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Abstract: The reversible and multi-stimuli responsive insulator-metal transition of VO2, which
enables dynamic modulation over the terahertz (THz) regime, has attracted plenty of attention
for its potential applications in versatile active THz devices. Moreover, the investigation into the
growth mechanism of VO2 films has led to improved film processing, more capable modulation
and enhanced device compatibility into diverse THz applications. THz devices with VO2 as the key
components exhibit remarkable response to external stimuli, which is not only applicable in THz
modulators but also in rewritable optical memories by virtue of the intrinsic hysteresis behaviour of
VO2. Depending on the predesigned device structure, the insulator-metal transition (IMT) of VO2

component can be controlled through thermal, electrical or optical methods. Recent research has paid
special attention to the ultrafast modulation phenomenon observed in the photoinduced IMT, enabled
by an intense femtosecond laser (fs laser) which supports “quasi-simultaneous” IMT within 1 ps. This
progress report reviews the current state of the field, focusing on the material nature that gives rise
to the modulation-allowed IMT for THz applications. An overview is presented of numerous IMT
stimuli approaches with special emphasis on the underlying physical mechanisms. Subsequently,
active manipulation of THz waves through pure VO2 film and VO2 hybrid metamaterials is surveyed,
highlighting that VO2 can provide active modulation for a wide variety of applications. Finally,
the common characteristics and future development directions of VO2-based tuneable THz devices
are discussed.

Keywords: vanadium dioxide; thin film; phase transition; external stimuli; active modulation;
terahertz; metamaterials

1. Introduction

The terahertz (THz) wave, which is defined as the electromagnetic spectrum (0.1–10 THz)
between microwave radiation and infrared light, has attracted increasing attention since
the 1980s [1–3]. Promoted by the femtosecond laser (fs laser), as well as the significantly
improved THz generators and detectors, a couple of advanced THz technologies have been
materialized, e.g., the well-matured terahertz time-domain spectroscopy (THz-TDs) that
is capable of providing whole new insights into the material nature in the THz frequency
range [4]. Vanadium dioxide (VO2), as one of the most important phase-change materials,
was subsequently investigated to reveal the evolution of THz properties across its reversible
first-order insulator-metal transition (IMT). Early reports in the 2000s have demonstrated
that VO2 exhibits remarkable changes in the THz transmittance and reflectance in re-
sponse to external thermal [5], optical [6,7] and electrical [8] stimuli. Such multi-stimuli
responsive features, as well as the easily accessible transition temperature (341 K), make

Nanomaterials 2021, 11, 114. https://doi.org/10.3390/nano11010114 https://www.mdpi.com/journal/nanomaterials

https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0003-1353-0118
https://orcid.org/0000-0003-3899-2933
https://doi.org/10.3390/nano11010114
https://doi.org/10.3390/nano11010114
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nano11010114
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/2079-4991/11/1/114?type=check_update&version=1


Nanomaterials 2021, 11, 114 2 of 27

VO2 a promising material to fabricate dynamically tuneable THz devices [9]. More re-
cently, the rapid development of multimedia service has caused an explosive demand
for high-capacity wireless communications. THz communication technology has become
increasingly important for the potential of increased bandwidth capacity compared to mi-
crowave systems [10–14]. The manipulation of the transmission properties of THz waves,
such as amplitude, phase, polarization and spatiotemporal distribution, is based on the
modulation effect of THz modulators, which is one of the core devices in the THz com-
munication system. Practical applications require THz modulators capable of effectively
manipulating the electromagnetic properties of THz waves and dynamically responding
to external control signals, which significantly promote the research and application of
VO2 in the THz regime [15–22]. Since the 2010s, extensive applications in THz regime
based on VO2 have been demonstrated, such as amplitude modulators [23,24], tuneable
absorbers [25], phase shifters [26], polarization converters [27–29], active frequency se-
lective surfaces [30–32] and optical memory devices [33–35]. To date, VO2 has played an
important role in THz devices as a phase-change material [36–40].

The IMT of VO2 has attracted extensive interest since it was observed by Morin in
1959 [41]. Generally, VO2 undergoes a reversible change in electric conductivity by several
orders of magnitude at 341 K, accompanied by a simultaneous crystallographic phase
transition (CPT) [42]. Despite the great efforts devoted to understanding the physical
mechanism underlying the combined phase transition, debates still exist, largely due
to the incapability of traditional thermal research in decoupling the IMT and CPT on a
timescale [43–48]. Therefore, ultrafast pump-probe techniques have been widely used to
give insights into the structural and electrical dynamics of VO2 in time [49]. This kind of
research usually uses intense femtosecond pump laser to trigger the phase transition of
VO2, while a delayed pulse of either THz radiation, X-rays or electrons is utilized to probe
the evolution of IMT or CPT [50–57]. Thus, the phenomenon demonstrates that the IMT
of VO2 can be completed within 1 ps while the CPT takes a relatively long time [57]. The
ultrafast IMT triggered by the fs pump laser extensively broadens the applications based
on VO2, making VO2 a promising candidate for high-speed THz modulators [58]. Except
for the mentioned thermal and fs laser-based approach, recent efforts have shown that
electrical field [59–63], continuous-wave (CW) laser [64–66], intense THz field [67–69] and
electrochemical modification [70–72] can also provide effective control of IMT, and all these
approaches can be integrated into THz devices.

Therefore, VO2 film is a natural multi-stimuli responsive THz modulator [9]. The mod-
ulation depth of transmission amplitude could reach up to 85% in high-quality epitaxial-
grown VO2 films [73,74]. Additionally, since the transition in THz transmittance originates
from the change of carrier density, the modulation phenomenon of VO2 films exhibits a
broadband and nearly frequency-independent feature [75–77]. When combining VO2 film
with subwavelength plasmonic structures, also called metamaterials [78–83], such as rect-
angular slot antennas [23,24,84], split-ring resonators [35] and grid lines [85], more complex
functionalities can be realized. In such designs, VO2 is settled as the key component of the
meta-atoms [86], such as resonators, dielectric layers and resonator gaps. When the IMT of
VO2 is triggered by external stimuli, the plasmon spectrum of the VO2 hybrid meta-atoms
will be changed, resulting in a transition in whole device response. Furthermore, since
the dynamic control of the device is based on the IMT of VO2, memory effects originating
from the intrinsic hysteresis behaviour of the first-order phase transition can be observed
in these devices, presenting a potential for memory-type applications [33–35,72].

This review aims to provide a comprehensive survey of the recent advances in tune-
able THz devices based on phase-change material VO2. The band theory and crystal
structure, as well as the physical mechanism underlying the modulation phenomenon of
VO2, are also introduced to understand the material nature. We focus special emphasis on
the emerging ultrafast modulation approach enabled by the fs pump laser, as well as the
unique memory phenomenon. Finally, the challenges and future perspectives of VO2-based
active THz devices are considered.
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2. VO2: Phase-Change Material
2.1. Crystal Structure & Band Structure

In traditional thermal studies, it is generally observed that VO2 undergoes reversible
first-order IMT at a critical temperature (Tc) of 341 K, accompanied by a remarkable
modification of the crystallographic structure. As shown in Figure 1b, in high-temperature
phase, VO2 exhibits a high symmetric rutile (R) structure—V cations occupy the centre
site of oxygen octahedrons and equidistantly distribute along the rutile c axis with a
V-V distance of 0.285 nm [44]. However, the symmetry breaks when the temperature is
lowered to Tc. The formed monoclinic phase is characterized by the formation of tilted
V-V dimers, leading to the doubling of the unit cell, as shown in Figure 1a. The dimerization
of V cations results in two different V–V distances, 0.265 nm (inside a dimer) and 0.312 nm
(between dimers) [87]. Accompanying the structural transition, the band structure also
changes, which is responsible for the remarkable transition in electronic conductivity. From
the high temperature rutile phase to the low-temperature monoclinic phase, due to the
formation of V-V dimers, the 3dII band splits into two parts—the lower-energy, full-filled,
bonding 3dII band and the higher-energy, empty, antibonding 3dII* band, opening a
bandgap of ~0.6 eV (see Figure 1c,d) [88].

