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Simple Summary: Only 20–50% of patients with triple negative breast cancer achieve a pathological
complete response from neoadjuvant chemotherapy, a strong indicator of patient survival. Therefore,
there is an urgent need for a reliable predictive model of the patient’s pathological complete response
prior to actual treatment. The purpose of this study was to develop such a model based on random
forest recursive feature elimination and to benchmark the performance of the proposed model
against existing predictive models. Our study suggests that an 86-gene-based random forest model
associated to DNA repair and cell cycle mechanisms can provide reliable predictions of neoadjuvant
chemotherapy response in patients with triple negative breast cancer.

Abstract: Neoadjuvant chemotherapy (NAC) response is an important indicator of patient survival
in triple negative breast cancer (TNBC), but predicting chemosensitivity remains a challenge in
clinical practice. We developed an 86-gene-based random forest (RF) classifier capable of predicting
neoadjuvant chemotherapy response (pathological Complete Response (pCR) or Residual Disease
(RD)) in TNBC patients. The performance of pCR classification of the proposed model was evaluated
by Receiver Operating Characteristic (ROC) curve and Precision Recall (PR) curve. The AUROC and
AUPRC of the proposed model on the test set were 0.891 and 0.829, respectively. At a predefined
specificity (>90%), the proposed model shows a superior sensitivity compared to the best performing
reported NAC response prediction model (69.2% vs. 36.9%). Moreover, the predicted pCR status by
the model well explains the distance recurrence free survival (DRFS) of TNBC patients. In addition,
the pCR probabilities of the proposed model using the expression profiles of the CCLE TNBC cell
lines show a high Spearman rank correlation with cyclophosphamide sensitivity in the TNBC cell
lines (SRCC = 0.697, p-value= 0.031). Associations between the 86 genes and DNA repair/cell
cycle mechanisms were provided through function enrichment analysis. Our study suggests that
the random forest-based prediction model provides a reliable prediction of the clinical response to
neoadjuvant chemotherapy and may explain chemosensitivity in TNBC.

Keywords: neoadjuvant chemotherapy (NAC); triple negative breast cancer (TNBC); machine
learning (ML); random forest (RF); predictive biomarker; pathological complete response (pCR);
residual disease (RD)

1. Introduction

Triple negative breast cancer (TNBC) is a particularly difficult form of breast cancer to
treat because of its rapid growth and high recurrence rate [1]. It accounts for about 15%
of all invasive breast cancers and usually has a high histological grade with a low long
term survival rate [2]. Compared to the successful application of targeted therapies for
other types of breast cancer, targeted therapy for TNBC is difficult due to the lack of major
receptors in breast cancer such as ER/PR/HER2 receptors [3,4]. Several targeted therapies
for TNBC patients have recently been introduced [5–7], but due to the limited applicability
of these therapies [8], cytotoxic chemotherapy remains the mainstay of treatment [9].
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Due to the aggressive tumor growth in TNBC, NeoAdjuvant Chemotherapy (NAC),
which refers to preoperative chemotherapy, is often considered as a first-line treatment for
TNBC patients. The main treatment goal of NAC is to achieve a pathological complete
response (pCR) and pCR is defined as the complete disappearance of all invasive carcinoma
cells in the breast and axillary lymph nodes, which is assessed pathologically in the resected
tissue after neoadjuvant chemotherapy [10]. Patients who do not achieve pCR are refer to
as having Residual Disease (RD).

The pCR by NAC has been demonstrated to be a strong prognostic factor for TNBC
patients [11–13]. Therefore, pCR by NAC generally is considered as an appropriate surro-
gate endpoint for TNBC patients [12] and clinical studies have shown improved survival
in TNBC patients who achieved pCR by NAC [14]. Unfortunately, not all patients receiving
NAC could achieve pCR and in fact, only about 20–50% of patients with TNBC achieve pCR
by NAC [11,12,14,15]. In other words, some patients are experiencing unnecessary side
effects that can lead to loss of alternative treatment due to an inadequate and ineffective
treatment. Therefore, there is an urgent need for a prediction model of the NAC response
in TNBC.

Several previous studies have proposed gene expression-based predictive models
to address this issue [16–21]. For example, Liedtke et al. reported that a high GGI
(Genomic Grade Index) was found to be correlated with increased sensitivity to neoad-
juvant chemotherapy [22]. Hess et al. [23], proposed DLDA30 to predict the pCR of
patients who received preoperative weekly paclitaxel and fluorouracil-doxorubicin-
cyclophosphamide (T/FAC) chemotherapy based on Diagonal Linear Discriminant
Analysis (DLDA). Hatzis et al. [18] proposed a prediction model for the NAC response
by Taxane + Anthracycline based on the Threshold Gradient Directed Regularization
(TGDR) method [24,25]. Masanori Oshi et al. [19], proposed a three-gene-based pre-
dictive biomarker for pCR prediction after NAC in TNBC. The same authors also
proposed a five-gene-based predictive biomarker for pCR prediction after NAC in
ER+/HER2- breast cancer [20]. Fu et al. [21] proposed an immune-associated ge-
nomic signature to predict pCR after Neoadjuvant paclitaxel and anthracycline based
chemotherapy in breast cancer. Fournier et al. [26] proposed a two-step classification
model based on backward regression general linear modeling (BRGLM). Table 1 sum-
marizes the reported studies about NAC response prediction for TNBC and other types
of breast cancer.

Table 1. Summary of NAC response prediction studies.

Study Abb. Ngene
Target

Population Preprocessing Batch
Correction

Performance
(AUC)

Hess et al., 2006, JCO [23] DLDA30 30 All dChip Not Reported 0.877

Parker et al., 2009, JCO [27] ROR-S 52 All Not Reported Not Reported 0.781

Liedtke et al., 2009, JCO [22] GGI 97 All Not Reported Not Reported 0.735

Hatzis et al., 2011,
JAMA [18] Hatzis 206 HER2- MAS5 Not Reported Not Reported

Fournier et al., 2019,
Sci. Rep. [26] BA100 32 TNBC MAS5 ComBat,

QtNorm Not Reported

Masanori et al., 2021,
Cancers [19] 3 gene 3 TNBC Not Reported Not Reported 0.735

Masanori et al., 2021, Am. J.
Cancer Res. [20] 5 gene 5 ER+/HER2- Not Reported Not Reported 0.813

Changfang Fu et al., 2021,
Front. Immunol. [21] Immune gene 25 All RMA ComBat 0.956
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It is noteworthy that most of the reported studies are based on a combination of
feature selection and relatively simple models such as Multivariate Logistic Regression
(MLR) or Diagonalized Linear Discriminant Analysis (DLDA). However, because there is
no clear correlation between the expression of a gene and a NAC response vector (mean
PCC = −0.038 ± 0.103), linear models may not be the appropriate choice for classifying
the NAC response [28]. In addition, some studies have utilized prior marker information
to restrict the search space of optimal markersets, but these studies only utilized the
associated genes of predefined mechanisms such as the immune response [29] and the
E2F pathway [19,20], which may not fully represent the mechanisms of the NAC response.
Moreover, there are only two studies specifically targeting TNBC patients in which pCR
prediction by NAC is expected to improve the clinical prognosis.

