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TSNAD is a one-stop software solution for predicting neoantigens from the whole genome/exome
sequencing data of tumor-normal pairs. Here we present TSNAD v2.0 which provides several new fea-
tures such as the function of RNA-Seq analysis including gene expression and gene fusion analysis, the
support of different versions of the reference genome. Most importantly, we replace the NetMHCpan with
DeepHLApan we developed previously, which considers both the binding between peptide and major his-
tocompatibility complex (MHC) and the immunogenicity of the presented peptide-MHC complex
(pMHC). TSNAD v2.0 achieves good performamce on a standard dataset. For better usage, we provide
the Docker version and the web service of TSNAD v2.0. The source code of TSNAD v2.0 is freely available
at https://github.com/jiujiezz/tsnad. And the web service of TSNAD v2.0 is available at http://biopharm.
zju.edu.cn/tsnad/.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Tumor neoantigens which are derived from mutated proteins
and presented on the surface of cancer cells are tumor-specific
antigens absent from normal cells [1]. To avoid confusion, we treat
the complex of mutated peptides and the major histocompatibility
complex (peptide-MHC pairs, pMHCs) as tumor neoantigens in this
study. Tumor neoantigens have been well acknowledged as the
ideal targets for cancer immunotherapies, such as cancer vaccines
and T-cell immunotherapies [2–5]. To provide an easy solution for
neoantigen prediction, we have previously developed an inte-
grated software for tumor-specific neoantigen detection (TSNAD)
[6], which can provide one-stop neoantigen prediction from origi-
nal whole-exome sequencing (WES) or whole-genome sequencing
(WGS) data of normal/tumor samples. TSNAD v1.0 has been
adopted by many other groups [7–12] and remains continuously
updating.

We present here TSNAD v2.0 that implements new features and
improvements including (i) update all the embedded tools into the
latest version, (ii) add the function of RNA-Seq data analysis
including gene expression and gene fusion analyses, (iii) support
two versions of reference genome (GRCh37 and GRCh38) when
calling mutations, (iv) add the neoantigen prediction derived from
INDELs and gene fusions, (v) replace NetMHCpan with our devel-
oped tool DeepHLApan and provide a web service of TSNAD, (vi)
provide the installation method of Docker which comprises all
the needed tools and reference files.
2. Methods

As illustrated in Fig. 1, the TSNAD v2.0 consists of five modules.
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Fig. 1. Workflow of TSNAD v2.0. Including SNV/INDEL detection, HLA allele detection, gene fusion detection, gene expression detection, and neoantigen prediction. WGS,
whole-genome sequence. WES, whole-exon sequence. SNV, single nucleotide variant. HLA, human leukemia antigen.
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2.1. Module 1: SNV/INDEL detection

Firstly, TSNAD v2.0 uses Trimmomatic (v0.39) [13] to trim and
crop rawWES/WGS reads and remove artifacts that will be harmful
to the subsequent data processing. Then, BWA (v0.7.17) [14] is
used for mapping short sequences to a reference genome (GRCh37
or GRCh38). SAMtools (v1.13) [15] is used to transform sequencing
data format from SAM (sequence alignment/map) to BAM (binary
alignment/map), which could save an enormous amount of storage
space. GATK (v4.2.0.0) [16] is used to remove repeat sequences and
recalibrate the base quality score to create the final BAM file. The
Mutect2 module of GATK is used to call SNVs/INDELs.
2.2. Module 2: HLA allele detection

The input data used for human leukocyte antigen (HLA) allele
detection is the cleaned fastq files created by Trimmomatic in
the first module. OptiType (v1.3.5) [17] is used for HLA allele
identification.
2.3. Module 3: Fusion detection

The detection of fusions is based on the RNA-Seq data. STAR
(v2.7) aligner [18] is used for mapping reads to the reference gen-
ome, Arriba (v1.1.0) [19] is then used for fusion detection. Com-
pared with other fusion detectors such as STAR-fusion [20],
Arriba is both quicker and more accurate.
2.4. Module 4: Gene expression detection