As a classical phase-change material, VO2 has attracted considerable research interest
over the years for its unique combined phase transition. However, since traditional thermal
studies have difficulties in decoupling the IMT and CPT on a timescale, a long-standing
debate over the underlying phase transition mechanism remains unsettled between two
main alternative models—a lattice distortion-driven (Peirrls-like) transition or an electron
correlation-driven (Mott-like) transition [46,49]. Hence, time-resolved ultrafast pump-
probe techniques have been extensively used to detect the structural and electrical dynamics
in the vicinity of the phase transition. Moreover, THz techniques have played an important
role in this field, since the greatly improved time resolution of THz-TDs systems allows
coherent investigation on electron dynamics on the timescale of femtoseconds [56,89].
Using THz radiation as a probe to detect the ultrafast electronic dynamics across the IMT
is far superior to the conventional resistivity methods. Detailed introductions are given in
Section 3.2.1.
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Figure 1. Schematic of the crystal structure of VO2 in the (a) insulator (monoclinic) and (b) metallic
(tetragonal) phase. V atoms: Orange balls; O atoms: Grey balls. Schematic of the band scheme of (c)
VO2 (M) and (d) VO2 (R) based on crystal field model. Reproduced from [88], with permission from
American Chemical Society, 2011.

2.2. Modulation Phenomenon in the THz Regime

The reorganization of band structure across the phase transition results in the release
of free charge carriers, which is responsible for the modulation phenomenon in the THz
transmittance. In order to investigate the mechanism underlying the modulation, THz-TDS
measurements were carried out for VO2 thin films, and the resultant spectrum in frequency
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domain is shown in Figure 2a [90]. RA rmarkable decrease in THz transmission can be
observed as the film is heated to metallic state. Other important characteristics of IMT, such
as the reversibility and thermal hysteresis behaviour, can be demonstrated in Figure 2b, in
which the evolution of THz transmission in the heating and cooling process is illustrated.
For optical memory-type devices, a large hysteresis width is preferable to obtain stationary
memory state, while a small hysteresis width is more suitable for applications that need
fast erasure of the excited metallic state.

To further understand the modulation phenomenon of VO2 in the THz frequency
range, two theoretical models, the Drude-Smith model and the Bruggeman EMT (effective
medium theory, are introduced. These two models describe the THz conductivity of VO2
film from different perspectives. The former pays attention to the dependency of frequency,
while the latter emphasizes the influence of the volume fraction of metallic phase. The
Drude-Smith model has been extensively used to model the complex conductivity of VO2
films. This model is a classical generalization of the Drude model in order to involve the
conductivity suppression effect caused by carrier localization [5,77,91,92].
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Figure 2. Modulation phenomenon in the terahertz (THz) regime. (a) THz transmission spectrum of
VO2/r-sapphire sample at low (40 ◦C) and high (80 ◦C) temperatures. THz transmission through air
is also shown to illustrate the instrument response function. (b) Normalized (to T = 40 ◦C) THz field
amplitude transmission as a function of the temperature (symbols) for VO2 films grown on c-sapphire.
Reproduced from [90], with permission from Optical Society of America, 2012. (c) The near-field
scattering infrared microscopy pictures over the same 2 µm by 2 µm area (infrared frequency
ω = 930 cm−1) in heating process. The spatial resolution is 15 nm. The metallic regions (light blue)
give higher scattering near-field amplitude compared with the insulating phase (dark blue). Four
newly formed metallic puddles are marked as 1, 2, 3 and 4 on the T = 341.0 K image. Reproduced
from [93], with permission from American Physical Society, 2009.

The most common form is given by [77]:

σ̃DS(ω) =
ne2τDS/m∗

1 − iωτDS

(
1 +

c
1 − iωτDS

)
(1)

where σ̃DS(ω) is the complex conductivity, ω is the angular frequency, n is the electron
density, τDS is the Drude–Smith scattering time, m∗ is the effective mass and c is a parameter
that can vary between 0 (free Drude carriers) and −1 (fully localized carriers). In this
formula, the parameters τDS and c contain localization details of carriers in the VO2 film
and could be derived through fitting the measured complex terahertz conductivity data
with the Drude-Smith formula.

Generally, the conductivity transition of single-domain VO2 crystals accompanied with
the IMT is abrupt and step-like. However, for multidomain VO2 thin films, the conductivity
transition is much more complex due to the dispersion of local phase-transition temperature
in different domains [93–95]. The scanning infrared microscopy maps presented in Figure 2c
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directly demonstrate the coexistence of metallic and insulating domains in a nanostructured
VO2 film [93]. As shown in Figure 2c, as the temperature increases, newly formed metallic
domains initially nucleate, and then grow and connect until the entire film is in a metallic
state. Therefore, the conductivity transition process that decides the modulation effect
of the VO2 thin film has been widely described as a percolation process, in which the
effective conductivity of the whole film can be described by the effective medium theory
(EMT) [5,73,96]. The average conductivity of multiphase system modelled by EMT, which
mainly concerns the volume fraction, depolarization factor and microscopic conductivity
of different kinds of phases, is based on the general treatment of the electrostatic field
around the inhomogeneous domains [97]. The most commonly used EMT formula in the
VO2-related research is as follows [77]:

p
σm − σe f f

gσm + (1 − g)σe f f
+ (1 − p)

σi − σe f f

gσi + (1 − g)σe f f
= 0 (2)

where p is the volume fraction of metallic domains and g is a shape-dependent param-
eter that governs the percolation threshold. σi, σm and σe f f are the insulating-phase,
metallic-phase and effective THz conductivities, respectively. Generally, the metallic phase
volume fraction p is tuneable and highly responsive to external excitation strength, such
as the temperature in thermal-excited IMT [73,98,99] or the laser fluence in photoexcited
IMT [52,100].

Figure 3a offers a comparison of the two models, in which both of them are fitted to the
complex conductivity of VO2 film at different temperatures [101]. The Drude-Smith model
in Figure 3a fits the positive slope of the conductivity curve well, whereas the Bruggeman
EMT model only fits the magnitude of the complex conductivity and has difficulties to
describe the frequency-dependent changes. Such difference relies on the carrier localization
effect that is involved in the Drude-Smith model but ignored in the EMT model. Despite
the failure in frequency domain, the EMT model still plays an important role, since it
establishes a relationship between the effective conductivity and stimuli strength through
the phase fraction of metallic domains. As an example, as presented in Figure 3b, by fitting
the representative conductivity points with EMT models, researchers can extract a general
expression relating the complex THz conductivity to temperature [73].
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Figure 3. Predictions of Drude-Smith model and effective medium theory (EMT) model. (a) Complex
conductivity of VO2 thin film on a-sapphire substrate at different temperatures as the sample is
cooled. Fits are for the Drude-Smith model (thick red lines) and Bruggeman EMT (thin blue lines).
Reproduced from [77], with permission from American Institute of Physics 2010. (b) Complex
conductivity of the VO2 thin film grown on c-sapphire as a function of temperature during heating
(black symbols) and cooling (red symbols). The blue and magenta curves show the predictions of the
Bruggeman EMT and MG EMT, respectively. Reproduced from [73], with permission from Optical
Society of America 2011.

In conclusion, the modulation phenomenon observed in VO2 film is characterized
by the following features: Reversiblility, thermal hysteresis behaviour (memory effect),
broad frequency band, high tuneability and responsiveness. Additionally, the critical
temperature of VO2 is much closer to RT compared with other phase-change materials
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(PCMs) utilized for tuneable THz devices [40], such as superconductors [102–105], chalco-
genides [106–111] and ferroelectrics [112–115], which means significant advantages in low
energy consumption.