The Random Forest (RF) is a machine learning model based on an ensemble of decision
trees generated by random feature sets [30]. Because it utilizes nonlinear proximity based
on bagging of random trees, it can classify samples partitioned by nonlinear decision
boundary. It also provides an estimate of the importance of variables in the classification;
therefore, if the user wants to reduce the number of variables, it can guide this process
according to the importance of the variables. Therefore, it is suitable for developing a gene
expression based classification model such as a NAC response prediction model.

To address the aforementioned problems, herein, we propose a novel NAC prediction
model based on random forest (RF). We combined prior knowledge of breast cancer disease
markers collected from various resources such as the literature, disease databases, drug
target databases, and existing marker panels and applied several marker optimization
strategies to develop an 86-gene-based RF model that outperforms the reported NAC
predictive models in TNBC. To verify data specificity, we performed differential expression
analysis and included both prior markers and differentially expressed genes as candidate
markers. In addition, the predicted pCR status by the model well explains the distance
recurrence free survival (DRFS) of TNBC patients. We also found the associations between
the 86 genes and the disease mechanisms of breast cancer such as DNA repair and cell cycle.

There are several issues with reporting a novel NAC response prediction model as
follows. First, it is difficult to objectively compare the performance of the existing model
and the newly proposed model because there is no definite guideline to select a metric
for the performance evaluation. Second, there is no consensus on which model performs
best for a given task, because there are no benchmark studies that provide an objective
assessment of the performance of NAC response prediction models. Third, it is difficult to
replicate the reported studies due to the lack of data and codes used in the reported studies
and insufficient reporting on the model development process. Fourth, it was impossible to
compare the performance of our model with similarly constructed models in the literature
because we could not find any random forest model proposed to predict the NAC response
in breast cancer. Therefore, here, we implemented all listed NAC response prediction
models in Table 1 and performed a comparative analysis on the same test set.

2. Materials and Methods
2.1. Collection of Datasets

All gene expression datasets were collected from the GEO database. Table 2 summa-
rizes the number of patients and NAC regimens for each dataset used in this study. As
shown in the Table 2, T/FAC (Taxol + Fluorouracil, Anthracycline and cyclophosphamide)
and T/FEC (Taxol + Fluorouracil, Epirubicin and cyclophosphamide) were the most used
NAC regimens. Here, taxol stands for paclitaxel or docetaxel, and anthracycline stands
for doxorubicin or epirubicin, which can be substituted for each other in chemotherapy
regimens. The GSE32646 data set contains only patients who received the T/FEC regimen,
and all other data sets contain more patients who received the T/FAC regimen. All data
included different types of breast cancer, so patients were selected based on receptor status
(ER-, PR-, and HER2-). Because GSE25066 had the highest number of TNBC patients, we
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considered this dataset as the development dataset and the three other datasets as the
independent validation datasets (GSE20271, GSE20194, and GSE32646).

Table 2. Summary of gene expression datasets used in this study.

Study GSE GPL Platform NAC Regimen pCR RD Total

Hatzis et al., 2011, JAMA [18] GSE25066 GPL96 Affymetrix HG
U133A

T/FAC (75%),
T/FEC (18%),

other (7%)
57 113 170

Tabchy A et al., 2010, Clin.
Cancer. Res. [31] GSE20271 GPL96 Affymetrix HG

U133A

T/FAC (36.2%),
T/FEC (27.6%),

FAC (10.3%),
FEC (17.2%),
other (1.70%)

13 45 58

Shi L et al., 2010,
Nat. Biotech. [32] GSE20194 GPL96 Affymetrix HG

U133A

T/FAC (67.6%),
T/FEC (16.9%),

FAC (4.23%),
FEC (1.41%),
other (9.87%)

25 46 71

Miyake T et al., 2012, Cancer
Sci. [33] GSE32646 GPL570 Affymetrix HG

U133 Plus 2.0 T/FEC (100%) 10 16 26

2.2. Preprocessing

Raw intensity files from the Affymetrix HG U133A or HG U133 Plus 2.0 platforms
were processed using the mas5 function in the affy R package [34] to normalize to an
average array intensity of 600 and to generate expression values of the probe set level as in
Hatzis et al. [18]. Some gene transcripts are recognized as more than one probe set because
probe sets represent a set of (perfect match and mismatch) pairs of probes for multiple
regions of a single gene transcript sequence. To avoid confusion, we used the average
intensity of each probe set that maps to the same gene.

2.3. Collection of Prior Breast Cancer Markers

The statistical significance of certain markers in development data sets may not be
reproduced due to their low association with breast cancer. It has been reported that prior
knowledge approaches can improve the robustness and true biological relevance of selected
markers in gene expression datasets [35]. Therefore, in this study, we not only utilized
data specific markers such as differentially expressed genes but also included markers
associated with breast cancer as candidate markers. To acquire such a prior knowledge
markers, we collected breast cancer marker information from the existing literature [36–42],
databases [43–46], and gene expression marker panels [23,27,47–53]. We first gathered
information on disease genes primarily listed in existing breast cancer reviews through
PubMed and google searches. We selected seven papers that provide comprehensive sum-
maries of disease genes associated with breast cancer, as shown in Table 3. Second, we
considered the disease gene database DisGeNet [43] and three drug databases (Drug Cen-
tral [44], Drug Bank [45] and DGIDB [46]) to collect genes and drug targets associated with
breast cancer. We also considered genes in existing breast cancer prognostic/responsive
marker panels. We considered genes in nine gene expression marker panels including On-
cotype Dx [47], Mammaprint [48], Prosigna [27], Endopredict [49], Breast Cancer Index [50],
CureBest [51], GenesWellBCT [52], Genomic Grade Index (GGI) [53], and DLDA30 [23]. The
gene symbols collected from all resources are standardized by HGNC Multi Symbol checker
(https://www.genenames.org/tools/multi-symbol-checker/, accessed on 15 November
2021) and mapped to NCBI Gene IDs (https://www.ncbi.nlm.nih.gov/gene, accessed on
15 November 2021). In summary, we collected 1079 breast cancer marker genes through
this process.

https://www.genenames.org/tools/multi-symbol-checker/
https://www.ncbi.nlm.nih.gov/gene
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Table 3. Summary of existing publications providing breast cancer marker genes.