The gene expression detection is achieved by HISAT2 (v2.2.1)
[28], SAMtools (v1.13), and Stringtie (v2.1.6) [29]. HISAT2 is used
to map next-generation sequencing reads to human genomes,
SAMtools plays the same role as in module 1 and Stringtie is used
to assemble the RNA-Seq alignments into potential transcripts and
provide the expression result.
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2.5. Module 5: Neoantigen prediction

Neoantigen prediction module is the most important part of
TSNAD v2.0. With the identified SNVs/INDELs, VEP (v104) [21] is
used to annotate them to obtain the mutation information at the
amino acid level. Take the advantage of in-home scripts, all mutant
peptides cover the mutations with length ranges from 8 to 11 are
then extracted. Combining the mutant peptides with detected HLA
alleles, DeepHLApan (v1.1) [22] is used for the final neoantigen
prediction. In general, all the peptide-MHC pairs with binding
score >0.5 and immunogenic score > 0.5 are potential neoantigens.
Further, we suggest that the peptide-MHC pairs with immunogenic
score >0.5 and binding score rank top 20 across the different
lengths of peptides are high-confidence neoantigens within one
sample (i.e. 80 high-confidence neoantigens each sample). The pre-
diction process of fusion-derived neoantigens is similar, with the
difference that the neo-peptides generates by gene fusions are pro-
vided by Arriba. The gene expression detected in module 4 is a fil-
ter to remove the neoantigens generated by the mutations in
unexpressed genes (TPM < 1), which could improve the accuracy
of the final prediction results.

The extracellular mutations of membrane proteins are not the
typical neoantigens as defined, however, they could also be poten-
tial tumor-specific targets so we retained the function of extracel-
lular mutations identification that TSNAD v1.0 provides. The SNVs/
INDELs located in the extracellular domains of membrane proteins
would be stored in a separate file.
3. Results

3.1. Features update from TSNAD v1.0

The first version of TSNAD takes advantage of the best practices
of the GATK [16] and NetMHCpan [23] to predict neoantigens from
the whole genome/exome sequencing data of tumor-normal pairs,
comprising other tools such as Trimmomatic [13], BWA [14], SAM-
tools [15], Picard [24], ANNOVAR [25]. SOAP-HLA [26] and
TMHMM [27]. As time goes by, some of the tools are updated or



Table 1
The number of SNVs, INDELs, and Fusions of five TESLA samples, respectively.

Reference genome ID #SNVs #INDELs #Fusions

GRCh38 1_TESLA 122 16 11
2_TESLA 440 24 18
3_TESLA 826 19 10
12_TESLA 62 14 12
16_TESLA 59 14 6

GRCh37 1_TESLA 128 15 5
2_TESLA 450 24 19
3_TESLA 862 20 10
12_TESLA 65 15 8
16_TESLA 58 13 10

Table 2
The 23 validated peptide-MHC pairs from 400 predicted neoantigens under the reference genome GRCh38. The detailed information of the ‘Mutation’ column includes the gene
name, mutation position in a protein, and the position of mutated amino acid in the peptide.