3. VO2: Multi-Stimuli Responsive Material

The IMT of VO2 can be triggered by diverse external stimuli [38], such as heating,
photon, electric field [60], magnetic field, electrochemical modification [70] and mechanical
strain. Controlling the IMT of VO2 through external stimuli is an active research area
and related introductions can be found in several review articles [9,58]. However, not all
of these methods can be utilized in the THz regime. For example, strain-induced IMT
is usually carried out by introducing uniaxial compression strain along V-V chains of
VO2 crystals. Such requirement can be satisfied by combing micro-actuators with one-
dimensional single-crystal VO2 nanobeams. However, this requirement is difficult to realize
in THz devices [116]. Here, we focus on the modulation approach that has been widely
proved available in the THz regime, mainly including the thermal, optical and electrical
methods. The underlying phase transition mechanisms are also presented in the following
part to help understand the characteristics of different approaches.

3.1. Thermal-Excited IMT

The thermal approach is a fundamental method to control the phase transition of VO2.
When temperature reaches 341 K, the IMT of VO2 will be triggered, accompanied by a
simultaneous crystallographic transition. Thermodynamics study explains the driving
force accounting for the combined phase transition as a competition between the higher
entropy of the metallic phase, mainly provided by softer phonons, and the lower enthalpy
of the insulating phase resulting from bandgap opening [49,117].

In practical applications, the temperature could be controlled either by discrete tem-
perature controller or by an electrical-heating circuit integrated into the device [31,32,118].
The former is the basic modulation approach of VO2 film and is of vital importance for
investigating the device response across the IMT without any complicated system, while
the latter requires a special layout to protect the device response from distortions caused
by heating circuits. As an example, Park et al. proposed a novel composite structure, as
shown in Figure 4a, which consists of a combination of an asymmetric split-loop resonator
(ASLR) and outer square loop (OSL) [32]. The outer square loops are designed to connect
with each other to form an electrically controlled micro-heater (Figure 4b). In this way,
the temperature of the VO2 film can be actively controlled through tuning the applied
voltage on the micro-heater. The transmission spectrum of the device as a function of bias
voltage is presented in Figure 4c, indicating the designed ASLR-OSL (asymmetric split-loop
resonator with outer square loop) metal structure can provide effective IMT control and
high-quality resonant feature simultaneously.
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3.2. Photoinduced IMT

The optical modulation approach is of vital importance to perform nondestructive
and noncontact control of the IMT and has attracted extensive research interest for its
potential in all-optical communication technology. The IMT of VO2 film can be triggered
by electromagnetic waves in the form of a continuous wave (CW) or pulsed wave over
a broad wavelength range, from UV, visible and infrared to THz waves [66,68]. A study
by Zhai et al. demonstrated that there are two competing mechanisms underlying the
photoinduced IMT process—the slow photothermal effect and the ultrafast photodoping
effect, both of which are inevitable phenomena no matter whether the incident electromag-
netic wave is continuous or pulsed [100]. The mechanism of the former is still unclear and
lacks systematic research, while great efforts have been made to understand the complex
structural and electronic dynamics of the latter, making it a new hot issue in recent years.
Generally, experiments that use the CW laser as external stimuli lack the ability to detect
the ultrafast dynamics induced by the photodoping effect, and the mechanism triggering
the IMT is usually explained as the photothermal effect. The measured response time
in this situation varies from timescales of microseconds to seconds [33,65,66]. Except for
this limitation, numerous studies have demonstrated that the CW laser can effectively
modulate the IMT of VO2 in various THz applications and the modulation depth can be
adjusted by laser intensity. The ultrafast IMT induced by the photodoping effect is mainly
reported in experiments which combine the pump pulse laser with THz-TDs to provide
a fs-resolution coherent investigation into the ultrafast electronic dynamics of VO2. Such
research has demonstrated that a photoexcited IMT can be triggered by an intense fs pulse
laser within 1 ps [55], promoting the emerging research on dynamically tuneable THz
devices based on the ultrafast IMT of VO2.

3.2.1. Ultrafast IMT Induced by fs Laser

As one of the simplest strongly correlated materials, the ultrafast dynamics in VO2
have attracted plenty of research efforts since the 2000s and have provided new insights
into the physical mechanism responsible for the phase transition. Researchers have demon-
strated that there a time separation exists between the IMT and SPT when VO2 film is
triggered by intense ultrafast pump laser—the IMT occurs within 1 ps, while the SPT under-
goes a much complex evolution process and takes place on a slower timescale [57]. Since
the modulation phenomenon of VO2 film in THz range is based on the IMT, utilizing the fs
laser as an excitation source enables VO2-based devices to respond “quasi-instantaneously.”

Ultrafast IMT of VO2 film could be observed via time-resolved THz spectroscopy [89].
As shown in Figure 5a, after excited by a single pulse (12 fs width) at 295 K, the THz
conductivity of VO2 film initially increases rapidly due to the optically generated free
carriers and reaches the peak amplitude at ~60 fs. Subsequently, the photoinduced carriers
decay on a sub-ps timescale and the film recovers to the insulating state when the excitation
fluence is lower than a critical value (Φc). Only if the fs laser fluence exceeds the threshold
value (Φc (295 K) = 4.6 mJ/cm2), long-lived photoconductivity can exist, indicating that the
IMT is triggered. The resultant metallic state can last several microseconds until the heat
dissipates and the film is cooled down. Figure 5b shows the THz conductivity change at
1 ps as a function of laser fluence at 295 K and 320 K. Since the directly excited photocarriers
decay at this time, the conductivity change vanishes for small pump fluence but grows
rapidly for pump fluence above the threshold (Φc). Additionally, the fluence threshold
triggering the IMT depends on the initial temperature of the sample, because heating VO2
film toward critical temperature helps soften the electron correlations in insulating VO2 film,
which reduces the activation energy of the IMT [89]. As presented in Figure 5c, the fluence
threshold experiences a significant reduction as the critical temperature is approached.
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Figure 5. Ultrafast IMT triggered by pulse pump laser. (a) THz conductivity change (∆σ1) of poly-
crystalline VO2 film (120 nm-thick, deposited on diamond substrate) after excited by a 12 fs, 800 nm
laser pulse at 295 K for different pump fluence. (b) Extrapolation of ∆σ1 (at 1 ps) curves (red tri-
angles: 295 K, magenta circles: 320 K) to a critical fluence of Φc (295 K = 4.6 cm2 and Φc (320 K)
= 3.5 mJ/cm2, respectively). (c) Dependence of threshold fluence Φc on lattice temperature TL.
Reproduced from [89], with permission from American Physical Society 2011. (d) Comprehensive
picture of the ultrafast dynamics in VO2 film during the photoinduced phase transition. Optical
excitation uses ~60 fs, 800 nm pump laser pulse above FCPT

C (fluence threshold for crystallographic
phase transition). The main two steps: (1) Characterized by metastable metallic state with mono-
clinic lattice structure. Initially, the screening of the coulomb interaction (CIA) is disturbed, leading
to the IMT on screening timescales (few fs). On the same timescale, V–V bonding orbitals are de-
populated by photoexcitation [51], leading to the lattice potential change (LPC) [50]. The resulting
transient phase of vanadium dioxide in this stage is a highly excited metal with monoclinic atom
arrangement. The crystallographic phase transition (CPT) subsequently happens characterized by
the melting of the V-dimers [53], concurrently with the relaxation of excited electrons and holes
(carrier cooling) in the metallic band structure [51]. (2) Then, the system evolves quasi-thermally to its
high-temperature equilibrium rutile metallic phase in ~300 ps, marking the completion of IMT. The
photoinduced rutile metal phase maintains until sufficient heat has been transported away, on a
timescale varying from several microseconds to hundreds of microseconds depending on the local
thermal diffusivity. Reproduced from [55], with permission from Elsevier 2015.

