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Sensorineural deafness is mainly caused by damage to the tissues of the inner ear, and
hearing impairment has become an increasingly serious global health problem. When
the inner ear is abnormally developed or is damaged by inflammation, ototoxic drugs,
or blood supply disorders, auditory signal transmission is inhibited resulting in hearing
loss. Forkhead box G1 (FoxG1) is an important nuclear transcriptional regulator, which
is related to the differentiation, proliferation, development, and survival of cells in the
brain, telencephalon, inner ear, and other tissues. Previous studies have shown that
when FoxG1 is abnormally expressed, the development and function of inner ear hair
cells is impaired. This review discusses the role and regulatory mechanism of FoxG1 in
inner ear tissue from various aspects – such as the effect on inner ear development,
the maintenance of inner ear structure and function, and its role in the inner ear when
subjected to various stimulations or injuries – in order to explain the potential significance
of FoxG1 as a new target for the treatment of hearing loss.
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INTRODUCTION

The number of people suffering from hearing impairment in the world was approximately 500
million in 2015, ranking fourth among all disability factors and ahead of diabetes and dementia
(GBD, 2016). Factors that cause hearing disability include congenital, infectious, noise exposure,
drugs/medications, age-related, traumatic, and immune-mediated causes. Most of these factors
induce damage to the inner ear tissue and eventually cause sensorineural deafness (Brown et al.,
2018). The nuclear transcription factor FoxG1 has been shown to affect the process of cell
proliferation and differentiation (Ariani et al., 2008; Florian et al., 2012), and in the study of Rett
syndrome it was found that FoxG1 might indirectly affect oxidative damage to erythrocytes (Ciccoli
et al., 2015; Valacchi et al., 2017). In addition, researchers have found that FoxG1 has an important
regulatory effect on mitochondrial energy metabolism and biosynthesis in neuroepithelial cells
(Pancrazi et al., 2015). In the inner ear, FoxG1 is mainly involved in regulating the formation
and differentiation of hair cells (HCs), supporting cells, and cochlear spiral neurons, thereby

Abbreviations: FoxG1, Forkhead box G1; ROS, reactive oxygen species; IGF-1, insulin like growth factor-1; TGF-β,
transforming growth factor beta; BMP, bone morphogenetic protein; HCs, hair cells; LPS, lipopolysaccharide; NPCs, neural
progenitor cells; NSCs, neural stem cells.
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maintaining cochlear function and morphology (Jahan et al.,
2018; He et al., 2019; Zhang et al., 2020). In addition, hearing
loss caused by aging, noise exposure, and ototoxic drugs is mainly
due to damage to inner ear cells caused by oxidative stress (Wang
et al., 2002; Kujawa and Liberman, 2009; Liberman et al., 2015;
Francis and Cunningham, 2017; Jang et al., 2018), and FoxG1
can affect the reactive oxygen species (ROS) level in cells by
maintaining mitochondrial function. Therefore, exploration of
the role of FoxG1 in the inner ear will increase the use of FoxG1
as a target in the treatment of hearing loss.

