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Transgenic macaques would allow to study brain function and diseases. We report that an engineered
adeno-associated virus serotype 9 variant (scAAV9) injected intravenously in newborn rhesus macaques
results in efficient, exclusively-neuronal and widespread transduction of the brain. The present data pave the
way to large-scale genetic modelling of brain diseases in the rhesus macaque.

he initial advancements in transgenic technology have led to the generation of the first transgenic monkey in
2001" and a transgenic monkey model of Huntington’s disease in 2008> These breakthroughs have opened
the door to genetic manipulation in nonhuman primates but the technical difficulties have prevented this
long awaited technological advancement for the study of brain function to be further developed®. The recent
development of the viral-mediated delivery of genes has led to the identification of viruses capable of transducing
developing cells and neurons*. Adeno-associated virus (AAV) vectors can mediate long-term stable transduc-
tion in various target tissues. Among those, AAV serotype 9 (AAV9) vectors possess unique characteristics with
notably a striking ability to cross the blood brain barrier®. After intraparenchymal injection, AAV9 is more readily
transported within the brain compared with other AAV serotypes®. Given the unique properties of AAV9S, this
serotype was tested for delivering genes to the central nervous system after intravenous injection in many species.
When i.v. injected in adult mice, transduction occurs predominantly in astrocytes in both spinal cord and brain.
However, when injected to neonate mice or newborn monkeys, a single intravascular AAV9 injection led to
extensive transduction (60%) in dorsal root ganglia, motor neurons and in neurons in most mice brain regions*’.
However, not a single study described precisely the brain tropism of AAV9 vectors administrated intravenously in
non-human primates. AAV9 therapy has recently lead to proof-of-concept preclinical rescues in mouse models
(i) of spinal muscular atrophy disease®” and (ii) of a lysosomal storage disorder'®. Ability to transfect brain
decreases over time, being high at P1 and decreasing dramatically by P10 already® suggesting a developmental
period in which AAV9 transfection has maximal efficacy.
We here investigated if transduction in the brain cells can be achieved using an engineered AAV9 vector in the
rhesus macaque (macaca mulatta), the species of choice in neuroscience in general and in biological psychiatry in
particular.

Results

GFP expression was found in all analyzed regions, including the cortex, striatum, globus pallidus, thalamus,
midbrain, hippocampus and cerebellum (Fig. 1B-J). GFP-positive cells were more numerous in regions known to
undergo profound post-natal maturation, such as cortex, hippocampus and Purkinje cells in the cerebellum
(Fig. 2A). A quantitative unbiased stereological evaluation of the number of GFP-transduced cell confirmed these
observations (Fig. 2B). Even the newborn monkey injected with the lowest viral titer exhibited an efficient
neuronal transduction (Fig. 2B). Posited tropism towards neurons among brain cells was confirmed using triple
staining for NeuN to label neurons, DAPI to label cell nuclei, and anti-GFP antibodies to label transduced-cells.
All GFP-positive cells were NeuN-positive and no GFP-positive glial cell was observed, thereby validating the
neuronal specificity of transduction in macaques injected at post-natal day 1 (Fig. 2C). Finally, to evaluate
distribution to other organs, sections of the liver, the heart, the muscles, the lungs and the kidneys were analyzed
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Figure 1| Neuronal cell-type specificity and distribution resulting from AAVY injections at day 1 post-natal. (A) Rostro-caudal representation of
observed sections after intravenous injection of AAV9-CMVie-GFP. Color code relates highlighted areas to color frames. (B-D) Extensive GFP expression
within cortical neurons was observed (B), including layer II/III pyramidal cell (inset: cortical spiny stellate cell are star-shaped) (C) and layer IV spiny
stellate cell (D). Neurons were easily detected in the striatum (left: medium spiny neurons; right: small striatal neurons) (E), globus pallidus (F), thalamus
(G), substantia nigra (H), hippocampus (I) and cerebellum (J). Scale bars, 100pm (B); 20um (C-J).
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Figure 2 | Broad transduction of the nervous system and peripheral organs resulting from AAV9 injections at day 1 post-natal. (A) Rostro-caudal
representation of GFP-transduced neurons after intravenous injection of AAV9-CMVie-GFP. Red dots relate GFP-positive cells. (B) Quantitative
analysis of GFP-positive cells in all analyzed regions, including the cortex, caudate, putamen, globus pallidus internal and external, subthalamic nucleus
and substantia nigra in four newborn monkeys. (C) To confirm transduction of neurons, sections of cortex from newborn injected monkeys were
immunofluorescently labeled with anti-GFP antibody (green), neuron-specific NeuN antibody (red). Merging of the signals produced colocalization,
thus confirming neuronal transduction. (D) Representative images from different organs from C4 monkey (Top left: heart; Top right: liver; Bottom Left:
lung; Bottom right: kidney). Scale bars, 2000 pm (A); 20 pm (C); 80 pm (D); 20 pum (inset D).
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for GFP immunopositivity. Neonatal administration of AAV9
resulted in few GFP-positive cells within heart, liver, lungs and kid-
neys (Fig. 2D) while no GFP signal was detected in the muscles.