The time-resolved THz spectroscopy only reflects the time-resolved evolution of
electronic structure, while it does not give any information directly regarding structural
change. Considering that the phase transition in VO2 shows a high coupling of IMT and
CPT, ultrafast experiments sensitive to lattice change, such as electron diffraction [52,53],
X-ray diffraction [54] and coherent phonon spectroscopy [50], have been carried out to
investigate the structural phase transition. Wegkamp et al. summarized their related work
and gave a comprehensive picture explaining the stepwise changes throughout the phase
transition process, as is shown in Figure 5d [55]. The transition could be divided into two
main steps:
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• The first step, which is several hundred femtoseconds long, is a nonthermal pro-
cess. The initial photoexcited carriers change the strong electron correlation inside
the V-V dimers, leading to the collapse of insulating band gap within tens of fem-
toseconds [51]. At the same time, the new charge distribution interacts with the lattice
structure, changing the lattice potential into a non-monoclinic one [50]. The lattice
potential change (LPC) represents the onset of the CPT and the subsequent atom
rearrangement occurs within 300 fs, via a complex pathway, resulting in the melting of
V-V dimers [53]. In conclusion, Step 1 is characterized by the formation of metastable
metallic monoclinic phase.

• The step 2, which is around tens of picoseconds, is known as the quasi-thermal process.
The excess energy of the photoinduced carriers drives the metastable monoclinic
metallic structure to transform into the thermal-equilibrium rutile structure, marking
the completion of the CPT. No electronic dynamics can be observed in this step, while
the lattice structure continues to evolve. The resultant thermal equilibrium metallic
rutile phase can maintain several microseconds due to the thermal hysteresis effect,
until heat transport cools the sample down [55].

Ultrafast IMT process still works when VO2 film is embedded in metamaterials. Hence,
tuneable THz devices based on VO2 film are capable of ultrafast response when excited by
intense fs pulse laser.

3.2.2. IMT Induced by Intense THz Field

The great improvements on the fs laser and THz generator enable short THz pulse
(picoseconds) with intense field strength and pave a way to investigations on ultrafast
dynamics triggered by intense THz pulse. As a strongly correlated electronic material,
VO2 film should be able to respond to intense THz field, since the intense electric field
of THz pump may disturb the electron correlation inside the V-V dimers. However, re-
searchers have demonstrated the IMT triggered by intense THz pulse is mainly a thermal
effect caused by Joule heating [67,68]. In detail, the THz electric field initially lowers the
Coulomb-induced activation barrier and causes a release of carriers. Then, the newly
formed carriers are accelerated by the THz electric field, leading to Joule heating via
electron-lattice coupling.

Although recent advances have enabled intense THz fields with strengths as strong
as 1 MV/cm, corresponding to a THz fluence of ~2 mJ/cm2, they are still weaker than
the typical fluence threshold of photoinduced IMT [68]. Considering the requirement of
stimuli strength, subwavelength resonators are integrated on VO2 film to locally enhance
the electric field inside the resonator gaps. An example of enhanced THz field in contrast
to the initial THz pump signal is shown in Figure 6a [68]. The enhancement is realized by
the grid array antennas deposited on VO2 film with gaps of 1.5 um, as shown in Figure 6b.
The geometry of the grids, designed to compromise between effective field enhancement
for the THz pulse and fill a fraction of the VO2 film, results in, on average, four-times
greater field enhancement, as shown in Figure 6c. In another related work, Thompson et al.
fabricated a dynamically tuneable THz antenna by incorporating VO2 film with nanoslot
antennas with gaps of 200 nm, as shown in Figure 6d [69]. The response of the device is
shown in Figure 6e. For VO2 film in the insulating state, the device shows an antenna
resonance at 0.9 THz, while the resonant transmission disappears as VO2 film is heated to
the metallic state. Except for the thermal-induced modulation phenomenon, the device also
exhibits a decreased transmission when the strength of the incident THz field is increased,
as is shown in the time spectra in Figure 6f. Such result demonstrates the device can be
modulated by enhanced THz field with the assistance of metal resonators.
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Figure 6. IMT triggered by intense Terahertz pulse. (a) Simulated enhanced THz field (red) in the metamaterial gaps
using experimental data (black) as the input. (b) SEM image of the grating pattern showing wider Au lines (8.5 µm) and
narrower (1.5 µm) gaps exposing the VO2 film (dark contrast). The cross-sectional profile of the structure is shown below.
(c) THz field enhancement as a function of position within the 1.5 µm gap, showing an average field enhancement of ×4.
Reproduced from [68], with permission from American Physical Society 2018. (d) Gold nanoantenna array (antenna width,
200 nm; length, 60 µm) is patterned on a 100 nm-thick VO2 thin film deposited on sapphire substrate. (e) A transmission
spectrum showing antenna resonance at 0.9 THz with insulating VO2 at room temperature (blue line), whereas the resonant
transmission disappears with metallic VO2 at high temperature (red line). (f) Response of the device under different THz
field strengths of 150 kV/cm, 300 kV/cm, 630 kV/cm and 850 kV/cm at 65 ◦C. The corresponding frequency spectra are
shown in the insets. Reproduced from [69], with permission from American Chemical Society 2015.

In such experiments, the metal metamaterial structure is well-designed to act as both
the amplifier of THz field and the plasmonic to generate resonator features, providing
a viable pathway to fabricate functional nonlinear THz modulators. Although it occurs
through a much different mechanism compared with the IMT triggered by the fs laser, this
kind of modulation approach still reveals ultrafast response speed (picoseconds) and can
be utilized for high-speed optoelectronic devices [67].

3.3. IMT Induced by Electric Field

The electric field is another effective approach to control the IMT of VO2 [60,63,119].
The underlying physical mechanism is still under debate as the roles of electric field
induced doping and Joule heating are still controversial. Kalcheim et al. recently demon-
strated a purely nonthermal electrically induced IMT in quasi-1D VO2 nanowire [120].
They successfully decoupled the nonthermal IMT process from the Joule-heating scenario.
However, such phenomenon has not been reported in VO2 films. The more common opin-
ion is that Joule heating may take the dominant role instead of the field-induced electron
doping. To prove this point, a related work completed by Zimmers et al. is introduced
here, in which an in situ measurement of film temperature across the electrically triggered
IMT was performed. The local temperature inside the electrode channel was inferred
according to the fluorescence spectra of the temperature-sensitive fluorescent particles, as
presented in Figure 7a [61]. They proved that the resistance-temperature (R-T) curve of
electrically triggered IMT overlaps with the thermally triggered one (Figure 7b), indicating
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that the electron doping only has negligible effects on VO2 film and Joule heating plays the
predominant role.

To apply electric field on VO2 film, artificially designed electrodes are necessary [59,121].
Through changing the voltage applied on electrodes, the electric field across the channel
can be controlled. The electric field threshold triggering the IMT ranges from 1.5 × 106

to 2.6 × 106 V/m, depending on the initial temperature and the type of the VO2 film [61].
However, the threshold voltage can be extremely high when using simple parallel elec-
trodes. For instance, in early work, gold nano-slot antennas were deposited on VO2 film
with 1 mm-wide parallel electrode, as shown in Figure 7c [122]. The large area and simple
geometric design of the electrode in this device are the main reasons responsible for the
high-threshold voltage (400 V) shown in Figure 7d. The fundamental way to reduce the
applied voltage in electrical modulation approach is to reduce the electrode distance or
minimize the fill area of the VO2 film [123]. For example, Zhou et al. constructed a dy-
namically tuneable THz device by integrating interdigitated electrodes with grid-structure
VO2 film, as shown in Figure 7e [62]. The special geometric design in this device allows
low-bias voltage control and reduces the power cost to 0.5 W. Meanwhile, the device
offers a large modulation of transmitted THz waves over a broadband frequency range
(Figure 7f), demonstrating that combining metallic electrodes with metamaterials is an
effective way to fabricate energy-efficiency devices.
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Figure 7. Electrical field-excited IMT in VO2 thin film. (a) 20 um channel before, during, and after positioning the micron-
wide rare-earth fluorescent particle sensor. The temperature of the particle is measured through fluorescence spectroscopy.
(b) Local temperature versus DC voltage (left) and local temperature versus resistance (right) in voltage-induced IMT (blue
triangle) and thermal equilibrium IMT (black square). Reproduced from [61], with permission from American Physical
Society 2013. (c) Schematic of the nanoantenna array deposited on VO2 film with 1 mm-wide parallel electrodes. (d)
External voltage-driven insulator–metal transition in VO2 thin film. The voltage is increased at a rate of 1 V/s. Reproduced
from [122], with permission from Optical Society of America 2011. (e) The schematic structure and a unit cell of the low bias
controlled VO2 hybrid metasurface. The device consists of metal bias lines arranged with grid-structure-patterned VO2 film
on sapphire substrate. (f) Magnitude transmission with different electrical biases under a constant heating temperature of
68 ◦C. Reproduced from [62], with permission from Optical Society of America 2017.