ID Mutation HLA Peptide Binding score Immunogenic score Rank Validation

1_TESLA ACE_S167F_1 HLA-A02:01 FLDPDLTNI 0.9972 0.7211 16 TRUE
2_TESLA PBRM1_K1072E_5 HLA-B57:01 KSFKEIKLW 0.9999 0.9160 0 TRUE
2_TESLA ATP13A3_S899F_1 HLA-A02:01 FLSELEASV 0.9996 0.7721 1 FALSE
2_TESLA SEC61A1_R231W_9 HLA-B57:01 RTDKVRALW 0.9995 0.9772 2 FALSE
2_TESLA CFAP20_P74S_8 HLA-B57:01 KTLGIKLSF 0.9994 0.9450 3 FALSE
2_TESLA ME1_E227K_4 HLA-A02:01 FLDKFMEAV 0.9992 0.7303 4 FALSE
2_TESLA G6PD_A149V_9 HLA-A02:01 ALPPTVYEV 0.9976 0.7410 14 TRUE
2_TESLA OPA1_V585G_5 HLA-B57:01 LSLAGSDCFW 0.9996 0.9944 7 FALSE
3_TESLA SLC4A2_P363L_4 HLA-B08:01 WGKLHVASL 0.9979 0.7932 8 FALSE
3_TESLA PLXNA3_E1312K_3 HLA-A03:01 GIKAHPVLK 0.9979 0.6438 9 FALSE
3_TESLA KDM6B_P776L_3 HLA-A03:01 ALLPPPPLAK 0.9993 0.5449 10 FALSE
16_TESLA NAA25_R14L_8 HLA-C05:01 VQDPNDRLL 0.9999 0.9719 3 FALSE
16_TESLA HMGB3_P96R_2 HLA-B27:05 RRPSGFFLF 0.9995 0.7617 8 FALSE
16_TESLA POFUT2_V241L_5 HLA-B27:05 RRSMLFARH 0.9994 0.9010 12 TRUE
16_TESLA PSD4_R868H_5 HLA-C05:01 TADWHLYLF 0.9993 0.9647 15 FALSE
16_TESLA EBF4_G327R_2 HLA-B27:05 KRCPGRFVY 0.9992 0.8832 17 FALSE
16_TESLA COL5A2_P1266T_4 HLA-C05:01 KTDTGVHATL 1.0000 0.9491 0 TRUE
16_TESLA HMGB3_P96R_3 HLA-B27:05 KRRPSGFFLF 1.0000 0.7072 1 FALSE
16_TESLA SNX7_R234I_8 HLA-B27:05 SRMGQTVIAV 0.9999 0.5118 5 FALSE
16_TESLA PLXDC1_V290F_10 HLA-B27:05 HRIELDPSKF 0.9999 0.9010 6 FALSE
16_TESLA POFUT2_V241L_5 HLA-B27:05 RRSMLFARHL 0.9999 0.9052 7 FALSE
16_TESLA PSD4_R868H_7 HLA-B27:05 LRTADWHLYL 0.9999 0.9148 8 FALSE
16_TESLA ATR_D1243Y_3 HLA-B27:05 NRYAVQDFLH 0.9998 0.6015 13 FALSE
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deprecated so we improve their version or replace them with other
tools, respectively. The detailed adjustment is as follows: (i) Trim-
momatic, BWA, SAMtools, and GATK are updated to the latest ver-
sion. (ii) Picard is embedded in the latest version of GATK as a
module. (iii) ANNOVAR is replaced by the latest version of VEP
[21], which is more suitable in our pipeline. (iv) NetMHCpan is
replaced by DeepHLApan [22] which would be discussed later.

TSNAD v1.0 only supports the reference genome GRCh37, we
add the selection of GRCh38 when identifying neoantigens by
replacing SOAP-HLA with OptiType which is able to detect HLA
alleles under both reference genomes [17]. Normally, the expres-
sion of genes in tumors should be considered when predicting
the potential neoantigens of patients since no neoantigens would
be generated from unexpressed genes. We provide the new func-
tion of RNA-Seq analysis by combining HISAT2 [28] and Stringtie
[29] into the pipeline to detect gene expression at the transcription
level. Besides, we also provide the new function to predict neoanti-
gens derived from mutations more than single nucleotide variants
(SNVs), such as INDELs and gene fusions. The INDEL calling is also
called by the Mutect2 module of GATK. The gene fusion analysis is
achieved by combining STAR [18] and Arriba [19]. To note, the gene
expression and gene fusion analysis would only be performed with
RNA-Seq data.

