (ISPTA) was measured after a
50 MHz transducer was excited with the input parameters of Vpp = 25 V, cycle numbers of 10, and pulse
repetition frequency of 1 kHz. Acoustic pressure field of the ultrasonic transducers measured by a
needle hydrophone. The −3 dB lateral beam width was measured to be 32 µm. (d) A photograph of
the 50 MHz transducer.

We conducted five-fold cross-validation. Each validation case used 80% of the cells for training
the model and the remaining 20% for testing. All the cells were used as a testing sample once.
By augmenting cell images, we generated 200 images for each cell (total 8000 images), as shown in
Figure 6. Therefore, in a validation case, the CNN model was trained for classifying 6432 (32 × 201)
cell images into invasive and non-invasive ones that include 3216 (16 × 201) images, respectively.
Then, the model was tested by classifying the remaining 1608 (8 × 201) cell images according to their
invasiveness. We measured the accuracy of the model on each validation case and evaluated the model
using its average accuracy and variance for all the validation cases. The variance will show whether
the proposed model can exhibit reliable performance generally.
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Figure 3. Preprocessing procedures for cell images. The first column presents photomicrographs taken
when the SBAT was on and off, displaying the cell membrane deformation with the SBAT. The second
column shows the results of the contrast enhancement. In the third column, we composed color
channels of the combined image by using the enhanced photomicrographs. First, the red channel
corresponds to the predeformation. The green channel exhibits the post deformation. As an average of
the red and green channels, the blue channel will show us background areas. The last column is the
result of the combination. We applied the same preprocessing method to both more and less deformed
cells (MDA-MB-231 and MCF-7). Scale bar indicates 10 µm.

Our CNN model consists of three two-dimensional convolutional layers, three max-pooling
layers, and two FC layers as shown in Figure 7. We implemented the model using Keras in Python.
To evaluate the performance of our model, we used four metrics: accuracy (a), precision (p), recall
(r), and F1 measure (F1). When M is a set of the automatically detected MDA-MB-231 cells, and M∗

denotes the actual MDA-MB-231 cells, the metrics can be formulated as:

a =
|M∗ ∩M|+ |(M∗ ∪M)c|

|U| , p =
|M∗ ∩M|
|M| , r =

|M∗ ∩M|
|M∗| , F1 =

2pr
p + r

(1)

where |·| denotes the size of sets, and U refers to all the cells in our dataset. The precision indicates
a ratio of what we correctly found for what we found, the recall means a ratio of what we correctly
found for what we should find, and F1 measure is their harmonic mean. The CNN model contains
various hyper-parameters. To determine the parameters, we conducted a grid search. Table 1 presents
the ranges and step sizes of the search for each parameter.

Table 1. Ranges and step sizes for the hyper-parameter search.

Parameter Range Step Size

Learning rate (ρ) [0.25, 0.00025] ×10
Batch size (β) [1, 32] ×2

Epochs (ε) [20, 300] +20
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Figure 4. A comparison of the original photomicrographs with the preprocessed images. The first
and second rows present preprocessing results of MDA-MB-231 and MCF-7, respectively. On the
original images, the deformation is not always as significant as distinguishable with the naked eye.
The preprocessing makes the deformation more distinctive than the original images. Additionally,
the photomicrographs can include noises. On the combined images, only cell boundaries are
emphasized by red and green colors, and noises have similar tones to the backgrounds. This point will
provide robustness to the quality of photomicrographs. Scale bars indicate 10 µm.

Figure 5. Preprocessing results for fluorescence cell images. When we use the fluorescence dyes,
the differences between MDA-MB-231 and MCF-7 are more distinctive than the non-fluorescence ones.
The fluorescence cell images barely include noises. These images mostly have black backgrounds.
Therefore, as shown in the third column, yellow areas indicate cells before the deformation, and green
areas mark changes caused by the deformation. Scale bars indicate 10 µm.
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Figure 6. Data augmentation for combined cell images. We have only a relatively small-scaled dataset.
Scales and resolutions of the images cannot be constant in reality. To make our convolutional neural
network (CNN) model robust to this issue, we augmented the images by the parallel translation,
rotational translation, scale adjustment, etc. Scale bars indicate 20 µm.