4. Film Deposition & Property Optimization

Researchers have demonstrated that most of the physical and chemical deposition
methods, such as sputtering [74], pulsed laser deposition (PLD) [92], molecular beam epi-
taxy (MBE) [124], polymer assisted deposition (PAD) [125], sol-gel [126] and hydrothermal
methods [127], can be utilized to synthesis VO2 films with high modulation performance.
Moreover, the IMT properties of VO2 films, such as critical temperature, magnitude of THz
conductivity change, excitation energy (for ultrafast IMT) and hysteresis loop width, are



Nanomaterials 2021, 11, 114 12 of 27

sensitive to the oxidation states and microstructures of VO2 film. As a result, it is possible
to modify these properties in the synthesis process for different applications. The recent
efforts in this field have focused on how to reduce the energy consumption used to trigger
the IMT without sacrificing modulation performance. One of the effective methods is ion
doping. For instance, researchers have reported doping W6+ ion into VO2 film could not
only lower the critical temperature toward RT [91] but could also reduce the pump fluence
threshold for ultrafast IMT [128]. However, a certain degree of degeneration in modulation
performance can be observed accompanied by W6+ doping. Another approach involves
introducing epitaxial strain to influence the microstructures of VO2 film. This approach
highly relies on epitaxial growth techniques and avoids the degradation of modulation
phenomenon [129]. Other optimizations, such as the broadening of the phase transition
temperature window [91] and anisotropic modulation [130], can also be realized by control-
ling the synthesis process of VO2 film. The modification of IMT properties via deposition
techniques provides more freedom for practical applications, extending the applicability of
VO2 film in tuneable THz devices.

4.1. Ion Doping

Reducing the energy consumption for triggering the IMT is of critical importance
for practical applications. For example, reducing the critical temperature, laser fluence
threshold or electric field threshold of IMT helps reduce the energy cost of VO2-based THz
devices and benefits the simplification of excitation unit. Researchers have demonstrated
that transition metal ions, including but not limited to Nb5+, Mo6+, W6+ and hydrogen
ion H+, can effectively reduce the critical temperature of VO2 [46,128,131–133]. Among
them, W6+ is the most effective and commonly used. Figure 8a presents a typical X-ray
photoelectron spectra (XPS) of W-doped VO2 film, in which the existence of W element
is confirmed by the characteristic 4f peaks of W6+ ions [101]. Thermal studies on THz
transmission change (Figure 8b) have demonstrated that doping W ions into VO2 film
can reduce the critical temperature of IMT with a rate of ~22 ± 4 ◦C/at.%W and broaden
the phase transition temperature window [91]. As for the ultrafast IMT induced by the fs
laser, Émond et al. reported that the fluence threshold of W0.013V0.987O2 film is reduced to
1.1 mJ/cm2, down from the 3.8 mJ/cm2 in pure VO2 film, as shown in Figure 8c,d [128].
These experiments demonstrate that W doping help reduce the requirement for triggering
the IMT in both thermal and optical approaches.

4.2. Epitaxial Growth Techniques

Except for ion doping, another effective approach to optimize the IMT properties
is to alter the film structure through substrate influence. Recent research reported by
Liang et al. took a novel approach to reduce the excitation energy of ultrafast IMT [129].
They deposited Van der Waals (vdW) heteroepitaxial VO2 film on ultrathin (~13 um) mica
substrate. The schematic of the film-substrate interface is in shown in Figure 8e. The
pump fluence threshold (0.21 mJ/cm2) of the vdW-epitaxial VO2 film, extrapolated from
the THz transmittance curve shown in Figure 8f, is only ~5% of the traditional epitaxial film.
Meanwhile, the vdW epitaxial film exhibits excellent modulation effect—the transmittance
change reaches 81.2% as the IMT is triggered. They attributed the significant reduction in
fluence threshold to the impact of vdW heteroepitaxy. Typically, the bonding strength of
vdW heteroepitaxy is 0.1–10 kJ/mol, much lower than the strength of chemical bonding
(100–1000 kJ/mol). A schematic illustration of the difference between chemical bounding
and vdW bounding is presented in Figure 8g. Since the IMT of VO2 is accompanied by a
large modification in the lattice structure, the strong chemical bonding on the traditional
epitaxial interface will give rise to an intense clamping effect and thus cause a barrier
for phase transition. In contrast, weak film–substrate interaction on the vdW epitaxial
interface significantly reduces the influence caused by substrate clamping effect, resulting
in a reduction in excitation energy for the IMT. Additionally, the poor heat conduction
in the vdW epitaxial interface prevents heat from transferring to substrate, improving
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the energy efficiency of the pump laser. Both factors are considered responsible for the
significant fluence threshold reduction [129,134].
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is presented in Figure 9a, in which periodic buckling and cracking paralleling to the cR 
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Figure 8. The influence of fabrication techniques. (a) XPS pattern of W-doped VO2 film. Reproduced from [101], with per-
mission from American Institute of Physics 2015. (b) Normalized THz transmission (symbols) as a function of temperature
for WxV1-xO2/sapphire samples S0, S1, S2 and S3 (x = 0, 1.47%, 1.59% and 1.73% respectively). Reproduced from [91],
with permission from American Institute of Physics 2014. (c,d) Dependence of THz transient transmission variation on
excitation fluence at different delay times (∆t) of 7 ps, 17 ps and 25 ps for (c) VO2 and (d) W0.013V0.987O2 films, respectively.
Reproduced from [128], with permission from American Institute of Physics 2017. (e) Schematics of Van der Waals (vdW)
heteroepitaxial VO2 film deposited on ultrathin mica substrate. (f) Pump fluence dependence of differential transmission
(∆T/T0) signals of VO2/mica and VO2/m-sapphire films at 1 THz. (g) Schematics of laser-induced lattice changes of
heteroepitaxial VO2 films on substrates with strong chemical bonding (covalent or ionic) and vdW bonding. Reproduced
from [129], with permission from WILEY-VCH.

IMT properties of the traditional epitaxial VO2 films are sensitive to the interfacial
strain induced by substrate mismatch. Researchers have demonstrated that the THz
properties of epitaxial VO2 films are different when deposited on different substrates [135].
For example, VO2 films deposited on m- and r-sapphire substrates reveal relatively lower
critical temperature and higher modulation depth compared with the films on c-sapphire
substrate [74,90,134–136].

Generally, VO2 film exhibits isotropic THz conductivity in directions parallel and
perpendicular to V-V chains (cR axis). However, the symmetry can be altered by synthe-
sizing epitaxial VO2 film on a-cut TiO2 substrate. The surface morphology of the sample
is presented in Figure 9a, in which periodic buckling and cracking paralleling to the cR
axis can be observed. The lattice mismatch between VO2 film and TiO2 substrate results in
tensile strain along the cR axis, and compressive strain along the aR axis and bR axis, causing
the highly oriented THz transmission properties shown in Figure 9b,c [130]. Remarkable
difference could be observed in the transmission spectrum shown in Figure 9b—the THz
transmission decreases by ~85% along the cR axis and by ~15% along the bR axis after
the IMT. Temperature-dependent THz conductivity in the heating and cooling cycles
also exhibits significant anisotropic features (Figure 9c). The uniaxial modulation phe-
nomenon along the cR axis, accompanied by the large modulation depth, can be the basis
for orientation-related applications in the THz regime.
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5. Dynamically Tuneable THz Devices Based on VO2

VO2 film is a natural THz amplitude modulator in itself, since the IMT of VO2 results
in a THz conductivity change of several orders of magnitude. More importantly, the
modulation depth of VO2 film is highly tuneable due to the phase coexistence phenomenon
during the IMT. Multistate THz response can be realized in VO2 film through tuning
the strength of external stimuli, promoting its applications in fields such as antireflection
coating [90], impedance matching [137,138] and multistate optical memorizers [33,35].