THE ROLE OF FoxG1 IN THE NEURAL
STEM CELLS

Neural stem cells (NSCs) are self-renewable multipotent cells that
can differentiate into different types of nerve cells (Chandwani
et al., 2019). Because neural progenitor cells (NPCs) have limited
life span and poor self-renewal ability, NSCs regulate the balance
of pro-death and pro-survival signals to ensure the number of
progenitor cell pools during development (Yadirgi et al., 2011;
Sierra et al., 2015). As one of the markers of NPCs in the
brain, FoxG1 was used to detect the differentiation level of
pluripotent stem cells and embryonic stem cells (Yahata et al.,
2011; Yamamizu et al., 2013). During embryonic development,
FoxG1 is mainly expressed in the progenitor cells of the cerebral
cortex, basal ganglia, and olfactory bulb (Dou et al., 1999).
With the extension of development time, the expression area
of FoxG1 changes. At mouse E12.5, FoxG1 is still expressed
in the NPCs of the telencephalon, but no longer expressed in
other neural tubes (Hettige and Ernst, 2019). In the mature
mouse brain, FoxG1 is only expressed in neuroepithelial cells
such as the cerebral cortex and hippocampus (Hettige and Ernst,
2019). These indicate that FoxG1 can regulate the telencephalic
development through spatio-temporal patterning and interaction
with different signaling. In the telencephalon of Foxg1 null
mice, the dorsal neuroepithelial cells proliferation reduced and
differentiate prematurely, and lead to depletion of the NPC pool
(Xuan et al., 1995; Hanashima et al., 2002; Martynoga et al.,
2005). This indicate that FoxG1 is involved in regulating the
neuroepithelial cell proliferation and differentiation time during
the morphogenesis and development of the telencephalon.
Researchers used reprogramming approach to transduces FoxG1
and other transcription factors into mouse fibroblasts and
astrocytes and they successfully converted somatic cells into
proliferative NPCs (Ma et al., 2019). Brancaccio et al. (2010)
found that overexpression of Foxg1 gene can maintain the ability
of cells self-renewal and promote the increase in the number
of NSCs. The self-renewal activity of NSCs decreases with age.
Nakatani et al. (2019) found that the expression of Ecrg4 gene
was significantly increased in aging NSC. When the Ecrg4 was
overexpressed in NSC, the proliferation ability of NSC was
significantly reduced, and when the expression of Ecrg4 was
deleted, the decline in the proliferation ability of NSC caused by
age was recovered. The NSC proliferation caused by the deletion
of Ecrg4 expression was achieved by activating the expression of
Foxg1 (Nakatani et al., 2019).

In the inner ear, after conditional knockout Foxg1 in the
HCs, we found that the number of HCs in the apex turn of
the cochlea of newborn mice increased significantly, indicating
that the deletion of Foxg1 expression caused the disorder
of HC proliferation and differentiation (He et al., 2019). By
transcriptome sequencing analysis of HCs, we found that the
knockout of Foxg1 caused abnormal expression of multiple
signaling pathways and related genes. The knockout of Foxg1
caused the inhibition of the Notch signaling pathway in HCs,
which probably led to the premature differentiation of NPCs, and
ultimately resulted in the increase of HCs in the apex turn of
the cochlea of newborn mice (He et al., 2019). After conditional
knockout Foxg1 in supporting cells and inner ear stem cells
using Sox2-CreER mice and Lgr5-EGFP-CreERT2 mice, we
also found that the number of HCs increased significantly
(Zhang et al., 2020). Through EDU assay and in vitro sphere-
forming assay, we found that this phenotype was mainly due
to the knockout of Foxg1 promoting the trans-differentiation
of supporting cells to HCs, and the expression of genes related
to the cell cycle and Notch signaling pathway was also affected
(Zhang et al., 2020). The above findings indicated that FoxG1
can affect the differentiation and proliferation of inner ear NPCs
through the regulation of multiple signal pathways and related
factors expression.

THE ROLE OF FoxG1 IN OTHER TISSUES

Forkhead box G1 belongs to the Fox transcription factor gene
family, and is involved in the regulation of telencephalon
development, cortical neuron differentiation, neurogenesis, and
axonal exogenous growth (Brancaccio et al., 2010; Manuel et al.,
2011; Figure 1). In Foxg1 knockout mice, it was found that when
the expression of FoxG1 in the embryonic stage was suppressed
the volume of the cerebral hemisphere was severely reduced and
the mice died soon after birth, and large numbers of precursor
cells differentiated into Cajal-Retzius cells and the differentiation
into cortical neurons was inhibited, resulting in thinning of the
cortex and abnormal neuronal stratification (Hanashima et al.,
2004, 2007; Cargnin et al., 2018; Testa et al., 2019). In the
development of the ventral telencephalon, the absence of FoxG1
expression causes abnormal expression of FGF and Shh signaling-
related pathways, which affect the development of the ventral
telencephalon (Manuel et al., 2010). This indicates that FoxG1
may affect the development of the telencephalon by regulating
other signal pathways. In the telencephalon, dentate gyrus, and
cerebral cortex, FoxG1 has been found to play an important
role in regulating the proliferation and differentiation of neural
progenitor cells. When FoxG1 expression is absent, this leads to
cell cycle disruption in the progenitor cells of the telencephalon
(Manuel et al., 2011), a decrease in the population of cortical
intermediate progenitor cells (Siegenthaler et al., 2008), and a
decrease in the number of stem cells due to the loss of the
self-renewal capacity of neural stem cells (Brancaccio et al.,
2010). In addition, FoxG1 is also involved in regulating the
integration of multipolar pyramidal neuronal precursors into
cortical plates (Miyoshi and Fishell, 2012). In the development
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FIGURE 1 | The role of FoxG1 in the development, differentiation, and survival of various tissues.