Figure 7. Structure of the proposed CNN model. This model consists of three convolutional layers and
two FC layers. After each convolutional layer, we place max-pooling layers. We flatten outputs of the
convolutional part and put it into the FC layers. After the first FC layer, we conduct dropout with a
threshold, 0.5. Then, the output layer (the second FC layer) prints a single value in [0,1]. Based on the
value, we discriminate whether cells in the input images are significantly deformed or not.

The batch size indicates how frequently we update the weights of our CNN model. When the
batch size is 2, we update the weights according to the loss of every two images in the training set.
One epoch indicates one iteration of training. Thus, ε denotes how many iterations we will conduct.
There are various methods for searching optimal weights θ [36]. We applied five methods: stochastic
gradient descent (SGD) [36], RMSprop (http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_
slides_lec6.pdf), Adagrad [37], Adadelta [38], and Adam [39]. Since Adadelta applies a decay factor
to the learning rate according to epochs and recommends setting the initial learning rate as 1.00, we
did not search the optimal learning rate for the Adadelta. We also conducted the hyper-parameter
search for all the methods. Performances of the CNN model, according to epochs, exhibit stability

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
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of the proposed model. Figures 8 and 9 show performance fluctuations of the optimizers on the
same validation case. We compared the optimizers using their accuracy and loss on the optimal
hyper-parameters and epoch. We employed the binary cross-entropy loss ∈ [0, 1] (Equation (7) in
Section 4.6.2). Table 2 presents averages and standard deviations of the performance metrics over the
validation cases.

(a) SDG, ρ = 0.00025, β = 8.

(b) RMSprop, ρ = 0.00025, β = 4.

(c) Adagrad, ρ = 0.00025, β = 8.
Figure 8. Loss and accuracy of the CNN model according to epochs. (a–c) present accuracy and loss of
the SDG, RMSprop, and Adagrad on their optimal hyper-parameters, respectively.
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(a) Adadelta, ρ = 1.00, β = 8.

(b) Adam, ρ = 0.025, β = 4.
Figure 9. Loss and accuracy of the CNN model according to epochs. Subfigures (a,b) present accuracy
and loss of the Adadelta and Adam on their optimal hyper-parameters, respectively.

Table 2. The best performance of the proposed CNN model on each optimizer. Values in round brackets
are standard deviations of the performance indicators for all validation cases. * and ** mark the first
and second best performance, respectively.

Optimizer Validating Loss Accuracy Precision Recall F1 Measure

SDG 0.25 ** (0.20 *) 0.91 (0.06) 0.92 (0.07 *) 0.91 (0.08) 0.90 (0.07)
RMSprop 0.89 (1.65) 0.96 ** (0.05 **) 0.93 ** (0.08) 0.99 * (0.01 *) 0.95 ** (0.05 **)
Adagrad 0.21 * (0.25 **) 0.85 (0.19) 0.83 (0.19) 0.98 (0.02) 0.88 (0.13)
Adadelta 1.51 (2.94) 0.97 * (0.05 *) 0.96 * (0.08 **) 0.99 ** (0.01 **) 0.97 * (0.05 *)

Adam 0.57 (0.71) 0.88 (0.09) 0.86 (0.13) 0.93 (0.07) 0.88 (0.09)

We also examined whether the proposed method is applicable to the calcium fluorescence
live-cell images, which are widely used for tracking the oscillation of cytosolic calcium concentration.
Fluorescent intensity caused by intracellular calcium also plays a fundamental role in determining
cancer invasiveness. It is worthwhile to note that Figures 4 and 5 demonstrate that the deformability
and fluorescence intensities of MDA-MB-231 are significantly higher than that of MCF-7, which is in
agreement with existing literature [40,41]. We took a photomicrograph of 10 fluorescent cells consisting
of five MDA-MB-231 and five MCF-7 cells. We assessed whether the proposed model, which is trained
for non-fluorescent cells, can be used for fluorescent cells. This experiment can validate network
generalization of the proposed model by showing that the model is capable of handling the diversity
of cell photomicrographs. We used models trained by RMSprop and Adadelta optimizers, which have
the highest accuracy. Table 3 presents the performance metrics for fluorescence cell images.
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Table 3. Performance of the proposed CNN model for the fluorescence cell images.

