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Peroxisome proliferator-activated receptor γ (PPAR-γ) is a key regulator of lipid metabolism and energy balance implicated in
the development of insulin resistance and obesity. The identification of putative natural and synthetic ligands and activators of
PPAR-γ has helped to unravel the molecular basis of its function, including molecular details regarding ligand binding, confor-
mational changes of the receptor, and cofactor binding, leading to the emergence of the concept of selective PPAR-γ modulators
(SPPARγMs). SPPARγMs bind in distinct manners to the ligand-binding pocket of PPAR-γ, leading to alternative receptor con-
formations, differential cofactor recruitment/displacement, differential gene expression, and ultimately differential biological re-
sponses. Based on this concept, new and improved antidiabetic agents for the treatment of diabetes are in development. This review
summarizes the current knowledge on the mechanism of action and biological effects of recently characterized SPPARγMs, includ-
ing metaglidasen/halofenate, PA-082, and the angiotensin receptor antagonists, recently characterized as a new class of SPPARγMs.

Copyright © 2007 Fang Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

PPAR-γ belongs to the nuclear receptor superfamily and
is a member of the NR1C subgroup that includes PPAR-α
and PPAR-δ. These receptors form heterodimers with the
retinoid X receptor (RXR), bind to PPAR response elements
(PPREs) in the regulatory region of target genes, and mod-
ulate their transcription. PPAR-γ is expressed most abun-
dantly in adipose tissue and is a master regulator of adi-
pogenesis. PPAR-γ activation promotes adipocyte differen-
tiation and is associated with induction of lipogenic en-
zymes and glucoregulatory molecules. PPAR-γ ligands in-
clude a surprisingly diverse set of natural ligands [1], such
as prostaglandin PGJ2, linolenic, eicosapentaenoic, doco-
hexaenoic, and arachidonic acids, and synthetic ligands,
such as the thiazolidinediones (TZDs), L-tyrosine-based
compounds, several nonsteroidal anti-inflammatory drugs
(NSAIDs), and a variety of new chemical classes.

The clinical relevance of PPAR-γ is highlighted by the
currently marketed antidiabetic blockbuster drugs, rosiglita-
zone (Avandia), and pioglitazone (Actos). These antidiabetic
drugs of the TZD class behave as potent and selective PPAR-
γ full agonists [2]. In humans, they enhance insulin action,
improve glycemic control with a significant reduction in the

level of glycated haemoglobin (HbA1C), and have variable
effects on serum triglyceride levels in patients with type 2 di-
abetes [3, 4]. Despite their proven efficacy and widespread
use, these drugs possess a number of deleterious side effects,
including significant weight gain and peripheral edema [5].

The weight gain associated with the use of TZDs is due
to multiple interacting factors. Because these agents promote
adipocyte differentiation and lipid storage [6], increased adi-
posity is likely to be a major cause of the observed weight
gain. Several studies have indeed shown that the weight gain
with TZDs is associated with an increase in subcutaneous
adipose tissue and either no change or a concomitant de-
crease in visceral fat (reviewed by Larsen et al.) [7]. Since
about 90% of type 2 diabetics are obese, treatment with
agents that exacerbate obesity is clearly suboptimal. In ad-
dition administration of TZDs is often accompanied by an
increase in plasma volume [8] and therefore fluid retention
is another potential cause of increased body weight.

Edema is a prominent problem in patients taking TZDs
particularly those who are also taking insulin or sulfony-
lureas, and TZD treatment has been linked to an increased
incidence of congestive heart failure [8, 9]. Diabetic macu-
lar edema has also been recently associated with glitazone
use [10]. Because of these serious concerns, several PPAR
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agonists have failed to progress to FDA approval. A num-
ber of glitazars have been terminated in late stage clinical
trials because of serious side effects and/or carcinogenesis-
related issues including Novo Nordisk’s ragaglitazar, Glaxo-
SmithKline’s farglitazar, Merck’s MK-767, Takeda’s TAK559,
and more recently Bristol-Myers Squibb’s muraglitazar (Par-
gluva) and AstraZeneca’s tesaglitazar (Galida). Such a high
attrition rate emphasizes the critical need for the discovery
and characterization of alternative PPAR modulators that
would retain the antidiabetic properties while avoiding the
side effects.