of the olfactory epithelium, FoxG1 can affect the proliferation
and differentiation of olfactory epithelial cells in cooperation with
the Gdf11 (Growth differentiation factor 11) and Fst (Follistatin)
proteins (Kawauchi et al., 2009). In the development of the
chicken brain, the overexpression of FoxG1 can lead to the
massive outgrowths of telencephalon and mesencephalon. This
phenotype was not due to the activation of cell proliferation
after the increase in FoxG1 expression, but due to the inhibition
of apoptosis (Ahlgren et al., 2003). When FoxG1 expression is
abnormal, nerve development in tissues such as the cerebral
cortex, telencephalon, ear, retina, and olfactory epithelium is
inhibited (Pauley et al., 2006). Since the inner ear and the above
tissues have the same neurodevelopmental process, and FoxG1
has an important regulatory role in other tissues, we believe that it
may also have a similar important regulatory role in the inner ear.

FoxG1-RELATED SIGNALING PATHWAYS

Forkhead box G1 plays a cooperative regulatory role with the
IGF-1/Akt, TGF-β/Smad, BMP, Wnt/β-catenin, Notch, and other
signaling pathways. Dastidar et al. (2012) found that normal
expression levels of FoxG1 can inhibit apoptosis in mouse
cerebellar granule neurons, and when FoxG1 is overexpressed it
has an antagonistic effect on the pro-survival factor IGF-1. TGF-
β can inhibit the proliferation of a variety of embryonic epithelial
cells, and FoxG1 was found to have an antagonistic effect on TFG-
β (Pelton et al., 1991; Feijen et al., 1994; Furuta et al., 1997). When

FoxG1 expression is inhibited, TGF-β or other growth inhibitory
factors enhance the inhibitory effect on brain precursor cells
(Pelton et al., 1991). In the TGF-β/Smad pathway, the binding of
Smad to its ligands is competitively inhibited by FoxG1, thereby
inhibiting the function of Smad. When FoxG1 competitively
binds with Smad, this also suppresses the expression of TGF-
β target genes, thereby blocking its downstream pathway (Dou
et al., 2000). BMP can enhance the differentiation efficiency of
precursors in the telencephalon, while FoxG1 can affect cellular
differentiation by inhibiting the expression of BMP (Liu et al.,
2018). Wnt/β-catenin and Shh can regulate the differentiation
of the ventral and dorsal telencephalon, and Danesin et al.
(2009) found that FoxG1 can directly or indirectly inhibit the
expression of the Wnt/β-catenin pathway, thereby affecting
cellular differentiation in the telencephalon. In addition, FoxG1
also has a regulatory relationship with Hes, Groucho/TLE, and
other Notch signaling pathways, and FoxG1 can prevent the
premature differentiation of precursor cells by inhibiting the
expression of genes related to neurogenesis targeted by the Notch
signaling pathway (Dali et al., 2018; Chiola et al., 2019; Richard
and Jia-Hao, 2020; Zhang et al., 2020). In summary, FoxG1 affects
multiple physiological processes and is associated with multiple
signaling pathways. FoxG1 maintains the normal growth and
development of various tissues by regulating cell proliferation
and apoptosis (Figure 1). In the survival and development of
inner ear HCs, the above-mentioned signaling pathways also play
an important regulatory role. For example, the Wnt and Notch
signaling pathway are related to the development of the inner ear,
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FIGURE 2 | The role of FoxG1 in the inner ear.

the generation and differentiation of supporting cells, HCs and
neurons (Jayasena et al., 2008; Jacques et al., 2012; Brown et al.,
2020). BMP signaling pathway affects inner ear morphogenesis,
nerve fiber formation, and HC development (Yang et al., 1999;
Blauwkamp et al., 2007). Therefore, FoxG1 is likely to affect the
development of the inner ear and the survival of HCs through
interaction with these pathways.