Optimizer Validating Loss Accuracy Precision Recall F1 Measure

RMSprop 0.00 0.90 0.97 0.84 0.89
Adadelta 8.49 0.85 0.87 0.82 0.82

3. Discussion

In this study, we assumed that the conventional CNN model would be enough to classify cells
according to their deformations. As shown in Table 2, the CNN model exhibited remarkably high
accuracy. With the Adadelta, the most suitable optimizer, accuracy, precision, recall, and F1 measure
of the model were commonly greater than 0.96. The accuracy was also stable for both validation
cases and epochs. Particularly, the Adadelta and RMSprop performed significantly lower variances
than the other cases. Their recall was 0.99 ± 0.01. Their standard deviations for the accuracy and F1

measure were 0.05. This result underpins the finding that we can diagnose diseases, which affect the
deformations of cells, quickly and automatically, by integrating the ultrasonic devices and CNN model.

In addition, Figures 8 and 9 show that the accuracy and F1 measure of the proposed model were
more stable than the precision and recall while converging according to epochs. In general, the precision
and recall have tended to show a trade-off relationship, and our results in Figures 8 and 9 also revealed
the same, but the precision decreased more while the recall increased. Validation losses revealed these
problems: (i) The proposed model exhibited significant fluctuations in their validation losses according
to epochs, while the training loss converged. (ii) The Adadelta and RMSprop optimizers exhibited
higher and less stable validation losses than the other optimizers. The high loss with high accuracy
in the binary cross-entropy indicates our model generated correct answers, but with low confidence.
In other words, the cell deformation was an effective feature for diagnosing invasiveness of cancers
automatically, but borderline cases still exist. This issue will be resolved by employing additional
features or data samples as shown in the fluorescence experiments (Table 3).

Although the difference between the SBAT on and off images was much more vivid in the
fluorescence cases than in the original cases (Figures 4 and 5), the accuracy of the proposed method
was lower in the fluorescence images. This is because the proposed model was not trained for the
fluorescence images. Yet, the RMSprop optimizer still exhibited high precision (0.97), F1 measure
(0.89), accuracy (0.90), which represents that the proposed model is applicable for both fluorescent
and non-fluorescent cells. On the fluorescence images, their precision was commonly higher than
their recall. It implies that these images showed not only the deformation caused by the SBAT but
also brightness changes. As we expected, additional features were helpful for dealing with the
borderline cases.

Additionally, the experimental results show that the proposed model was free from the
overfitting issue. Although the number of samples is restricted, we exhibited that our CNN
model had reliable and stable performances on overall samples by using the k-fold cross-validation.
The experiment of fluorescence images also supports that the proposed model can handle the diversity
of photomicrographs produced in this research domain. Moreover, by adopting the shallow CNN, we
attempted to avoid the possibility of the overfitting and showed that the shallow model is enough to
classify cancer cells according to their invasiveness. At this moment, we are not sure that the proposed
model is generally applicable to other cancer cell lines or diseases. Nevertheless, the experimental
results are enough to show the necessity and prominence of integrating the SBAT and machine
learning techniques.

In summary, this study experimentally demonstrated the capability of the SBAT to deform the
cell and to classify the breast cancer cell based on their invasiveness through CNN. It was shown
that the proposed model exhibited reasonable accuracy for both non-fluorescent and fluorescent and
cells. Typically, the images CNN trained in this study is quite common, i.e., the cell morphology and
background. Therefore, the relatively lower recall than its precision was found and might be caused
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by not offering various features for training. To enhance the recall rate of CNN, the sample number
and the types of cells can be increased.