Year Authors Title Journal References

2019 Nadia Harbeck et al. Breast Cancer Nat. Rev. Dis. Primers PMID: 31548545 [36]

2019 Francois Bertucci et al. Genomic Characterization of
Metastatic Breast Cancers Nature PMID: 31118521 [37]

2018 Francisco Sanchez-Vega et al. Oncogenic Signaling Pathways in
The Cancer Genome Atlas Cell PMID: 29625050 [38]

2018 Chandra P. Leo et al. Breast Cancer Drug Approvals by
the US FDA From 1949 to 2018 NRDD PMID: 31907423 [39]

2016 Xiaofeng Dai et al. Cancer Hallmarks, Biomarkers and
Breast Cancer Molecular Subtypes J. Cancer PMID: 27390604 [40]

2016 Serena Nik-Zainal et al.
Landscape of Somatic Mutations in
560 Breast Cancer Whole-Genome

Sequences
Nature PMID: 27135926 [41]

2012 Cancer Genome Atlas
Network

Comprehensive Molecular Portraits
of Human Breast Tumours Nature PMID: 23000897 [42]

2.4. Differential Expression Analysis

We performed a differential expression analysis using the development dataset
(GSE25066) to find the most discriminating genes between pCR vs. RD patients. To
avoid false positives due to the relatively small sample number and the skewness of
individual gene expression levels in the training dataset, we performed bootstrap t-test
using boot.t.test function in the MKinfer R package [54] . We utilized bootstrapped t-test
under unequal variance proposed by Janssen et al. [55], and the number of bootstrap
replicates was 9999. We adjusted the p-value with the Benjamini-Hotchoberg (BH)
method [56] and selected genes with a FDR < 0.05 as differentially expressed genes.
To avoid randomness of the bootstrap procedure, we iterated the process 10 times and
selected genes that showed FDR < 0.05 in at least one trial.

2.5. Model Training

Because the number of markers is of practical importance for developing cost effective
marker panels, all developed marker panels have a relatively small number of genes
compared to the number of genes available in the microarray dataset. Therefore, as
discussed earlier, we limited the entire search space to the union of prior maker genes
(total 1079) and differentially expressed genes (total 52). For Recursive Feature Elimination
(RFE), an N of 1000 times was used to derive an optimal set of genes for the RF model (See
Supplementary Figure S1). We used 70% of the development dataset as the training set
to optimize the marker set. For each trial, we partitioned the training dataset into 3 equal
sized folds and trained the RF classifier using 2 folds of the data along with all genes
derived from the union of the prior marker genes and the differentially expressed genes.
We evaluated the performance of the trained classifier on the remaining fold and evaluated
the significance of the feature by the mean decrease of accuracy. After three training and
test runs, we derived feature ranks for all genes based on the variable importance and
removed the least significant genes from the list of genes. We performed this procedure
from the maximum number of genes (1124) to 2 genes and reported the best performing
subset. To reduce the search space, here, we searched for the best subset with 10 equally
spaced grids, which iteratively search for the best subset when the number of genes in the
optimal subset exceeds 100. That is, the trial ends when the number of genes in the optimal
subset is less than 100. We repeated this process (N = 1000 times) to obtain candidate
models. All models were evaluated on the rest of the test set in the development dataset
to find the best performing marker set and RF model. However, because the best model
on the Affymetrix U133A dataset did not perform well on the Affymetrix U133 PLUS 2.0
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dataset (GSE32646), we considered 30% of the GSE32646 data set as an additional test set to
find a robust model for both platforms. To minimize the effect of imbalance in the pCR vs.
RD samples, we used Synthetic Minority Oversampling TEchnique (SMOTE) [57] based on
the SMOTE function in the DMwR R package [58]. The accuracy was used as a metric to
optimize the RF model. In this process, the markers showing the highest accuracy for the
test dataset were selected as the marker set for the final model. We used the rfe function in
the Caret [59] R package.

2.6. Selection of an Optimal Threshold

Due to the unequal misclassification cost of the pCR prediction, a naive threshold that
applies equal probabilities to both pCR and RD may not be an appropriate choice for a pCR
prediction model [60]. Because of the unequal misclassification cost, it is recommended to
control the type I error (FPR) below a certain level (α) [61]. Here, positive means the desired
outcome, i.e., pCR. In other words, when misclassifying RD patients as pCR patients,
the cost of the misclassification is higher than vice versa because alternative treatment
options for RD patients may be lost. On the other hand, even if pCR is misclassified as
RD, the risk of misclassification can be minimized by subsequently reassessing the patient
for appropriate treatment options. We therefore selected an optimal threshold based on
a predefined false positive rate, α, of ≤10%, which is comparable to an ultrasound (US)
image-based pCR prediction [62].

2.7. Model Validation

As previously discussed, we used three independent test data sets to validate the
proposed RF model. Various binary classification performance metrics were used to
evaluate the test performance of the proposed model including Accuracy (ACC), Balanced
Accuracy (BACC), Sensitivity (TPR), Specificity (TNR), Precision (PPV), Negative Predictive
Value (NPV), F1 score, Metthew Correlation Coefficient (MCC), and Yoden’s Index. Because
we predefined α ≤ 10%, the specificity or TNR of the model was about 90%. We also
evaluated the AUROC and AUPRC of the proposed model for each test data set and
visualized the ROC and PR curves.

2.8. Comparative Analysis

We performed comparative analysis of the proposed model with existing NAC re-
sponse prediction models. We considered ROR-S [27], GGI [53], DLDA30 [23], Hatzis [18],
BA100 [26], three-gene [19], five-gene [20], and Immune associated signatures [21] as
comparable models for the NAC response prediction, as discussed earlier. To derive the
ROR-S and GGI score, we used the ggi and rorS function in the genefu R package [63].
For the DLDA30 score, we reimplemented the DLDA30 score function available at the
author’s web site (http://bioinformatics.mdanderson.org/pubdata.html, accessed on 15
November 2021). For the Hatzis model, we used adaptive LASSO based on the genes
of the NAC response for ER-breast cancer patients proposed by the authors [18] because
model coefficients and a training algorithm (TGDR) were not available. We newly imple-
mented the BA100 [26], three-gene [19], five-gene [20], and immune associated signature
[21] models as described in the original papers. Because the BA100 uses a two step classi-
fier, we evaluated the performance of both classifiers separately. We compared the ROC
and PR curves, confusion matrices with prespecified FPR and performance metrics of the
binary classification.

2.9. Survival Analysis

A survival analysis was performed to determine if the proposed model could also
predict Distant Recurrence Free Survival (DRFS) in patients receiving NAC. Since only one
dataset (GSE25066) provides survival information, we investigated whether the predicted
pCR and RD classes had differential survival curves in the training and test datasets. We
used the survfit function from the survminer R package [64] to fit the survival curves of

http://bioinformatics.mdanderson.org/pubdata.html
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the pCR versus RD on the training and test sets and visualized the survival curves with
the ggsurvplot function in the same package. The statistical significance of the survival
difference was calculated by log-rank test.