Additionally, the advances in micromachining technologies make it possible to inte-
grate high-quality VO2 films into metamaterials. In this way, VO2 can be coupled with func-
tionalized metamaterials to fabricate tuneable THz devices. Metamaterial is a kind of artifi-
cially designed material consisting of sub-wavelength plasmonic micro/nanostructures
and has been demonstrated as an effective tool to manipulate the electromagnetic proper-
ties of THz waves, such as propagation direction, amplitude, phase and polarization. Since
the resonance feature of metamaterial is sensitive to the surrounding dielectric environ-
ment, integrating phase-change material into resonators enables the metamaterial to be
dynamically controlled by external stimuli.

Furthermore, unique optical memory-type function can be achieved based on the
intrinsic hysteresis behaviour of the IMT. By utilizing external thermal, optical or electrical
stimuli, stationary metallic state can be written into VO2 film and then read through THz
transmission response, which is the basis for rewritable memory devices.

5.1. VO2 Hybrid THz Metamaterial

On the one hand, despite the fact that fabrication techniques can introduce some novel
features, the functionality of pure VO2 film is still limited by its intrinsic physical properties.
On the other hand, metamaterials can effectively manipulate the state of propagating THz
waves but are unable to be dynamically controlled without any active designs or materials.
In this case, incorporating metamaterials with VO2 presents a potential for functionalized
and controllable THz modulators. To take full advantage of the phase-change phenomenon
of VO2, researchers have replaced or filled the key component of metamaterials with
continuous VO2 film or VO2 pieces. Once the optical constant of VO2 is affected by external
stimuli, the dielectric environment of the metamaterial will be changed, and then the
response even functionality of the metamaterial will be modified.

In this section, dynamically tuneable metamaterials based on VO2 film are introduced.
To better understand the functionality enabled by VO2, a classification of the device struc-
ture of VO2 hybrid metamaterials is provided, which divides them into VO2 metamaterial,
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metal-metamaterial/VO2 film and metal VO2 hybrid metamaterial. The applications of
different structures are introduced, along with the advantages and limitations.

5.1.1. Metamaterials Made of Pure VO2

One of the simplest designs of VO2-based tuneable metamaterials is to directly utilize
VO2 as resonators. When the VO2 meta-atoms are in the insulating state, the device is
transparent to the incident THz waves. Only if the IMT is triggered, the VO2-fabricated
resonators begin to operate. In this way, “on-off” switching between transparent state
and resonator operating state can be realized [66,98,139]. However, although VO2 film
undergoes a remarkable transition in THz conductivity by several orders of magnitude,
the film remains somewhat transparent to THz waves even in its metallic state. To ensure
enough modulation depth, THz metamaterials made of pure VO2 requires larger film
thickness (~1 um) compared with those made of metal (~200 nm) [140]. It should be noticed
that VO2 film with micron-level thickness is hard to fabricate, limiting the applications
of THz metamaterials made by pure VO2. For example, Wen et al. fabricated an active THz
metamaterial by directly using patterned polycrystalline VO2 film as cut-wire resonators
(Figure 10a) [139]. The temperature-dependent frequency spectrum of the device is shown
in Figure 10b, demonstrating a switching between the high-transparent state and the
resonant sate. Across the IMT, the modulation depth of transmission amplitude reaches
65% at the resonant frequency (0.6 THz). The thickness of the VO2 film utilized in this work
was 800 nm, far exceeding the average thickness (150–300 nm) reported in other metal VO2
hybrid metamaterials. In another example, super-thick VO2 film (1.2 um) was utilized as
coating layer of silicon columns to fabricate state-converter-plasmonics (SCP), as shown in
Figure 10c [66]. The SCP can be controlled by CW laser and the modulation depth up to
70% is achieved over a broad frequency range (Figure 10d).
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controlled to switch between two discrete states. When the VO2 film is in the insulating 
state, the VO2 film layer is relatively transparent to THz waves and the device response is 
determined by the embedded metal resonators. After the phase transition is triggered, 
THz waves will be reflected by metallic VO2 film and the resonators no longer operate. As 
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Figure 10. Tuneable metamaterials made of patterned VO2 thick film. (a) SEM image of the VO2 cut-wire array with
measured dimensions of l = 107.25, w = 6.25 and t = 13.25 (all units in um). (b) Temperature-dependent THz transmission
curves for cut-wire metamaterial. Reproduced from [139], with copyright from American Institute of Physics 2010. (c) SEM
image of the state-conversion-plasmonics (SCP) consisting of silicon columns with VO2 coating. (d) Transmission spectra of
the SCP with different pump powers (532 nm CW laser) under the double 45◦ tilted pumping. Reproduced from [66], with
permission from Optical Society of American 2013.

5.1.2. Metal Metamaterial Deposited on VO2 Film

Utilizing continuous VO2 film as the substrate layer of metal metamaterial is a straight-
forward method to fabricate tuneable THz optics [140,141]. Such devices can be controlled
to switch between two discrete states. When the VO2 film is in the insulating state, the VO2
film layer is relatively transparent to THz waves and the device response is determined by
the embedded metal resonators. After the phase transition is triggered, THz waves will
be reflected by metallic VO2 film and the resonators no longer operate. As an example,
Shin et al. fabricated a tuneable linear polarizer by depositing metal gratings on VO2 thin
film. The structure of the device is shown in Figure 11a [142]. The temperature=dependent
frequency spectrum (Figure 11b) demonstrates an improved modulation phenomenon,
since the metal gratings greatly enhance the cut-off effect by nearly an order of magnitude
when the VO2 film is in the metallic state. Meanwhile, the original linear polarization
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character of metal gratings with a polarization degree up to ~0.985 can be observed in this
composite device, as shown in Figure 11c, which is sufficient for use as a linear polarizer.
Another similar application is the tuenable meta-surface lens which consists of a tri-layer
structure, including gold V-shaped antennas, a VO2 thin film layer and sapphire substrate,
as presented in Figure 11d,e [143].
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Figure 11. Tuneable metamaterials consisting of VO2 film and metal meta-atoms. (a) Schematic
of the switchable linear polarizer: Au/Ti metallic gratings deposited on VO2/c-sapphire. Metal
gating width: Free space = 14 µm:6 µm. (b) Frequency responses of the metal-grating hybrid film
and bare film in 0–2.5 THz range at 296 K and 374 K. (c) The degree of polarization. Inset: Polarizer
angle rotation dependence of wave intensity at 1.5 THz (dot line) and cos2(θ) term fitting curve (red
dash-dot line). Reproduced from [142], with permission from Institute of Physics 2015. (d) Schematic
of the tuneable metamaterial lens: View of a single V-shaped antenna unit. (e) SEM image of the
partial metamaterial. (f) The evolution of the amplitude distribution on the focal plane in the heating
process. Reproduced from [143], with permission from Springer Nature 2016.

Dynamically tuneable focal intensity can be realized through tuning the temperature
of VO2 film. The evolution of the amplitude distribution in the focal plane in the heating
process is shown in Figure 11f. The focal spot initially holds the strongest energy at 293 K
when VO2 film is in the insulating state. As the critical temperature is approached, the
focal intensity gradually weakens and is finally reduced to zero after the IMT is completed.