4. Material and Method

4.1. Transducer Fabrication

Piezoelectric single crystals, lithium niobate (LiNbO3) are widely used to manufacture
high-frequency ultrasonic transducers due to its high electromechanical coupling coefficient (kt ∼ 49%)
and low dielectric permittivity (εs ∼ 39). We fabricated a 50 MHz press-focused transducer using the
36◦-rotated Y-cut LiNbO3 (Boston Piezo-Optics, Bellingham, MA, USA) with the following steps [16,21].
A Krimholtz, Leedom, and Matthaei model software (PiezoCAD, Sonic Concepts, Bothell, WA, USA)
offered both an optimal aperture size and thickness of an acoustic stack which includes piezoelectric,
matching, and backing layers. LiNbO3 was bonded to the glass plate and was manually lapped
down to 61 µm. After the lapping process, chrome (500 Å) and gold electrodes (1000 Å) (Cr/Au,
Nano-Master, Austin, TX, USA) were sputtered on the matching side of the material. The first matching
layer, a mixture of 2–3 µm silver particles (silver; Aldrich Chemical Co., St. Louis, MO, USA) and
Insulcast 501 epoxy (Insulcast 501, American Safety Technologies, Roseland, NJ, USA), was bonded
to the front side of the LiNbO3 layer and lapped down to 9 µm. Chrome and gold electrodes were
sputtered on the backing side of the LiNbO3 layer. Conductive epoxy (E-solder 3022, Von Roll Isola,
Schenectady, NY, USA) was attached to the backside of the material at a thickness of 1 mm, and the
final acoustic stack is fabricated. After the acoustic stack was turned down to a diameter of 5 mm
using a lathe, it was wired with a single-lead wire at the backing layer. The stack was concentrically
placed in a brass housing. The gap between the acoustic stack and the housing was filled with an
insulating epoxy (Epo-tek 301, Epoxy Technologies, Billerica, MA, USA) to prevent a short circuit.
A heated bearing ball was placed on the surface of the matching layer and mechanically pressed
to generate a concave structure. Another layer of chrome and gold electrodes with a thickness of
1500 Å was sputtered on top to make a ground signal. An SMA electrical connector was mounted,
and the second matching layer, a parylene film (10.5 µm), was coated the outermost surface of the
transducer using a PDS 2010 Labcoater (SCS, Indianapolis, IN, USA) for the second matching layer
and protection purposes.

4.2. Transducer Performance

A JSR pulser/receiver (DPR500, Pittsford, NY, USA) was used for a pulse-echo test of the fabricated
transducer. It generated electrical impulses at a 500 Hz repetition rate and a damping ratio of 50.
RF echo signals of the transducer received from a flat quartz reflector were analyzed. Figure 2a,b shows
a measured pulse-echo response and the frequency spectrum, respectively. The center frequency was
50 MHz, and the −6 dB fractional bandwidth was 80%. Quantitative spatial peak temporal average
intensity (ISPTA) in two-dimensional lateral and axial directions was derived after calibration with a
needle hydrophone (Precision Acoustics, UK) as shown in Figure 2c. The driving conditions were
as follows: frequency of 50 MHz, pulse repetition frequency (PRF) of 1 kHz, cycle number of 10,
and input peak to peak voltage of 25 V. The −3 dB lateral beam width was measured to be 32 µm.
Lateral resolution is determined by the center frequency and f-number of the transducer. F-number
(the focal distance of 4 mm/aperture diameter of 5 mm) was calculated to be 0.8, and the theoretical
lateral resolution is 24 µm.

4.3. Cell Preparation

Human breast cancer cell lines, MDA-MB-231 and MCF-7, were purchased from ATCC (Manassas,
VA, USA) and maintained in modified complete medium (RPMI, 10% fetal bovine serum, 10 mM
HEPES, 2 mM L-glutamine, 1 mM sodium-pyruvate, 0.05 mM 2-mercaptoethanol, and 11 mM
D-glucose). They were cultured in 5% CO2 at 37 ◦C. The SBAT traps and deforms a single-cell
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in a suspended cell, so a trypsin-ethylenediaminetetraacetic acid (trypsin-EDTA) solution obtained
from Invitrogen (Grand Island, NY, USA) was used to detach cultured cells from the bottom of the
Petri dish. After the addition of trypsin-EDTA into the culture dish, the cells were incubated at 37 ◦C
for 2 min. An equivalent volume of modified complete medium was added to neutralize the trypsin.
Phosphate buffer solution (PBS) was purchased from Invitrogen (Grand Island, NY, USA) for washing
cells before acoustic tweezer experiments. With the inverted microscope, we confirmed that the cell
was slightly touching or floating on the Petri dish without morphological damage. During experiments,
cells with blebs were excluded from the sample for measurements. The cell viability test also validated
that there was no significant adverse effect on the cell’s condition during the experiment.

4.4. Live Intracellular Calcium Imaging

For the fluorescence cell image, both cell lines of MDA-MB-231 and MCF-7 were seeded on culture
dishes and kept in the CO2 incubator for 48 h before experiments. HBSS with Ca2+ and Mg2+ was
used as the working solution. Cells were washed with HBSS three times and incubated with 3 µm of
Fluo-4 AM at room temperature for 30 min for Ca2+ imaging. After incubation, the cells were washed
three times with HBSS and imaged with an epi-fluorescence inverted microscope during experiments.