2.10. Chemosensitivity Analysis

Some projects, such as GDSC [65], CCLE [66], CTRP [67], and PRISM [68] provide
TNBC cell line sensitivity to drugs used for T/FAC- or T/FEC-based NAC, i.e., Paclitaxel,
Docetaxel, 5-Fluorouracil, Doxorubicin, Epirubicin, and Cyclophosphamide [9]. Because
the GDSC project provides the most complete set of sensitivity observations for TNBC cell
lines, GDSC profiled cell line sensitivity (AUC of the dose response curves) data were used
to investigate the relationship between the pCR probability of the proposed model and the
chemosensitivity of TNBC cell lines. To obtain a list of TNBC cell lines, we referred to the
study of Chavez et al [69]. Here, we investigated the Spearman rank correlation between
the pCR probability and the sensitivity of the TNBC cell lines to these drugs (1 − Area
Under the dose response curve, 1 − AUC). CCLE microarray data were preprocessed in
the same manner as described in Section 2.2 to obtain the pCR scores of the TNBC cell
lines. Among 27 TNBC cell lines listed by [69], 16 cell lines are available in the CCLE
dataset (BT20, BT549, Cal51, HCC38, HCC1143, HCC1187, HCC1395, HCC1599, HCC1806,
HCC1937, HCC2157, Hs578T, MDA-MB-157, MDA-MB-231, MDA-MB-436, and MDA-MB-
468). Some drug responses for a particular cell line could be missing; thus, the Spearman’s
correlation was calculated by a different number of data points for each drug. For example,
only 10 cell lines have a cyclophosphamide drug response, so we calculated the correlation
between the pCR probability and drug response from these 10 TNBC cell lines.

2.11. Function Enrichment Analysis

To investigate the association between the predictors of our model and cellular func-
tion, we performed a functional enrichment analysis [70] based on the Fisher exact test
in our in-house module database. Briefly, we collected known gene sets from Gene On-
tology [71], MSigDB [72], and Enrichr [73] databases. After removing ambiguous and
redundant gene collections from these databases, we built a gene module database of
86,769 unique sets of genes with 29,107 unique genes. An ambiguous gene set here refers to
a set of genes that have less direct significance in cellular functions, such as chromosomal
location, genome browser PWM, NIH grant related gene sets, etc. [73].

2.12. Visualize Error Matrix and Score Distributions

To understand the performance improvement in the proposed 86-gene-based RF
model compared to the 8 published NAC response prediction models, we performed
several analyses as follows. First, we visualized the sample error matrix according to the
prediction of the published models and the proposed model. Second, we visualized the
score distribution of the published models and the proposed model to see whether the
proposed model has better calibration. Because the score range of the published models
differ from each other, we performed min-max normalization as follows:

ScoreNorm,i =
Scorei − min(Scorei)

max(Scorei)− min(Scorei)

The discriminative power of each model was assessed by t-test.

3. Results
3.1. Patient Characteristics

Table 4 shows the characteristics of the patients with TNBC in the development and
independent validation datasets. There were no statistically significant differences between
the pCR and RD patients for all datasets. Two datasets (GSE20271 and GSE20194) were
missing the tumor stage information, and one dataset (GSE32646) was missing the N



Cancers 2022, 14, 881 8 of 22

stage. Stages T2, N0, and Grade 3 had the highest prevalence in the TNBC population in
all datasets.

Table 4. Patient characteristics of the development (1 Dataset—GSE25066) and Validation Datasets
(3 Datasets—GSE20271, GSE20194, GSE32646).

Characteristic GSE25066 GSE20271 GSE20194 GSE32646

pCR RD p-
Value pCR RD p-

Value pCR RD p-
Value pCR RD p-

Value

N 57 113 13 45 25 46 10 16

Age (Med, IQR) 48 (41–53) 50 (40–60) 0.1 53 (49–58) 51 (40–58) 0.47 48 (44–53) 51 (42–61) 0.17 60 (54–67) 56 (43–63) 0.46

T Stage 0.28 0.42 0.95 0.73

T1 3 (5%) 5 (4%) 0 (0%) 1 (2%) 2 (8%) 4 (9%) 1 (10%) 0 (0%)

T2 32 (56%) 47 (42%) 8 (62%) 15 (33%) 13 (52%) 20 (43%) 8 (80%) 12 (75%)

T3 15 (26%) 38 (34%) 2 (15%) 13 (29%) 5 (20%) 9 (20%) 1 (10%) 3 (19%)

T4 7 (12%) 23 (20%) 3 (23%) 16 (36%) 5 (20%) 12 (26%) 0 (0%) 1 (6%)

Missing 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (2%)

N Stage 0.86 0.61 0.32 NA

N0 15 (26%) 26 (23%) 4 (31%) 14 (31%) 2 (8%) 9 (20%)

N1 26 (46%) 52 (46%) 7 (54%) 16 (36%) 16 (64%) 18 (39%)

N2 8 (14%) 21 (19%) 2 (15%) 12 (27%) 3 (12%) 8 (17%)

N3 8 (14%) 14 (12%) 0 (0%) 3 (7%) 3 (12%) 7 (15%)

Missing 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (4%) 4 (9%)

Grade 0.34 1 0.19 0.32

G1 0 (0%) 1 (1%) 0 (0%) 1 (2%) 0 (0%) 0 (0%) 0 (0%) 1 (6%)

G2 4 (7%) 16 (14%) 2 (15%) 6 (13%) 2 (8%) 9 (20%) 4 (40%) 10 (62%)

G3 48 (84%) 86 (76%) 9 (69%) 26 (58%) 22 (88%) 31 (67%) 6 (60%) 5 (31%)

Missing 5 (9%) 10 (9%) 2 (15%) 12 (27%) 1 (4%) 6 (13%) 0 (0%) 0 (0%)

Tumor Stage 0.79 NA NA 0.54

I 1 (2%) 2 (2%) 0 (0%) 0 (0%)

IIA 10 (18%) 15 (13%) 1 (10%) 4 (25%)

IIB 20 (35%) 34 (30%) 8 (80%) 8 (50%)

IIIA 11 (19%) 32 (28%) 1 (10%) 3 (19%)

IIIB 10 (18%) 21 (19%) 0 (0%) 1 (6%)

IIIC 5 (9%) 7 (6%) 0 (0%) 0 (0%)

Inflammatory 0 (0%) 2 (2%) 0 (0%) 0 (0%)

pCR: pathlogical Complete Response, RD: Residual Disease.

3.2. Differential Expression Analysis

As previously discussed, the bootstrap t-test was repeated 10 times to minimize the
randomness of the bootstrap procedure. A gene with a FDR ≤ 0.05 in at least one trial
was called a differentially expressed gene (DEG). Figure 1 shows a volcano plot of the
differentially expressed genes (DEGs) in the development dataset (GSE25066). We found
23 up regulated genes (HAT1, TFG, ABT1, PDCL3, ILF2, TMEM14B, DEK, PDCL3P4,
SEC13, HACD1, MCM3, RANBP6, ITGA6, NOL7, FBXO16, SMARCA2, ZNF395, FN3KRP,
DCTN3, TMEM258, NEU1, MDH1, and XRCC5) and 29 down regulated genes (JCAD,
ZNF467, ATF5, DNAI4, GLI3, PTPN1, ESR1, PRKACA, CCND1, RIPOR1, SEZ6L, METRN,
LRRC15, PTGS1, HGH1, SLC43A1, EXD2, GREM1, NCR1, PARM1, MAST4, CTAGE11P,
IMPG2, CTTN, MANBA, CSRNP2, OLFML2B, PDE10A, and BNC2). Table 5 summarizes
the differentially expressed genes (DEGs) in the development dataset. The column count
indicates how many times a gene was called a DEG in the 10 trials. The Fold Change (FC)
and False Discovery Rate (FDR) were averaged from 10 trials and placed in the FC and
FDR columns of the table. The number of common genes between the prior marker gene
and DEGs was only 7.
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Figure 1. Volcano plot of differentially expressed genes in development dataset (GSE25066). Red: Up
regulated genes, Blue: Down regulated genes, Yellow background: Prior marker genes.