THE ROLE OF FoxG1 IN THE INNER EAR

The Role of FoxG1 in Inner Ear
Development
Pauley et al. (2006) found that FoxG1 was expressed in most
types of cells in the crista, endolymphatic vessels and organ of
Corti of the inner ear, including HCs, supporting cells, border
cells, and Hensen cells, etc. FoxG1-deletion mice had significantly
shorter cochlear ducts than normally developing mice and lacked
the formation of the horizontal crista and ampulla (Pauley et al.,
2006). In addition, the distribution of inner ear nerve fibers
in FoxG1-deletion mice also showed abnormalities (Harasztosi
et al., 2019). Hwang et al. found that FoxG1 is essential for the
formation and separation of the sensory cristae, indicating that
FoxG1 has a function in regulating sensory fate in the inner
ear (Hwang et al., 2009). Deletion of FoxG1 can also cause the
polarity of HCs to change (Pauley et al., 2006). Our previous
research found that after specifically knocking out FoxG1 in HCs,
the cochlear ducts length did not change after birth, but there was
an increase in the number of HCs (He et al., 2019). In addition, we
also found that the Wnt, IGF, and EGF signaling pathways were

inhibited in HCs absent FoxG1 expression, and the survival time
of adult mouse HCs was shortened (Figure 2; He et al., 2019).

The Role of FoxG1 in Cell Survival in the
Inner Ear
Due to the non-renewability of mammalian cochlear HCs,
their damage is the main cause of hearing loss. When FoxG1
expression is inhibited, it will not only cause morphogenesis
and functional defects of the auditory system, but also affect the
survival of HCs and ultimately lead to hearing loss. In newborn
mouse cochleae with conditional knockout Foxg1 in HCs, we
found that the HCs in the apex turn of the mouse cochlea
increased significantly at P1–P7, and then gradually returned
to normal levels with the increase of time, and there was no
significant change in the hearing of the mice before P21 (He et al.,
2019). But after P21, the HCs in the basal turn appeared to be lost,
and as the mouse ages, the number of HCs lost gradually increases
and develops toward the apex turn. In addition, the results of
RNA sequencing analysis showed that the deletion of Foxg1
expression cause the inhibition of IGF signaling pathway in HCs
(Figure 2). Previous studies have found that FoxG1 and IGF1
have a synergistic regulatory effect. IGF1 plays an important role
in the protection of nerve cell damage, that is, the inner ear cells
of IGF1 knockout mice will appear apoptosis and hearing loss
(Camarero et al., 2002; Murillo-Cuesta et al., 2011). Therefore,
FoxG1 may affect cell proliferation and apoptosis sensitivity by
regulating multiple signal pathways such as IGF and Notch. de
Iriarte Rodríguez et al. (2015) found that abnormal expression
of C-Raf caused hearing loss and increased sensitivity to noise in
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mice. In the embryonic cochlea ofC-Raf null mice, the expression
of Foxg1 increased. It is speculated that this phenomenon is
due to the body promotes the survival of auditory neurons
in the inner ear through activating the expression of Foxg1,
thereby reducing the cochlea development abnormal caused by
the deletion of C-Raf expression.

The Role of FoxG1 in Inflammation in the
Inner Ear
The inner ear is often stimulated by various factors leading to
an inflammatory reaction. A mild inflammatory reaction can
remove toxins and pathogenic microorganisms, and thus has a
protective effect on tissues and cells, but excessive inflammatory
reactions can cause serious damage to the inner ear (Kalinec et al.,
2017). In the model of inflammation of the inner ear caused
by LPS (lipopolysaccharide), inflammatory cells accumulate in
the inner ear causing the stria vascularis to swell, which in turn
damages the auditory HCs (Hirose et al., 2014; Hirose and Li,
2019). In our previous research, we found that FoxG1 has an
important regulatory role in inhibiting the sensitivity of aging
HCs to inflammation (He et al., 2020b). When the HCs were
treated with low concentration of LPS, the expression level of
FoxG1 and autophagy increased, on the contrary, when treated
with high concentration of LPS, the levels of both decreased
significantly, which indicated that FoxG1 may play its role
in promoting survival through the regulation of autophagy.
When the expression of FoxG1 was inhibited, the level of
autophagy in HCs was also inhibited, and the level of apoptosis
was significantly increased. We also found that in D-galactose-
induced aging HCs, FoxG1 inhibits the increase in ROS in cells
induced by LPS by activating autophagy, thereby regulating the
sensitivity of aging HCs to inflammation and maintaining the
function and survival of HCs (He et al., 2020a; Figure 2).