4.5. SBAT for Cell Deformation

The demonstration of an acoustic tweezers system is described in Figure 1. A focused 50 MHz
ultrasonic transducer and ultrasound electronics which includes a pulser–receiver, a function generator
(Stanford Research Systems, Sunnyvale, CA, USA), and a 50 dB power amplifier (525LA, ENI, Rochester,
NY, USA) were integrated with an inverted fluorescence microscope (Olympus IX-71, Center Valley, PA,
USA) to monitor the SBAT. The movement of the transducer was controlled by a three-axis motorized
stage (SGSP 20, Sigma KOKI Co., Midori, Tokyo, Japan). The focal point on the Petri dish was aligned
using a pulser–receiver, and a 50 MHz sinusoidal burst signal, generated by a function generator
and amplified by a power amplifier, was driven on the transducer to trap, manipulate, and deform a
suspended single-cell. The duty cycle and PRF were set to 500 cycles and 1 kHz, respectively. The input
peak-to-peak voltage was set to 0.00, 4.74, 9.48, 14.22, 18.96, or 23.70 Vpp (corresponding acoustic
pressures: 0.00, 0.23, 0.43, 0.63, 0.82, and 1.00 MPa, respectively). An inverted microscope and a
CMOS camera (ORCA-Flash2.8, Hamamatsu, Japan) were used for the recording of the SBAT and
cell deformation.

4.6. Cancer Cell Classification with Convolutional Neural Networks

The study aim was to validate whether invasive cancer cells can be detected automatically using
a conventional CNN model. We applied the CNN model to 40 cells. Half of the cells had significant
deformation and invasiveness (MDA-MB-231), and the half did not (MCF-7). For each cell, we took
photos with the SBAT on and off. Then, the CNN model was trained to classify cancer cells into
invasive and non-invasive groups. The deformation is a major feature of the classification. However,
since CNN is one of the black box models, our model will learn various and uninterpretable features
from cell images.

4.6.1. Preprocessing

In this study, we use a conventional CNN model, which cannot deal with time-serial data.
However, since we expect that the deformation will be the key feature, the model has to consider
changes in cell size. We propose an image preprocessing method to solve this problem. Most of the
image files consist of multiple color channels (e.g., red, green, and blue channels). The CNN model
also accepts multi-channel images. On the other hand, our input images (photomicrographs) are
gray-level images. Thus, we deliver cell images with the SBAT on and off indicating the different
cell deformability through the red and green channels of the input image, respectively, as shown in
Figure 3.
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Detail procedures of the preprocessing are as follows.

1. Enhance contrast of cell images.
2. Put the SBAT on images as the red channel, the SBAT off images as the green channel, and the

average of the SBAT on and off images as the blue channel.
3. Save the combined image.

Since some cell images include noise from reflected light, CNN model is taught to recognize the
noise by using two methods. First, cell areas and boundaries are emphasized by enhancing the contrast
of the images. The enhancement is conducted by normalizing pixel values of the images into [0,255].
This can be formulated as:

p∗x,y =

⌈
px,y −min∀i,j pi,j

max∀i,j pi,j −min∀i,j pi,j
× 255

⌉
(2)

where px,y is a pixel value, (x, y) indicates a pixel coordinate, p∗x,y denotes a pixel value after the
contrast enhancement, and d·e denotes the rounding function.

Second, for the machines, it is difficult to identify which parts of images are cells or backgrounds.
Changes between the SBAT ‘off’ and ‘on’ images mainly occur in the cells. Thus, we made a new
channel by averaging corresponding pixel values from the two images. The average will dilute the
changes and preserve only the backgrounds. This can be formulated as:

pN
x,y =

⌈
1
2
×
(

pB
x,y + pA

x,y

)⌉
(3)

where pN
x,y, pB

x,y, and pA
x,y are pixels on (x, y) in the ‘background,’ ‘SBAT off,’ and ‘SBAT on’ channels,

respectively. Therefore, on our input image (I = 〈B, A, N〉), cells with the SBAT on and off are marked
by red and green colors, respectively, as displayed in Figure 3. Figure 4 shows a comparison of
preprocessing results of MDA-MB-231 cells with MCF-7 cells. For fluorescent cell images, we can use
the same preprocessing methods. Figure 5 presents preprocessing results for the MDA-MB-231 and
MCF-7 cells dyed by the fluorescent pigments. The deformation was more visible in the fluorescent
cells than in the non-fluorescent ones.