Table 5. Differentially expressed prior marker genes between pCR vs. RD in development dataset
(GSE25066). Bold text indicates prior marker genes.

Symbol NCBI ID Count FC FDR Direction Symbol NCBI ID Count FC FDR Direction

HAT1 8520 10 1.330 0.00 Up LRRC15 131578 3 0.676 5.89 × 10−2 Down

TFG 10342 10 1.288 0.00 Up PTGS1 5742 3 0.816 6.03 × 10−2 Down

JCAD 57608 10 0.701 0.00 Down HGH1 51236 3 0.847 6.05 × 10−2 Down

ZNF467 168544 10 0.740 0.00 Down FBXO16 157574 3 1.447 6.16 × 10−2 Up

ATF5 22809 9 0.795 5.97 × 10−3 Down SLC43A1 8501 3 0.806 6.25 × 10−2 Down

ABT1 29777 9 1.636 5.97 × 10−3 Up EXD2 55218 2 0.834 6.47 × 10−2 Down

PDCL3 79031 9 1.361 6.39 × 10−3 Up SMARCA2 6595 2 1.243 6.80 × 10−2 Up

ILF2 3608 9 1.528 6.87 × 10−3 Up GREM1 26585 2 0.681 7.02 × 10−2 Down

DNAI4 79819 9 0.716 8.33 × 10−3 Down NCR1 9437 2 0.768 7.05 × 10−2 Down

TMEM14B 81853 9 1.360 9.48 × 10−3 Up PARM1 25849 2 0.741 7.67 × 10−2 Down

DEK 7913 8 1.450 1.38 × 10−2 Up ZNF395 55893 2 1.317 7.72 × 10−2 Up

PDCL3P4 285359 8 1.361 1.41 × 10−2 Up MAST4 375449 1 0.737 7.90 × 10−2 Down

SEC13 6396 8 1.244 1.45 × 10−2 Up CTAGE11P 647288 1 0.638 7.94 × 10−2 Down

HACD1 9200 7 1.768 2.15 × 10−2 Up IMPG2 50939 1 0.585 8.02 × 10−2 Down

GLI3 2737 6 0.752 3.03 × 10−2 Down FN3KRP 79672 1 1.218 8.72 × 10−2 Up

PTPN1 5770 6 0.838 3.15 × 10−2 Down DCTN3 11258 1 1.225 8.80 × 10−2 Up

MCM3 4172 6 1.274 3.71 × 10−2 Up CTTN 2017 1 0.808 8.93 × 10−2 Down
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Table 5. Cont.

Symbol NCBI ID Count FC FDR Direction Symbol NCBI ID Count FC FDR Direction

RANBP6 26953 5 1.341 4.04 × 10−2 Up TMEM258 746 1 1.205 9.16 × 10−2 Up

ESR1 2099 5 0.728 4.13 × 10−2 Down MANBA 4126 1 0.798 9.35 × 10−2 Down

ITGA6 3655 5 1.740 4.23 × 10−2 Up CSRNP2 81566 1 0.842 9.40 × 10−2 Down

NOL7 51406 4 1.256 4.32 × 10−2 Up NEU1 4758 1 1.245 9.44 × 10−2 Up

PRKACA 5566 4 0.801 4.34 × 10−2 Down OLFML2B 25903 1 0.733 1.04 × 10−1 Down

CCND1 595 4 0.564 4.41 × 10−2 Down MDH1 4190 1 1.203 1.06 × 10−1 Up

RIPOR1 79567 4 0.820 5.07 × 10−2 Down PDE10A 10846 1 0.793 1.06 × 10−1 Down

SEZ6L 23544 4 0.782 5.23 × 10−2 Down XRCC5 7520 1 1.167 1.12 × 10−1 Up

METRN 79006 3 0.513 5.56 × 10−2 Down BNC2 54796 1 0.744 1.15 × 10−1 Down

3.3. Optimal Marker Set and Model Selection by RF-RFE

Random Forest Recursive Feature Elimination (RF-RFE) was used as described in
Section 2.5 to derive the optimal combination of markers for the model training from
1124 genes obtained from the union of prior marker genes (1079 genes) and DEGs (52 genes).
Here, we used 70% of the development dataset (GSE25066) as the training set (40 pCR vs.
80 RD) and 30% of the data as the test set (17 pCR vs. 33 RD). Figure 2 shows the Receiver
Operating Characteristic (ROC) and Precision Recall (PR) curves of the RF-RFE optimized
model for the test set. Figure 2A,B show the ROC and PR curves of all 1000 models. It
can be seen in the figure that all trained models are working well for the test set (mean
BACC = 0.848, AUROC = 0.908 ± 0.019, AUPRC = 0.891 ± 0.026). Figure 2C,D show the
ROC and PR curves of the best model consisting of 86 genes (See Supplementary Table S1).
The AUROC and AUPRC of the best model were 0.918 and 0.902, respectively. Table 6
shows the binary classification performance metrics for the best model at the predefined
threshold of the False Positive Rate (FPR, α ≤ 10%). Here, positive indicates the desired
outcome pCR, and negative indicates the undesired outcome RD.

Figure 2. Receiver Operating Characteristic (ROC) and Precision Recall (PR) curves of RF-RFE
optimized models for test set (GSE25066, 17 pCR, 33 RD); (A) ROC and (B) PR curves for all models,
(C) ROC and (D) PR curves for the best model.
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Table 6. Binary classification performance of the final model for all test sets.