Discussion

Althogether, our results show that intravenous delivery of AAV9-
GFP at a dose range of 10'>-10™* genome copies in one day-old
rhesus macaque results in widespread neuronal targeting with the
maximum transduction efficiency at a viral titer of 10" vg/ml.
Transduction of neurons was observed in most regions of the
brain with some heterogeneity, the post-nataly developing struc-
tures like the cortex and hippocampus being more transfected
than deep brain structures such as the midbrain. Although
AAV9 appears a robust viral vector for gene transfer to the brain,
it would provide a promising research tool for delivering genes in
nonhuman primate only if we could reach all structures with
comparable efficiency, the specificity of expression being driven
by structure-specific promoters (i.e. tyrosine hydroxylase for
dopaminergic neurons, parvalbumin for GABAergic interneurons,
etc.). Recent developments of in utero gene delivery technologies
has clearly demonstrated that a near total transfection of neurons
is possible at embryonic stages compatible with the development
of the targeted area''™'” and such route needs to be now consid-
ered for non-human primates. Additionally, other viral engineer-
ing approaches can be used to further enhance the transduction
capabilities of AAV in this context”'. The present data thus
pave the way to the genetic modeling of brain diseases in the
rhesus macaque by targeting mutant gene with tissue-specific
gene expression, offering unique opportunities for modeling
human disease onset, progression and for validating therapeutic
solutions.

Methods

Animals were housed in social cages with their mothers under controlled conditions
of humidity, temperature, and light (12-h light/12-h dark cycle, lights on at 8.00 am);
food and water were available ad libitum. Experiments were carried out in accordance
with European Communities Council Directive of 3 June 2010 (2010/6106/EU) for
care of laboratory animals in an AAALAC-accredited facility following acceptance of
study design by the Institute of Lab Animal Science (Chinese Academy of Science,
Beijing, China) IACUC. One day-old male rhesus macaques received intravenous
injections of an AAV9 vector that expresses green fluorescent protein (GFP) under
the control of cytomegalovirus immediate early synapsin intron promoter (AAV9-
CMVie-GFP). Four newborn male monkeys (C1 to C4) were injected with 1 ml with
4 different AAV9 viral titers (C1: 4.00X 10" vg/ml [1.33X 10" particles/g of body
weight]; C2: 9.61X10" vg/ml [3.2X 10" particles/g of body weight];

C3:2.65X10" vg/ml [8.83X10" particles/g of body weight]; C4: 2.85X10" vg/ml
[9.5X10° particles/g of body weight]). Animals were longitudinally followed and
euthanized 2 months post-injection’®. GFP immunohistochemistry was performed
along the rostro-caudal axis of the brain serially cut on a cryostat (50pm-thick;

Fig. 1A)". Double immunostaining procedure against GFP and NeuN were per-
formed sequentially. Briefly, 50pum free floating sections were first incubated in a
mouse NeuN antibody (Millipore, MAB377) diluted to 1/500 in PBS-BSA (1/50)-
Triton 0.3% O/N at room temperature (RT). After several washes, NeuN signal was
revealed by incubating a goat anti-mouse antibody conjugated to Alexa568
(Invitrogen, A11004) for 1 hr at RT. Sections were then incubated with rabbit anti-
GFP antibody (Invitrogen, A11122) diluted to 1/1000 in PBS-BSA (1/50)-Triton 0.3%
for 2 hr at 37°C, washed with PBS and revealed with donkey anti-rabbit antibody
conjugated to Alexa 488 (Invitrogen, A21206) for 1 hr at RT. DAPI staining was
performed using Hoechst dye (Invitrogen, H3569) at 6 pig/mL in PBS for 2 min.
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