Additionally, we took 40 pairs of images from the 40 cells. However, the number of samples is
not enough to train the CNN model. Thus, image augmentation was conducted. We employed the
augmentation tool supported by Keras (https://keras.io/preprocessing/image/#imagedatagenerator-
class). The augmentation tool generates new images by rotating, scaling, and translating the
original images, as displayed in Figure 6. This process also makes the CNN model robust to those
transformations. When the proposed model is deployed, the quality of the input photomicrographs is
not guaranteed. Operators of this model cannot always be well-trained experts. Therefore, robustness
is significant for the practicality of the proposed model.

4.6.2. CNN Model for Cancer Cell Classification

We applied the conventional CNN model to detect invasive cancer cells. We expected that the
conventional model would be enough for this task, since deformability, our key feature, is vivid in the
preprocessing results (Figures 4 and 5). In this research domain, it is difficult to collect an enormous
amount of cell images to train deep CNN models that consist of hundreds of convolutional layers.
Although we use the data augmentation, the deep models include too many weights to avoid the
overfitting issue. In Sections 2 and 3, we exhibited that the shallow model has enough accuracy and is
free from the overfitting by using the k-fold cross-validation and fluorescence cell images. This model
consists of three two-dimensional convolutional layers, three max-pooling layers, and two FC layers.
After the convolution parts, we flattened the outputs from matrices to a vector. Then, we put the vector

https://keras.io/preprocessing/image/#imagedatagenerator-class
https://keras.io/preprocessing/image/#imagedatagenerator-class
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as the input of the FC layers. Lastly, based on the output of the FC layers, we classified cells into two
groups: MDA-MB-231 and MCF-7 cells. Figure 7 presents the structure of the CNN model in detail.

The convolutional layers consist of multiple convolutional filters. For example, our first
convolutional layer consists of thirty-two 3× 3 convolutional filters. The filters are square matrices,
and their elements are weighting factors. Each convolutional filter calculates the weighted summation
of pixel values in a part of the input image. The weighted summation reflects visual features in the
part. Conventionally, the filters were designed to detect particular visual features using gradients of
pixel values. For example, to detect horizontal edges, we can contrast pixels on the upper sides with
on lower sides. This can be formulated as follows: 0 0 0

0 0 0
10 10 10

 ∗
 1 1 1

0 0 0
−1 −1 −1

 = −30,

10 10 10
10 10 10
10 10 10

 ∗
 1 1 1

0 0 0
−1 −1 −1

 = 0 (4)

where ∗ denotes the weighted summation, the first matrices are parts of the input image, and the second
matrix is a filter for detecting horizontal edges. The filter searches the input image by calculating the
weighted summation on every n pixels. The step size n is called as stride, and the filter moves n pixels
vertically or horizontally from top-left corner to bottom-right corner of the input image. However,
there are limitations to design all the filters heuristically. Especially, shapes and deformation of the
cells are not much typical. In other words, we expect that the deformation is a distinctive feature
of cancer cells. Nevertheless, it is a challenging task to design convolutional filters for detecting the
deformation over the noisy and atypical photomicrographs. Thus, we employed a CNN that can train
convolutional filters for a specific purpose with a black-box approach.

Simply speaking, we can express the layers in the CNN model, which consist of a number of
convolutional filters, as linear functions. Each layer calculates weighted summations of input variables
and applies activation functions on the summations. Outputs of lower layers are inputs of the upper
layers. Since the linear functions are too simple to solve complicated problems, the activation functions
transform output spaces of neural networks into non-linear spaces. All the layers of our model,
excluding the output layer, use the rectified linear unit (ReLu) function as their activation, which is
most widely used. The output layer uses the sigmoid function for the binary classification. Thus,
our model f (·) can be formulated as:

f (X; θ) = f (5)
(

f (4)
(
· · · f (1) (X; θ1) · · ·

))
, (5)

f (n)(X; θ) = h(n)(θᵀn X + b) (6)

where f (n)(·) denotes the n-th layer, h(n)(·) refers to the activation function of the n-th layer, θn

indicates weights on the n-th layer.
The training is conducted by the back propagation. Errors on the results of the CNN model

are propagated to all the convolutional filters to update their weightings. Since our task is binary
classification, we use the binary cross-entropy function to measure the loss (error) of our model.
The output of the model is a real number in [0, 1]. When the output is greater than 0.5, we determine
that a cell in the input image is in the MDA-MB-231 group; otherwise, in the MCF-7. Therefore,
we train the model to print 1 for the MDA-MB-231 cells and 0 for the others. The loss function can be
formulated as:

L(θ) =
1
N
×∑
∀X

Y× log f (X; θ) + (1−Y)× log f (X; θ) (7)

where Y is the ground truth for the input image X, which is 1 for the MDA-MB-231 cells and 0 for the
others. When the model makes correct answers, L(θ) will be 0; otherwise, positive real numbers.
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Figure 10. Cell viability assay upon single-beam acoustic tweezers (SBAT). (a) Fluorescence images
of MDA-MB-231 and MCF-7 before SBAT (negative control) and after SBAT (experimental group).
(b) Normalized fluorescence intensity of cells before and after SBAT. Error bars indicate standard
deviations. The values at each cell line are the average of 20 samples. Scale bars indicate 10 µm. There
were no significant effects on the cell condition after SBAT.

We train the model to find the optimal weights that minimize L(θ). This optimization is conducted
by using gradients of L(θ) to the weights θ. To update the weights, most of the optimization methods
move the weights according to the directions and sizes of the gradients, with an assumption that L(θ)
is a convex function. This can be formulated as:

θ∗ := θ − ρ×∇L(θ) (8)

where θ∗ is the updated weights, and ρ denotes the learning rate, which means how rapidly the
weights are updated. For larger gradients and learning rates, θ moves more quickly. The learning
rate, ρ must be tuned not to be stuck in local optima and not to pass over convex areas. In Section 2,
we searched for the optimization method and hyper-parameters appropriate for our model.

4.7. Cell Viability Test

Cytotoxicity of SBATs on MDA-MB-231 and MCF-7 cells was evaluated using Calcein-AM
(Thermo Fisher Scientific, Indianapolis, IN, USA). Calcein-AM is a dye that enters live cells converting
to green fluorescent. Calcein-AM was prepared as a stock solution of 1 mM in dimethylsulfoxide at
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room temperature. A final concentration of 10 µm of Calcein-AM was added into the cell culture
dish. Fluorescence imaging of the cells was observed using a microscope (an excitation of 488 nm and
an emission of 532 nm). Figure 10 shows the results of the cell viability experiments: before SBAT
(negative control) and after SBAT (experiment). The cells exposed to SBAT with 1.0 MPa for 1 min.
If ultrasound affects the cell membrane integrity, the decrease of fluorescence intensity is observed.
The normalized mean viabilities (0, 60, 120 min after trapping) for the MDA-MB-231 and MCF-7
cells were 1.012 ± 0.039 and 1.020 ± 0.038, respectively. The values at each cell line are the average
of 20 samples. The p-values of all three cell groups were greater than 0.05 (p = 0.822 and 0.624 for
MDA-MB-231 and MCF-7, respectively). No significant sign of cytotoxicity was found in both the
non-trapping and trapping groups.

5. Conclusions

We demonstrated that SBAT with CNN based image analysis could serve as a platform for cancer
cell evaluation. The high-frequency SBAT is a non-contact and non-labeling technique for the trapping
and mechanically deforming of micron-sized objects such as particles or cells. The deformation of
MDA-MB-231 and MCF-7 cells in vitro using the SBAT was successfully demonstrated in the paper.
Previous methods to evaluate the invasive potential of cancer cells, such as manual analysis, are
time-consuming and subjective. CNN clearly provides the classification between two cell lines, highly
and weakly invasive cancer cells, based on pretraining and optimization. As a result, high precision
and recall rates (>0.96) of the model have been achieved. For further development of the integrated
SBATs and CNN, this system can be used for automatically estimating the elastic modulus of cancer
cells by applying image processing techniques on cell photomicrographs. After image segmentation
into cell and background areas, it is possible to measure ratios of changes in cell areas automatically.
Then, CNN processes the correlation between cell deformability and acoustic pressure. Other than
the mechanical deformation of a cancer cell, the calcium ion dynamics of a cell evoked by the SBAT
is another important indicator for determining the cell invasiveness and its mechanotransduction
pathway. This system can perform the automatic analysis of ultrasound-induced calcium elevation for
a better understanding of various cellular functions.
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