Dataset pCR
(Positive)

RD
(Negative)

TP FP FN TN ACC BACC TPR TNR PPV NPV FNR F1 MCC Yoden’s
Index AUROC AUPRC

GSE25066 17 33 14 3 3 30 0.880 0.866 0.824 0.909 0.909 0.909 0.177 0.824 0.733 0.733 0.918 0.902

GSE20271 13 45 5 4 8 41 0.793 0.648 0.385 0.911 0.911 0.837 0.615 0.455 0.341 0.296 0.779 0.589

GSE20194 25 46 22 4 3 42 0.901 0.897 0.880 0.913 0.913 0.933 0.120 0.863 0.786 0.793 0.967 0.946

GSE32646 10 16 4 1 6 15 0.731 0.669 0.400 0.938 0.938 0.714 0.600 0.533 0.417 0.338 0.747 0.688

Total 65 140 45 13 20 127 0.839 0.800 0.692 0.907 0.907 0.864 0.308 0.732 0.619 0.599 0.891 0.829

TP: True Positive, FP: False Positive, FN: False Negative, TN: True Negative, ACC: Accuracy, BACC: Balanced Accuracy, TPR: True Positive Rate, TNR: True Negative Rate, PPV:
Positive Predictive Value, NPV: Negative Predictive Value, FNR: False Negative Rate, MCC: Mathew Correlation Coefficient, AUROC: Area Under Reciever Operating Characteristic
Curve, AUPRC: Area Under Precision Recall Curve. Here, positive samples refer to the pCR samples.

3.4. Validation of the Final Model Using Independent Test Datasets

The final model was validated on three independent data sets (GSE20271, GSE20194,
and GSE32646). Figure 3 show the ROC and PR curves of the final model. The test AUROC
and AUPRC of the final model for all test samples were 0.891 and 0.829, respectively. The
final model performed better on the GSE20194 dataset compared to the other two datasets
(GSE20271 and GSE32646), achieving an AUROC 0.967 vs. 0.779 and 0.747, respectively.
Table 6 summarizes the binary classification performance of the final model for all test
datasets. The average performance for all samples was as follows: BACC 0.800, TPR 0.692,
PPV 0.907, NPV 0.864, F1 score 0.732, MCC 0.619, and Yoden’s Index 0.600, respectively.
Again, the performance metrics were calculated from a predefined false positive rate (FPR,
α ≤ 10%) threshold.

Figure 3. Receiver Operating Characteristic (ROC) and Precision Recall curve of the best models
for test set. (GSE20271, GSE20194, GSE32646) (A) ROC curve and (B) PR curve for independent
test datasets.

3.5. Comparative Analysis

We compared the performance of the proposed RF model with eight published NAC
response prediction models, as discussed earlier. Figure 4 shows the ROC and PR curves of
proposed RF and all other prediction models. Figure 4A,B show the ROC and PR curves
of the test set in the development dataset (GSE25066) and Figure 4C,D show the ROC
and PR curves of all the test sets in development and three independent test sets. The
proposed model shows a better performance than all the other published models in terms
of the AUROC/AUPRC (0.918/0.902 in development test set and 0.891/0.829 in all the
test sets). Table 7 shows a comparison of the binary classification performance metrics
for the proposed and eight published models at a predefined FPR threshold (α ≤ 10%).
For all the test sets, the proposed model shows a superior performance compared to the
published models.
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Figure 4. Comparison of Receiver Operating Characteristic (ROC) and Precision Recall (PR) curves
of the final model and published NAC prediction models. (A) ROC and (B) PR curves for the test set
in the development dataset (GSE25066). (C) ROC and (D) PR curves for all test sets in four datasets
(development test set + three independent test datasets).

Table 7. Comparison of binary classification performance of best model and published NAC predic-
tion models.

Dataset pCR RD TP FP FN TN ACC BACC TPR TNR PPV NPV FNR F1 MCC Yoden’s
Index AUROC AUPRC Method

Test Set
(GSE25066) 17 33

5 2 12 31 0.720 0.617 0.294 0.939 0.939 0.721 0.706 0.417 0.319 0.234 0.629 0.468 GGI

2 3 15 30 0.640 0.513 0.118 0.909 0.909 0.667 0.882 0.182 0.042 0.027 0.496 0.324 ROR-S

7 2 10 31 0.760 0.676 0.412 0.939 0.939 0.756 0.588 0.539 0.433 0.351 0.815 0.733 Hatzis

7 2 10 31 0.760 0.676 0.412 0.939 0.939 0.756 0.588 0.539 0.433 0.351 0.708 0.561 3 Gene

2 1 15 32 0.680 0.544 0.118 0.970 0.970 0.681 0.882 0.200 0.174 0.087 0.674 0.506 5 Gene

4 3 13 30 0.680 0.572 0.235 0.909 0.909 0.698 0.765 0.333 0.197 0.144 0.681 0.545 Immune

7 2 10 31 0.760 0.676 0.412 0.939 0.939 0.756 0.588 0.539 0.433 0.351 0.793 0.679 BA100
C1

8 2 9 31 0.780 0.705 0.471 0.939 0.939 0.775 0.529 0.593 0.486 0.410 0.759 0.632 BA100
C2

1 3 16 30 0.620 0.484 0.059 0.909 0.909 0.652 0.941 0.095 -0.056 -0.032 0.622 0.391 DLDA30

14 2 3 31 0.900 0.882 0.824 0.939 0.939 0.912 0.177 0.849 0.775 0.763 0.918 0.902 Proposed

All Testsets 65 141

12 14 53 127 0.675 0.543 0.185 0.901 0.901 0.706 0.815 0.264 0.119 0.085 0.606 0.406 GGI

9 14 56 127 0.660 0.520 0.139 0.901 0.901 0.694 0.862 0.205 0.058 0.039 0.545 0.344 ROR-S

24 14 41 127 0.733 0.635 0.369 0.901 0.901 0.756 0.631 0.466 0.323 0.270 0.827 0.634 Hatzis

16 12 49 129 0.704 0.581 0.246 0.915 0.915 0.725 0.754 0.344 0.218 0.161 0.705 0.490 3 Gene

18 13 47 128 0.709 0.592 0.277 0.908 0.908 0.731 0.723 0.375 0.240 0.185 0.691 0.499 5 Gene

9 14 56 127 0.660 0.520 0.139 0.901 0.901 0.694 0.862 0.205 0.058 0.039 0.593 0.381 Immune

19 14 46 127 0.709 0.597 0.292 0.901 0.901 0.734 0.708 0.388 0.245 0.193 0.716 0.500 BA100
C1

26 14 39 127 0.743 0.650 0.400 0.901 0.901 0.765 0.600 0.495 0.353 0.301 0.729 0.567 BA100
C2

15 13 50 128 0.694 0.569 0.231 0.908 0.908 0.719 0.769 0.323 0.188 0.139 0.728 0.490 DLDA30

45 13 20 128 0.840 0.800 0.692 0.908 0.908 0.865 0.308 0.732 0.620 0.600 0.892 0.829 Proposed

TP: True Positive, FP: False Positive, FN: False Negative, TN: True Negative, ACC: Accuracy, BACC: Balanced Accuracy, TPR: True Positive Rate, TNR: True Negative Rate, PPV:
Positive Predictive Value, NPV: Negative Predictive Value, FNR: False Negative Rate, MCC: Mathew Correlation Coefficient, AUROC: Area Under Reciever Operating Characteristic
Curve, AUPRC: Area Under Precision Recall Curve. Here, positive samples refer to the pCR samples.
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3.6. Survival Analysis

We performed survival analysis to determine if the pCR predicted by our model could
predict a longer survival of the patients as the actual pCR. Figure 5 shows the survival
curves for the actual pCR (A) and predicted pCR in (B) all, (C) training set and (D) test
set of the development data (GSE25066). The predicted pCR showed a longer survival
compared to the predicted RD patients in all cases. Although the statistical significance
of the test set was relatively low due to the small sample size, the pCR predicted by the
proposed RF model explains the differences in survival among the TNBC patients well.