The core part of TSNAD is the prediction that whether one pair
of peptide-MHC is potential neoantigen and NetMHCpan is used to
achieve this purpose in TSNAD v1.0. However, the mechanism of
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how neoantigens inducing T-cell response is complex and more
than peptide-MHC binding which is the function that NetMHCpan
provides. So we replace NetMHCpan with our recently developed
tool DeepHLApan [22] for neoantigen prediction, which considers
both peptide-MHC binding and the potential immunogenicity of
the presented peptide-MHC pairs. It significantly reduced the false
positives when predicting neoantigens and was more suitable to be
embedded in the updated version of TSNAD.

3.2. TSNAD v2.0 achieves high performance on TESLA data

Standard datasets are of critical importance to provide a bench-
mark to evaluate software performance. Recently, the Tumor
Neoantigen Selection Alliance (TESLA), a global community provide
a standard dataset for the comparison of neoantigen prediction
tools [30]. In their study, 608 predicted neoantigens, which are
derived from six patients and predicted by tools from 28 unique
teams are tested for immunogenicity and 37 (6.1%) of them were
found to be immunogenic.

Due to the data availability, we obtained the WES, tumor RNA-
Seq, and clinical-grade HLA typing of five patients (three mela-
noma patients with ID 1_TESLA, 2_TESLA, and 3_TESLA and two
non-small cell lung carcinoma patients with ID 12_TESLA and
16_TESLA) from Synapse with identifier syn21048999. Under dif-
ferent selection of the reference genome, the number of mutations
of each patient identified by TSNAD v2.0 is similar (Table1). Results



Table 3
The 30 validated peptide-MHC pairs from 400 predicted neoantigens under the reference genome GRCh37. The detailed information of the ‘Mutation’ column includes the gene
name, mutation position in a protein, and the position of mutated amino acid in the peptide.

ID Mutation HLA Peptide Binding score Immunogenic score Rank Validation

1_TESLA ACE_S167F_1 HLA-A02:01 FLDPDLTNI 0.9972 0.7211 19 TRUE
2_TESLA ATP13A3_S899F_1 HLA-A02:01 FLSELEASV 0.9996 0.7721 1 FALSE
2_TESLA SEC61A1_R231W_9 HLA-B57:01 RTDKVRALW 0.9995 0.9772 2 FALSE
2_TESLA C16orf80_P74S_8 HLA-B57:01 KTLGIKLSF 0.9994 0.9450 3 FALSE
2_TESLA ME1_E227K_4 HLA-A02:01 FLDKFMEAV 0.9992 0.7303 4 FALSE
2_TESLA ABCC1_T645I_1 HLA-B57:01 IVRNATFTW 0.9991 0.9437 5 FALSE
2_TESLA OPA1_V585G_5 HLA-B57:01 LSLAGSDCFW 0.9996 0.9944 7 FALSE
2_TESLA ABCC1_T645I_2 HLA-B57:01 IIVRNATFTW 0.9995 0.9404 10 FALSE
2_TESLA PBRM1_K1047E_5 HLA-B57:01 KSFKEIKLW 0.9999 0.9160 0 TRUE
2_TESLA G6PD_A179V_9 HLA-A02:01 ALPPTVYEV 0.9976 0.7410 15 TRUE
3_TESLA SLC4A2_P363L_4 HLA-B08:01 WGKLHVASL 0.9979 0.7932 8 FALSE
3_TESLA PLXNA3_E1312K_3 HLA-A03:01 GIKAHPVLK 0.9979 0.6438 9 FALSE
3_TESLA KDM6B_P776L_3 HLA-A03:01 ALLPPPPLAK 0.9993 0.5449 10 FALSE
12_TESLA CYP27A1_G367C_8 HLA-A02:01 ALHEEVVCV 0.9973 0.7153 11 FALSE
12_TESLA MFSD7_N179D_4 HLA-A02:01 LVADVLSPV 0.9956 0.5472 15 FALSE
12_TESLA HELZ2_A2160V_9 HLA-A02:01 KLNPSQNVV 0.9947 0.6994 19 FALSE
12_TESLA A1BG_H362R_6 HLA-A02:01 ALFELRNISV 0.9982 0.5865 14 FALSE
16_TESLA NAA25_R14L_8 HLA-C05:01 VQDPNDRLL 0.9999 0.9719 3 FALSE
16_TESLA HMGB3_P96R_2 HLA-B27:05 RRPSGFFLF 0.9995 0.7617 8 FALSE
16_TESLA PLCL1_P827H_5 HLA-B27:05 YRHVHLRSF 0.9994 0.9491 10 FALSE
16_TESLA PSD4_R868H_5 HLA-C05:01 TADWHLYLF 0.9993 0.9647 14 FALSE
16_TESLA EBF4_G327R_2 HLA-B27:05 KRCPGRFVY 0.9992 0.8832 16 FALSE
16_TESLA HMGB3_P96R_3 HLA-B27:05 KRRPSGFFLF 1.0000 0.7072 1 FALSE
16_TESLA SNX7_R234I_8 HLA-B27:05 SRMGQTVIAV 0.9999 0.5118 5 FALSE
16_TESLA PLXDC1_V290F_10 HLA-B27:05 HRIELDPSKF 0.9999 0.9010 6 FALSE
16_TESLA POFUT2_V241L_5 HLA-B27:05 RRSMLFARHL 0.9999 0.9052 7 FALSE
16_TESLA PSD4_R868H_7 HLA-B27:05 LRTADWHLYL 0.9999 0.9148 8 FALSE
16_TESLA ATR_D1243Y_3 HLA-B27:05 NRYAVQDFLH 0.9998 0.6015 13 FALSE
16_TESLA POFUT2_V241L_5 HLA-B27:05 RRSMLFARH 0.9994 0.9010 11 TRUE
16_TESLA COL5A2_P1266T_4 HLA-C05:01 KTDTGVHATL 1.0000 0.9491 0 TRUE