Since the transmittance change of VO2 film is limited by its intrinsic properties,
realizing higher modulation depth with controllable frequency range is an important issue.
As an example, Choi et al. fabricated a band-pass THz modulator by depositing gold nano-
slot antenna pattern on the top of VO2 film (Figure 12a) [24]. When the VO2 film is in the
insulating state, the device reveals almost perfect transmission at 0.5 THz due to the strong
funnelling effect of nano-resonator (Figure 12b). Once VO2 film transforms to metallic state,
nano-resonators will be electrically shorted and THz transmission will switch to cut-off
state (Figure 12d). The extinction ratio at 0.5 THz, defined by the transmission maximum
to minimum signal strength, improves from 10 in bare VO2 film to 105 in patterned VO2
film, as shown in Figure 12c. However, the bandwidth of this device is limited by the sharp
resonant features. In order to realize high extinction ratio and broadband modulation in
a single device, a multi-antenna structure constructed by a series of antenna-slots with
different geometric dimensions is deposited on VO2 film, as shown in Figure 12e [23]. The
corresponding transmission spectrum is shown in Figure 12f. Complete switching with
extinction ratio up to 104 over an ultra-broadband frequency range can be realized.

5.1.3. Metal VO2 Hybrid Metamaterial

Since the high-reflection of metallic continuous VO2 film limits the functionality of
VO2-based metamaterial, replacing VO2 film with VO2 pieces presents much more freedom
in device response. The novel functions of metamaterials, such as frequency selection
and polarization conversion, originate from the resonant features of the sub-wavelength
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structure and are sensitive to the changes in material property. In this way, phase-change
material with a small fill fraction can give rise to large modification in device response.
Additionally, reducing the phase-change area of the tuneable devices helps decrease the
energy consumption and is of vital importance for practical applications in requirement of
low-bias control.
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period, 150 µm length and 450 nm width). (b) Transmission spectra at the insulator and metal state of VO2. (c) THz
switching time measurements for the bare (blue line) and patterned (red line) samples when the structural phase transition
of VO2 is driven by thermal heating. Reproduced from [24], with permission from American Institute of Physics 2011. (d)
Phase transition diagram of the nanopatterned VO2 thin film as a function of temperature, based on the THz transmission.
(e) Schematic of broad-band gold resonator patterns on a VO2 thin film (left). SEM image (right) of a nanoresonator pattern
sample (350 nm width and 50 µm, 65 µm, 100 µm and 200 µm lengths with 3 µm, 7 µm and 13 µm separations). (f) THz
transmittances (logarithmic plot) at 0.2–2.0 THz for 305 K (blue lines) and 375 K (red lines). Reproduced from [23], with
permission from American Chemical Society 2010.

For example, by embedding VO2 pieces as link bridge in loop cross dipole (LCP),
Zhu et al. fabricated a band-pass filter with tuneable centre frequency. The schematic
and optical microscope images of the VO2 hybrid LCP are shown in Figure 13a,b, respec-
tively [30]. When VO2 components are heated to the metallic state, the effective length
of the LCP changes. As a result, the frequency centre of the resonant peak shifts from
~0.41 THz to ~0.54 THz, as is shown in the transmission spectrum (Figure 13c). Another
example is a tuneable phase shifter controlled by CW laser (Figure 13d) [26]. The device
consists of a composite photoconductive structure (PCS), a combination of dipole reso-
nance (short wire), VO2 metal hybrid capacitive inductance resonance (split ring) and long
metallic wire (Figure 13e). The L-C resonance and dipole resonance are coupled together
to enhance the phase jump triggered by the IMT of VO2 gap. As a result, a phase shift
up to 130◦ within 55 GHz bandwidth can be realized in this phase converter, as shown in
Figure 13f.

Integrating VO2 with metamaterial can even induce switching between different
functionalities. For example, Ding et al. suggested a multifunctional device with the
ability to switch between a broadband absorber and a reflecting half-wave plate [25]. The
schematic of the device is presented in Figure 13g, which is characterized by a multilayer
structure. From top to bottom, the multiple-layer device consists of a rectangular VO2
antenna array, chromium dual square resonators, continuous VO2 film and a chromium
substrate. When VO2 is in the insulating state, the VO2 antenna array and continuous film
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are highly transparent to incident THz waves and the reflection spectrum is determined
by the square resonators and chromium substrate, resulting in a broadband absorber state
(Figure 13h). After the IMT is triggered, the VO2 components begin to work and the device
is switched into a polarization converter. The corresponding simulated reflection spectrum
is shown in Figure 13i, indicating the incident linear polarized THz waves are converted
into cross-polarized reflected waves with a conversion rate up to 60% in the range from
0.6 THz to 1.2 THz.
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Figure 13. Metal VO2 hybrid metamaterials. (a) Schematic view of a single loop cross dipole (LCP) unit and (b) the optical
microscope image (scale bar corresponds to 100 um). (c) Measured S21 coefficients of the LCP as a function of temperature
during the heating process. The inset shows f 1 and f 2 peak positions versus temperature in heating and cooling cycles.
Reproduced from [30], with permission from Optical Society of America 2013. (d) Schematic of the photoinduced phase
converter fabricated by VO2 hybrid photoconductive composite structure (PCS) and (e) the SEM images of the device. (f)
The phase diagram of the PCS triggered by different laser fluence. Reproduced from [26], with permission from American
Chemical Society 2018. (g) Schematic of a VO2-integrated THz device with switchable functionalities. The dimensions in
the side and top view are p = 100 um, l1 = 110 um, l2 = 26 um, t = ts = 1 um, td1 = 40 um, td2 = 34 um, a = 55 um, b = 36 um,
w = 1 um and d = 0.3 um, respectively. (h) Simulated absorption, copolarized reflection and cross-polarized reflection at
normal incidence when VO2 is in the insulating state with σ = 200 S/m. A, Rco, Rcr and PCR represent the absorption,
cross-polarized reflection, copolarized transmission and polarization conversion of the device, respectively. (i) Simulated
absorption, copolarized reflection, cross-polarized reflection, and PCR at normal incidence when VO2 is in its fully metallic
state with σ = 200,000 S/m. Reproduced from [25], with permission from WILEY-VCH 2018.

In conclusion, VO2 film can be successfully integrated into diverse THz metamaterials
to provide dynamic modulation capability for a variety of applications. The dynamic
performance enabled by VO2 is closely related to the fill fraction of the phase-change
area. For continues VO2 film, when the IMT is triggered globally, the whole device will be
transformed into a high-reflection state [140–143]. However, in some cases, the IMT of con-
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tinuous VO2 film can be locally triggered by THz pulse or electric field with the assistance
of integrated electrodes or resonators [59,67–69]. The locally triggered phase transition, as
well as the straightforward discretely distributed VO2 pieces [35], can provide much more
freedom for device response. It not only supports continuous tuning of electromagnetic
properties such as the polarization degree [28], centre frequency [30] and phase shift [26],
but also allows switching between different functionality, for example, switching between
a broadband absorber and a reflecting half-wave plate [25].

5.2. Optical Memory

For VO2, the so-called “memory effect” signifies the persistence of metallic state
after external stimuli are turned off [123]. Such a phenomenon, accompanied with the
remarkable difference in material properties between insulating and metallic states, can be
the basis for rewritable memory-type applications. Additionally, because the effective THz
conductivity of VO2 film depends on the phase fraction of metallic domains and the metallic
phase fraction depends on the strength of external stimuli, distinguishing multiple states
can be recorded in VO2 film by varying the strength of external stimuli. The recorded
information can be read through the response of THz waves and erased by cooling the
phase-change area down. All these memory operations, including writing, reading and
erasing, can be performed by all-optical approaches.

As an example, memory operations of an all-optically driven 2-bit memorizer made by
simple VO2 film have been investigated [33]. In this all-optical memory system, an intense
fs laser pulse is used as writing channel while a CW laser provides a continuous bias
power and is constantly switched on except for the erase operation (Figure 14a). Ultrafast
IMT enabled by the intense fs laser results in a “quasi-simultaneous” transition in THz
transmittance, allowing the recorded state to be read out as soon as the information is
written in. The ground “00” state of VO2 film maintained by the CW laser (P0) is the
start stage of IMT, so that the THz transmission can respond to a single fs pulse (100 fs,
390 µJ). The four discrete states, denoted as “00,” “01,” “10” and “11” shown in Figure 14b,
correspond to the record of zero, one, two and three fs pulses, respectively. The “erase”
operation is performed by turning the CW laser off for 2 s and it takes ~3 s for VO2 film to
recover to the thermal-equilibrium ground state.