Figure 5. Survival analysis of proposed model. (A) pCR label and (B) pCR prediction by proposed
model in development dataset. (C) pCR prediction in the train set and (D) pCR prediction in the test set.

3.7. Relation to Chemosensitivity in TNBC Cell Models

Here, we investigated the relationship between the pCR score of the proposed model
and chemosensitivity of the TNBC cell lines. As shown in Figure 6, the pCR score of
the proposed model shows the highest Spearman rank correlation for cyclophosphamide
sensitivity in the TNBC cell line compared to all other drugs used for the T/FAC or T/FEC
treatment (SRCC = 0.697, p-value = 0.031). A high AUC of the dose response curve means
a low sensitivity of the cells to the target drug; thus, 1 − AUC can be interpreted as the sen-
sitivity score of the drug treated cell line. That is, the proposed model predicts a higher pCR
probability when the TNBC cell line has a high sensitivity score to cyclophosphamide. We
also investigated the SRCC between the pCR score and the cyclophosphamide chemosensi-
tivity calculated by seven published models; however, as shown in Figure 7, none of the
models showed a high positive correlation between the pCR score and the chemosensitivity
of the TNBC cell lines. Because the HS578T cell data point appears to be an outlier, we
recalculated the SRCC excluding the HS578T data point. As a result, the SRCC increased in
all models, but the proposed model (SRCC = 0.7167, p-value = 0.037) showed the highest
SRCC. In the case of the BA100 model, the increase in SRCC values was very large when
HS578T cells were excluded (SRCC = 0.200, 0.030 vs. 0.3500, 0.4167).
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Figure 6. Visualization of pCR scores of the proposed model and chemosensitivity of TNBC cell lines.
Six drugs used to treat T/FAC or T/FEC were investigated: (A) Paclitaxel, (B) 5-FU, (C) Doxorubicin,
(D) Docetaxel, (E) Epirubicin, and (F) Cyclophosphamide.

Figure 7. Visualization of pCR score of the seven published models vs. Cyclophosphamide sensitivity
in TNBC cell lines: (A) DLDA30, (B) 3 genes, (C) 5 genes, (D) Immune genes, (E) Hatzis, (F) ROR-S,
(G) BA100 Classifier 1, and (H) BA100 Classifier 2. SRCC values in parentheses exclude HS578T
data point.

3.8. Cellular Functions Associated with the 86 Genes of the Proposed Model

In addition to the performance of the predictive models, a mechanistic understanding
of the genes is important for clinical response prediction. To investigate the association be-
tween the 86 genes of our model and cellular function, we performed a function enrichment
analysis [70] based on Fisher’s exact test on our in house module database.

Table 8 shows the result of the function enrichment analysis. We excluded pheno-
typic terms, which may cause confusion. Among the terms including five or more genes
(Ngene ≥ 5), cases in which 30% or more of the genes of the corresponding term were
mapped to the query genes were selected (Ratiomapped ≥ 0.3). The results show an en-
richment of DNA repair and cell cycle gene modules reported to be involved in the NAC
response of TNBC [74,75].
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Table 8. Cellular function associated with 86 genes of the RF model. Ngene: the number of gene in the
term. Nmapped: the number of mapped query genes to the term. ratiomapped The ratio of gene in the
term mapped with query genes, i.e., Nmapped/Ngene.

SRC DB Geneset Name Category Ngene Nmapped ratiomapped p-Value Gene Mapped

Gene Ontology GO:0043570: maintenance of DNA repeat elements Cell_Function 5 2 0.400 8.78 × 10−5 MSH2, MSH6

Gene Ontology GO:0032135: DNA insertion or deletion binding Cell_Function 6 2 0.333 1.31 × 10−4 MSH2, MSH6

Jensen_COMPARTMENTS Mismatch_repair_complex Cell_Localization 6 2 0.333 1.31 × 10−4 MSH2, MSH6

TF_Perturbations_Followed_by_Expression MYCN_SHRNA_IMR575_HUMAN_GSE80397_6HR_RNASEQ_UP Transcription
Factor 6 2 0.333 1.31 × 10−4 ENO1, MCM3

CORUM MSH2/6-BLM-p53-RAD51 complex (human) Protein_Complex 5 3 0.600 2.57 × 10−7 RAD51, MSH2,
MSH6

CORUM PCNA-MutS-alpha-MutL-alpha-DNA complex (human) Protein_Complex 5 2 0.400 8.78 × 10−5 MSH2, MSH6

CORUM MCM complex (human) Protein_Complex 6 2 0.333 1.31 × 10−4 MCM2, MCM3

Reactome R-HSA-68911: G2 Phase Pathway 5 2 0.400 8.78 × 10−5 CDK2, E2F3

SRC DB: Source Database, Ngene : Number of genes annotated for the geneset, Nmapped : Number of mapped genes from query genes, ratiomapped : Nmapped/Ngene , p-value:

Fisher’s Exact test p-value.

3.9. Visualization of the Error Matrix and Score Distributions

Figure 8A shows the error matrix of the published NAC response prediction mod-
els and proposed model. Here, yellow represents correctly classified samples and red
represents misclassified samples for each model. Interestingly, all models are correctly
classifying 79 RD patients and the proposed model correctly classifies the 18 pCR sam-
ples, which were misclassified by all 8 models. Figure 8B shows the min-max normalized
score distribution of the NAC response prediction models for all test samples. t-test was
used to calculate the p-value of the score difference between pCR and RD. This analysis
reconfirms that the proposed model is most discriminative compared to all other models
(t-test p-value < 2.2 × 10−16) In other words, the proposed model provides a better score
distribution, which indicates a better calibration of the model that can separate pCR from
RD patients more effectively.

Figure 8. Visualization of error matrix and score distribution of NAC response prediction models.
(A) Heatmap of the error matrix. Yellow represents correctly classified samples and red represents
misclassified samples. (B) Score distribution of NAC response prediction models. t-test is used to
calculate p-value for difference between pCR and RD score of NAC response prediction models.