Table 4
The performance of TSNAD v2.0 under different selection criterias.

Reference genome Selection criteria #Tested #TRUE Accuracy

GRCh38 Top10 18 2 11.1%
Top20 23 5 21.7%
Top30 27 5 18.5%
Top40 33 6 18.2%
Top50 40 6 15.0%

GRCh37 Top10 17 2 11.8%
Top20 30 5 16.7%
Top30 35 5 14.3%
Top40 43 5 11.6%
Top50 49 6 12.2%
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show that melanoma patients have more SNVs than non-small cell
lung carcinoma patients while having a similar number of INDELs
and gene fusions.

80 high-confidence neoantigens for each sample and 400 in
total for five samples are predicted by TSNAD v2.0. However,
among the 400 predicted neoantigens, only 23/30 peptide-MHC
pairs have been tested by TESLA, and 5/5 of them (21.7%/16.7%)
are validated as immunogenic under the reference genome
GRCh38/GRCh37, respectively (Tables 2, 3, S1 and S2). Besides,
we also evaluate the prediction performance of TSNAD v2.0 when
selecting peptide-MHC pairs ranked top 10, 30, 40, and 50 as high-
confidence neoantigens, respectively. The poorest performance of
TSNAD v2.0 by selecting the top 10 peptide-MHC pairs under the
reference genome GRCh38 (11.1%) is also greater than 6.1%, the
overall positive rate of TESLA dataset (Table 4). We also evaluated
the predicted binding scores for the 608 tested peptide-MHC pairs
by applying TSNAD v2.0. The predicted binding scores of immuno-
genic peptide-MHC pairs are significantly greater than non-
immunogenic peptide-MHC pairs no matter in all TESLA dataset
(608 peptide-MHC pairs, Wilcoxon test, p = 1.2 � 10-7) or the
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peptide-MHC pairs with predicted immunogenic scores greater
than 0.5 (241 peptide-MHC pairs, Wilcoxon test, p = 0.026)
(Fig. 2). All the results support the predicted reliability of TSNAD
v2.0.
3.3. Improved usability of TSNAD v2.0

For better usage of TSNAD v2.0, we provide the Docker version
of TSNAD v2.0 for local installation and usage. It’s easy to install
TSNAD v2.0 by one command: docker pull biopharm/tsnad:latest