In another example (Figure 14c), through filling the gaps of asymmetric split-ring
resonators (ASRRs) with VO2 pieces, an electrically controlled low-bias THz memorizer
was fabricated [35]. The metal structure of the device, a combination of ASRR array and
long metal lines, plays a dual role by also providing a turn-on current and manipulating the
frequency response of the propagating THz waves. The frequency response of the device
as a function of the applied current is shown in Figure 14d, demonstrating that the THz
transmission of the metadevice is highly tuneable. The timing diagram of the binary coding
process is shown in Figure 14e. The ground state “0” is maintained by a continuous current
(0.58 A), and the “write” (1 A, 1 s) and “erase” (0 A, 2 s) pulses are implemented to switch
the device between the “0” and “1” states. As a result, unambiguous memory effect can be
observed in the THz transmission diagram at 0.63 THz. The authors also investigated the
multistate memory operation of the metadevice, as shown in Figure 14f. Through tuning
the strength of “write” current pulse, four distinguishing states coded as “00”, “01”, “10”
and “11” could be written into the metadevice.

Compared with the aforementioned memorizer made by pure VO2 film, the coupling
of metamaterial with VO2 pieces results in great improvement in practicability. It not only
enhances the contrast between different states but also makes a significant simplification
of the memory operations, presenting great potential for memory-related applications in
the THz regime.
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device based on VO2 film. A continuous-wave laser as a read channel provides a constant bias power P0 to maintain
the temperature of VO2 film at the percolation threshold of IMT, and shutting off P0 means the “erase” operation. The
states of VO2 film are written by fs laser (1560 nm) and detected by transmitted THz waves (220 GHz) in real time. (b)
Time-dependent 2-bit memory effect of VO2 written by three fs pulses. The bias pump power is P0 = 1.1 W, the writing
pulse fluence is 5.5 mJ/cm2, and the pulse duration is 100 fs. The exponential fit (thick black curve) to the data after
the “erase” execution demonstrates the thermal equilibrium time of ~3 s, according to the 10–90% criterion. Reproduced
from [33], with permission from Optical Society of America 2020. (c) Schematic of the electric filed controlled meta-device
fabricated by VO2 hybrid asymmetric split-ring resonators (VO2-ASRR) and a single unit of the VO2-ASRR. (d) Frequency
spectrum as a function of applied current. (e) Timing diagram of the binary programming process. Applied current
pulses: 1 A (1 s) for “write,” 0 A (2 s) for “erase,” 0.58 A for “read,” (continuous bias). The state of the metadevice was
detected by the THz transmission at 0.63 THz. (f) Timing diagram of the 2-bit programing process. Applied current
pulses: 0–0.58 (“00”)—0.6–0.58 (“01”)—0–0.66–0.58 (“10”)—0–0.9–0.58 A (“11”). Four states denoted as “00,” “01,” ”10” and
“11” can be distinguished by the THz transmission amplitude at 0.63 THz. Reproduced from [35], with permission from
WILEY-VCH 2018.

6. Summary and Outlook

All of the VO2-based dynamically tuneable THz devices encompass three fundamental
elements: The intrinsic properties of VO2 film, external stimuli for active control of IMT
and device structure which decides the functionality and operating frequency.

The first element, the intrinsic properties of VO2 film, greatly affects the modulation
depth and energy consumption of the device. Generally, VO2 film exhibits reversible IMT
behaviour in response to external stimuli, yielding remarkable changes in THz conductivity.
This modulation phenomenon is closely related to the chemical and crystalline structure of
VO2 film and can be optimized in the deposition process, with, for example, ion doping
and epitaxial growth. One of the related hot issues is to reduce the energy consumption
of the IMT, namely, lowering the phase-change temperature to RT or reducing the stimuli
threshold triggering the IMT. If room-temperature and low-energy-consumption control of
the IMT is possible, it may lead to significant enhancement of device stability and response
speed. In view of this, the vdW-epitaxial VO2 film proposed by Liang et al. is of vital
importance, since it reduces the laser fluence threshold of IMT to 0.21 mJ/cm2 (~2.1 mW)
at RT, a value only ~5% of the normal films, and is sufficiently low for practical application.
Additionally, the ultra-thin mica substrate (13 um) applied in this study avoids disruptions
from the Fabry–Pérot effect and helps to reduce the insertion loss of the whole film device,
both of which are fascinating features for THz optics.
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The second element, external stimuli, determines the responding speed of the device.
VO2 can respond to various stimuli, but only a few of them can be coupled with THz
devices, including thermal, optical (CW laser, fs laser and intense THz field) and electrical
excitations or any combination of them. The very different excitation approaches act
initially on the VO2 in very different ways, but most of them, except for the fs pump laser,
eventually produce a thermal effect that gradually accumulates to push the IMT thermally.
Since it takes time for thermal accumulation, the responding time of such approaches varies
over a large range of timescales, from picoseconds to several minutes, depending on the
strength and duration of excitation, as well as the initial temperature and thermal mass of
the VO2 component. In the case of nonthermal IMT triggered by fs laser, ultrafast photo-
response originating from direct photoexcitation effect has been demonstrated, and the
responding time evolves to hundreds of femtoseconds to several picoseconds, which makes
VO2 a promising material to fabricate high-speed THz modulators. Figure 15 illustrates an
overview of the VO2-based THz devices regarding the responding time, clearly showing
the timescale and underlying mechanism of different modulation approaches.

The last element, the structural design, determines the functionality and operating
frequency of the device. The simplest structure, composed of a pure VO2 film, can act as
a broadband amplitude modulator, with a modulation depth up to 85%. Other designs
include planar metamaterial fabricated by pure VO2, metal-metamaterial deposited on
VO2 film and VO2 metal hybrid metamaterial. Novel electromagnetic features, such as
frequency selection, phase shifting and polarization converters, can be realized based
on structural design, and such features can be dynamically tuned by applying external
stimuli on the VO2 component. Additionally, optical memory operation based on the
intrinsic hysteresis behaviour of IMT has been demonstrated both in simple VO2 film and
metal-VO2 hybrid metamaterials.
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Figure 15. Overview of the available modulation schemes for VO2-based optical devices in the THz
regime: Modulation approaches based on heating (red arrow), CW laser (yellow arrow), electric field
and intense THz field (green arrow) and pump fs laser (blue arrow), with thermal, photo89thermal,
Joule thermal and direct photoexcitation (nonthermal) mechanism. The range of response time of the
diverse modulation approaches are plotted as red, yellow, green and blue bars with experiment data
presented as black triangles. The data are adapted from [24,33,35,63,65,67,68,89,122].

According to the aforementioned three key elements, we favour three directions of
VO2-based active THz device development: (i) Tuning the IMT properties of VO2, such
as reducing the critical temperature, decreasing the excitation energy for ultrafast IMT
and improving modulation depth; (ii) improving the modulation approach to obtain high-
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speed and high-precision control of IMT; (iii) enhancing functionality, such as developing
intelligent metamaterials with programmable electromagnetic response.

Nowadays, the research of metamaterials is no longer limited to a fixed, static elec-
tromagnetic response. New issues are about tuneable, reconfigurable and programmable
metadevices with greater functionality and applicability [37,38,144–146]. VO2 has shown a
great potential in this new field. Since the IMT of VO2 can be locally triggered by optical and
electrical methods [59], metamaterials with VO2 as key component allow programmatic
control of each unit cell, which is the basis for intelligent THz devices. Such applications
have already been demonstrated in infrared frequency range [147,148] but are still absent
in the THz regime. Meeting this challenge can extend the application scope of tuneable
metamaterial based on VO, and may give rise to next-generation THz devices.
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