3.10. Association for Metabolic Pathway Based Subtypes

Recently, Gong et al. proposed metabolic-pathway based subtyping (MPS) of triple
negative breast cancer to reveal potential therapeutic targets [76]. We stratified our test
samples based on the MPS signatures suggested by Gong et al., and evaluate MPS specific
performance of the proposed model. We performed GSVA for these MPS genesets on our
test datasets. Among 205 samples, 44 samples were classified as MPS1, 81 samples were
classified as MPS2, and 80 samples were classified as MPS3. MPS1 and MPS3 samples
consist mostly of RD patients. In particular, 81% of MPS1 samples (36/42), and 77.5%
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of MPS3 samples are RD patients. MPS2 subtype contains 48% of pCR patients (39/81).
Figure 9A,B shows the ROC and PR curves for MPS specific prediction by the proposed
RF model. The proposed model showed relatively high performance in MPS2 and MPS3
subtypes compared to MPS1 subtype. Table 9 shows the binary classification performance
of the proposed model for each MPS subtypes. The BACC of MPS1, MPS2, and MPS3 were
0.646, 0.747, and 0.841, respectively. These results may imply that the TNBC patients who
have MPS 2 subtype can have higher probability of pCR with T/FAC or T/FEC based NAC.

Figure 9. MPS specific performance of the final RF model. (A) ROC curves and (B) PR curves.

Table 9. Comparison of metabolic pathway based subtype (MPS) specific performance of the proposed
RF model.

MPS
Subtypes pCR RD TP FP FN TN ACC BACC TPR TNR PPV NPV FNR F1 MCC Yoden’s

Index AUROC AUPRC

MPS1
(Lipogenic) 8 36 3 3 5 33 0.818 0.646 0.375 0.917 0.917 0.868 0.625 0.429 0.328 0.292 0.833 0.561

MPS2
(Glycolytic) 39 42 23 4 16 38 0.753 0.747 0.590 0.905 0.905 0.704 0.410 0.697 0.524 0.495 0.878 0.880

MPS3
(Mixed) 18 62 14 6 4 56 0.875 0.841 0.778 0.903 0.903 0.933 0.222 0.737 0.657 0.681 0.899 0.838

TP: True Positive, FP: False Positive, FN: False Negative, TN: True Negative, ACC: Accuracy, BACC: Balanced Accuracy, TPR:
True Positive Rate, TNR: True Negative Rate, PPV: Positive Predictive Value, NPV: Negative Predictive Value, FNR: False Nega-
tive Rate, MCC: Mathew Correlation Coefficient, AUROC: Area Under Reciever Operating Characteristic Curve, AUPRC: Area
Under Precision Recall Curve. Here, positive samples refer to the pCR samples.

4. Discussion

In this study, we developed a gene expression based NAC response prediction model
using random forest recursive feature elimination (RF-RFE). Extensive characterization
of the model performance using ROC, PR curves, and binary classification metrics at a
predefined FPR threshold of 10% showed that the proposed 86 gene-based RF model
outperforms the existing 8 NAC response predictive models. In addition, we investigated
the relationship between the proposed model and drug sensitivity in the TNBC cell models.
Our model shows a high Spearman’s rank correlation with cyclophosphamide sensitivity
in TNBC cell lines. Through function enrichment analysis, we found that genes in our
model are associated with DNA repair and cell cycle mechanisms.

Compared to prognostic models for ER+/HER2- patients currently used in clinical
practice to evaluate the benefits of additional adjuvant chemotherapy [77], neoadjuvant
chemotherapy response prediction models for TNBC patients are less convincing for use in
clinical practice. The major concerns for these predictive models for NAC response is the
misclassification of RD patients as pCR. This is because it not only guides overtreatment
but also eliminates alternative treatment options for those patients. In other words, there
is an unequal classification risk between the type I and type II errors, and in order to
objectively evaluate the NAC response prediction models, it is necessary to control the type
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I error (FPR) below a certain level. We set this level as less than or equal to 10% and set the
threshold based on the test set in the development dataset (GSE25066). The level selected
in this study is similar to other types of NAC response prediction models, such as clinical
variable based models [78], Ultrasound [79,80], and MRI imaging based [81] NAC response
prediction models.

We also performed a literature survey for the association between NAC response
and predictors of our model, in terms of their enriched mechanisms. Specifically, the
genes mapped to the DNA repair term were MSH2 and MSH6. These genes have been
reported to be associated with the NAC response in breast cancer [82–84]. Knockdown of
MYCN has been reported to be associated with the NAC response of TNBC. [85]. Loss of
ENO1 has been reported to correlate with clone forming unit (CFU) potential in MDA-MB-
231 and BT-549 cell models associated with susceptibility to paclitaxel [86]. RAD51 [87]
has been reported to be associated with homologous recombination deficiency (HRD)
of TNBC, which affects the NAC response. Inhibition of CDK2 has been reported to be
associated with the chemosensitivity of TNBC cell lines [88]. Inhibition of CDK2 has also
been reported to be associated with growth inhibition in TNBC bearing mice [89] and
reduced cell migration in TNBC cell lines [90]. E2F3 has been reported to be associated
with doxorubicin responses [91] and EMT mechanisms in TNBC [92]. MCM2 and MCM3
have also been reported to have a role in DNA repair mechanisms in breast cancer [93],
and these genes have also been reported as predictors of other NAC response predictive
models [19,20]. The survey may indicate a possible mechanism of the NAC response in
TNBC as DNA repair and cell cycle mechanisms by investigating the relationship between
genes in the proposed model and the NAC response mechanism in TNBC.

Recently, Gong et al. proposed stratification of the TNBC patients using metabolic
pathway enrichment based subtpying (MPS) [76]. They proposed three distinct subtypes,
so called MPS1 (Lipogenic), MPS2 (Glycolytic) and MPS3 (Mixed) and validated their re-
sults through xenograft and organoid experiments. To derive the subtype, they performed
geneset variation analysis (GSVA) for 86 metabolic pathway gene sets and consensus clus-
tering on the GSVA score matrix. The proposed model best explained MPS2 model, which
contains a large number of pCR patients compared to other two MPS subtypes. Because
the proposed model is associated with DNA Repair mechanisms, the high performance of
the proposed model in MPS2 subtype characterized by upregulation of carbohydrate and
nucleotide metabolic pathways can be considered as consistent results with the report of
Gong et al.

Although this study shows the utility of the proposed RF model, there are some
limitations. First, we only utilized Affymetrix microarray datasets, so the proposed model
may not be applicable to other platforms such as other microarray platforms and RNA
sequencing datasets. Second, due to the limited number of available samples, the per-
formance evaluated by the current study may be inconclusive. However, our results
showed fairly consistent results across multiple cohorts. Third, the relationship between
the chemosensitivity of TNBC cell lines and pCR probability drawn by the proposed model
was only validated by some of the TNBC cell lines available in the GDSC datasets. Because
drug sensitivity profiling projects are continuously expanding, we expect validation of the
current results with updated drug profiling of the TNBC cell lines in near future.

5. Conclusions

In conclusion, the proposed 86 gene-based random forest model provides an accurate
prediction of pCR after NAC in triple negative breast cancer and may be associated with
DNA repair and cell cycle mechanisms. Our study suggests that the random forest based
prediction model can provide a reliable prediction of the clinical response to neoadjuvant
chemotherapy and may explain chemosensitivity in TNBC.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14040881/s1, Figure S1: Flowchart of model training and
testing. Table S1: All 86 predictors of the final RF model and their feature importances.
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