And given a directory samples including WES/WGS files (the
files would be better to rename as normal_R1.fastq.gz, normal_R2.-
fastq.gz, tumor_R1.fastq.gz, and tumor_R2.fastq.gz), the following
commands could achieve the purpose of neoantigen prediction:

docker run -it -v [dir of WES/WGS]/:/home/tsnad/samples -v
[dir of RNA-Seq]:/home/tsnad/RNA-seq -v [output dir]:/home/
tsnad/results biopharm/tsnad:latest /bin/bash

cd /home/tsnad
bash uncompress.sh



Fig. 2. The comparison of predicted binding score between immunogenic peptide-MHC pairs and non-immunogenic peptide-MHC pairs. There are 37 immunogenic peptide-
MHC pairs and 571 non-immunogenic peptide-MHC pairs in all TESLA dataset, among which 12 immunogenic peptide-MHC pairs and 229 non-immunogenic peptide-MHC
pairs with predicted immunogenic score greater than 0.5.
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python TSNAD.py -I samples/ -R RNA-seq/ -V [grch37/grch38] -
O results/

All the results would be stored in the directory results, and the
predicted neoantigen would be stored in the directory
deephlapan_results.

To generate useable neoantigen predictions, the minimum
depth should be 15 � for WGS and 50 � for WES, the recom-
mended depth should be 30 � for WGS and 100 � for WES. For
sample TESLA_1 with WES tumor/normal data and RNA-Seq data,
it takes about 50 h to finish neoantigen prediction in the Ubuntu
system with 64G memory and 512G hard disk space.

Besides, we also provide a web service of TSNAD v2.0 which
supports neoantigens prediction given mutations and HLA alleles
(Fig. 3). The mutations should be formatted in the VCF file which
is the file format of mutation results from the widely used best
practice of GATK. We will support more file formats if required
in the future. Compared with stand-alone pipelines, the web ser-
vice of TSNAD v2.0 only including DeepHLApan and some in-
house scripts for processing data (i.e. the function that module 5
provides), it’s more suitable for the situation that users already
have mutation file and HLA alleles and do not need to analyze
the potential fusion-derived neoantigens or gene expression. We
would try to provide the full function of TSNAD in the future
update of the web service by taking advantage of cloud storage
and cloud computing.
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4. Conclusions

TSNAD v2.0 could provide one-stop neoantigen prediction from
original WES/WGS and RNA-Seq data of normal/tumor samples. In
this version, we update or replace most of the embedded tools with
the latest versions or more suitable tools. Besides, it supports the
choice of different versions of reference genomes when calling
mutations, and also provides the analysis of INDELs, gene fusions,
and gene expression. The most important change is the integration
of DeepHLApan, which is the deep learning based prediction
method for both peptide-MHC binding and the potential immuno-
genicity of the presented peptide-MHC complex. And the web ser-
vice and Docker version of TSNAD v2.0 would provide an easy
solution for tumor-specific neoantigen prediction.

Though DeepHLApan considers both binding and immuno-
genicity of peptide-MHC pairs, more effort should be put into T-
cell receptor (TCR)-pMHC interaction to understand the mecha-
nism that pMHC inducing T-cell response for predicting high-
confidence neoantigens. Therefore, the future update of TSNAD
should be a more complex and precise neoantigen prediction pipe-
line containing TCR sequencing and TCR-pMHC binding prediction
model.

Code availability
The source code of TSNAD v2.0 is freely available at https://

github.com/jiujiezz/tsnad. The Docker version of TSNAD v2.0 is

https://github.com/jiujiezz/tsnad
https://github.com/jiujiezz/tsnad


Fig. 3. The web service of TSNAD v2.0. Users could provide the mutations (VCF format) and HLA alleles to predict potential neoantigens. The version of the reference genome
is selectable and email is optional.
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available at https://hub.docker.com/r/biopharm/tsnad. The web
service of TSNAD v2.0 is available at http://biopharm.zju.edu.cn/
tsnad.
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