DISCUSSION

Our research on FoxG1 in the inner ear suggests that FoxG1
may be involved in protecting the inner ear from damage (He
et al., 2020a). Ototoxic drugs and aging are the two main
causes of inner ear damage and mainly include aminoglycoside
antibiotics (such as neomycin and gentamicin) and anti-tumor
platinum-based drugs (such as cisplatin) (Ryals et al., 2018).
For mechanism of ototoxic drugs inducing deafness, Schacht,
1999 found that ototoxic drugs mainly damage the inner ear
cells by generating excessive oxygen free radicals, which would
injury hearing function finally, and the use of antioxidants
can reduce such damage. In addition, related studies on noise-
induced hearing loss have found that oxidative stress caused
by noise is also an important cause of cellular damage in the
inner ear (Ohlemiller, 2008), and Shuhei and Xiangxin found
that IGF-1 can effectively inhibit neomycin-induced damage to
HCs (Yoshida et al., 2015; Xiangxin Lou et al., 2015 Jan). It is
known that FoxG1 not only inhibits the increase in ROS level by
activating autophagy, but also has a close regulatory relationship
with IGF-1. Therefore, FoxG1 might be involved in regulating
the processes through which ototoxic drugs and noise exposure
damage the inner ear.

It is now generally accepted that age-related oxidative stress is
one of the factors leading to hearing loss (da Costa et al., 2016).
When mitochondrial function is abnormal, the excessive ROS in
the cell will disrupt gene expression, protein renewal, and other
biological functions, which will lead to disrupted biosynthesis
and energy metabolism and eventually lead to cell death. It is
known that FoxG1 affects mitochondrial membrane potential
and mitochondrial division and fusion (Pancrazi et al., 2015),
and when FoxG1 expression is abnormal mitochondrial energy
metabolism, biosynthesis, and membrane potential are disturbed,
which in turn affects cell proliferation and differentiation.
Therefore, normal expression of FoxG1 is a key factor in
maintaining normal mitochondrial function and ROS levels.
Rodriguez-de la Rosa et al. found that IGF-1 not only has anti-
apoptotic effects, but also can activate cell renewal (Rodriguez-de
la Rosa et al., 2017). Mariño et al. found that IGF-1 can extend
the lifespan of premature aging mice (Zmpste24-deficient mice)
by restoring somatotroph axis function (Mariño et al., 2010).
Therefore, FoxG1 might affect the occurrence and development
of age-related hearing loss by regulating multiple pathways. Foxg1
as one of the marker genes of inner ear progenitor cells and
plays an important role in the process of inducing pluripotent
stem cells to differentiate into inner ear cells (Boddy et al., 2020).
Therefore, the Foxg1-related reprogramming technology has
great application value to regenerate cells in the inner ear that are
affected by pathology or damage. C-MYC is a regulatory factor
that plays an important role in cell proliferation, growth and
apoptosis (Han et al., 2009). In the study of wound repair, Zhan
et al. (2018) found that nitric oxide can induce the transcription
of c-myc to promote the proliferation of epidermal stem cells, and
the c-myc promoter activity is regulated by FoxG1 during this
process. In the related research of the inner ear, it was found that
c-myc can not only protect the inner ear from noise damage but
also promote the self-renewal of otic progenitor cells (Han et al.,
2009; Kwan et al., 2015). The loss of sensory HCs and neurons
in the inner ear is the main cause of sensorineural hearing loss,
and this loss is irreversible. The promoters of c-myc and Sox2 are
highly similar, and the target genes include kinases that regulate
the cell cycle (Kwan et al., 2015). Therefore, FoxG1 may play an
important role in the regeneration of HCs by regulating the c-myc
signaling pathway. However, there are relatively few studies on
FoxG1 in the inner ear. Moreover, FoxG1 may have different
regulatory mechanisms in different organs and tissues, as well
as in the growth and development of different types of cells.
Therefore, the regulation mechanism of FoxG1 in the inner ear
remains to be studied in the future.

CONCLUSION

Forkhead box G1 not only plays a key role in the development
of the cerebral cortex and neurons, but also has a close
regulatory relationship with the development of the inner ear,
the survival of HCs, and the protection of HCs against injury.
FoxG1 is essential for the maintenance of NSCs and NPCs,
and directly regulates the differentiation process of cells. It has
been reported that FoxG1 can promote the survival of inner
ear HCs by regulating autophagy, mitochondrial function, and
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related signaling pathways. Thus the in-depth exploration of
the role of FoxG1 in the inner ear will improve its use as
a target for the regeneration of HCs and the treatment of
sensorineural hearing loss.
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