Starting less than 10 years ago, several TZD-like and
non-TZD-like partial PPAR-γ agonists that display insulin-
sensitizing activity associated with lower stimulation of adi-
pogenesis were described, leading to the emergence of the
concept of selective PPAR-γ modulators or SPPARγMs. This
concept is reminiscent of the SERM concept that proposes
that different estrogen receptor ligands can have different ag-
onist or antagonist properties depending on the cell context
and the specific target gene in question [11, 12]. SPPARγMs
bind in distinct manners to the ligand-binding pocket of
the PPAR-γ receptor, leading to differential cofactor displace-
ment and recruitment to the receptor, ultimately resulting in
tissue and promoter-selective gene expression. A compound
identified by the former Glaxo-Welcome, GW0072, one of
the first SPPARγMs described in the literature, helped to un-
ravel the partial agonist binding mode. All small molecule
PPAR-γ full agonists share a common binding mode, in
which the acidic head groups bind with 3 amino acid residues
(Y473, H449, and H323) within the ligand-binding pocket.
These interactions stabilize a charge clamp between the
C-terminal activation function 2(AF-2) helix and a con-
served lysine residue on the surface of the receptor, through
which coactivator proteins are recruited to the receptor [13].
GW0072 was shown to bind to PPAR-γ in a unique manner,
such that it does not directly interact with the AF-2 helix.
Compared to full agonists, the differential binding mode of
GW0072 resulted in a differential biological profile that in-
cluded partial receptor transactivation and reduced ability to
recruit specific cofactors and inhibition of adipocyte differ-
entiation [14–16].

The ability to recruit differentially certain cofactors, that
is, NR coactivators or corepressors to the PPAR receptor, ap-
pears to be the hallmark of the SPPARγMs. This likely re-
sults in a tissue-specific and promoter-selective expression
of a favorable panel of target genes [14, 16–18]. Based on
their in vitro and/or in vivo actions, coactivators have been
grouped into “adverse” or “beneficial” regarding their proad-
ipogenic or insulin-sensitizing effects. Adverse coactivators
include DRIP205/TRAP220 and TIF2. DRIP205/TRAP220-
deficient embryonic fibroblasts lack the ability to undergo
adipogenesis while TIF2 knockout mice are resistant to diet-
induced obesity and are more insulin-sensitive. In contrast,
beneficial co-activators include SRC1, as highlighted by the
phenotype of SRC1-deficient mice which have reduced en-
ergy expenditure and are prone to obesity [12, 19].

Although several PPAR-γ agonists have been classified as
SPPARγMs, the majority of these synthetic ligands remain to

be characterized at the molecular level or need to be evalu-
ated in in vivo preclinical models in terms of weight gain. The
published characteristics of several SPPARγMs have been re-
cently reviewed by others [12, 16, 48, 50] and are summa-
rized in Table 1. This review concentrates on the most re-
cent developments in the SPPARγM arena, including metagl-
idasen/halofenate, PA-082, and the angiotensin receptor an-
tagonists, recently characterized as a new class of selective
PPAR-γ modulators.

2. HALOFENATE AND METAGLIDASEN:
TWO SPPARγM WITH CLINICAL PROOF
OF CONCEPT

Halofenate is a racemic mixture of (−)- and (+)-(2-aceto-
aminoethyl [4-chlorophenyl] [3-trifluoromethylphenoxy]
acetate). It was tested clinically in the 1970’s as a hypolipi-
demic and hypouricemic agent. In addition to triglyceride
and uric acid lowering, significant decreases in fasting plasma
glucose were observed in type 2 diabetics. A recently pub-
lished study demonstrates that halofenate acts as a SPPARγM
[45]. In vivo, halofenate is administered as a prodrug ester,
which is rapidly and completely modified to its mature cir-
culating free acid form, halofenic acid (HA). In vitro, HA
directly binds to PPAR-γ and selectively activates PPAR-γ
with partial agonism in gene reporter assays (maximal ac-
tivity at ∼10–15% of the maximal activity of rosiglitazone).
HA is also capable of fully antagonizing the activity of the
full agonist rosiglitazone. Cofactor recruitment studies re-
veal that HA effectively displaces the corepressors NCoR and
SMRT but is unable to efficiently recruit coactivators (p300,
CBP, and DRIP205/TRAP220). HA also displays weak adi-
pogenic activity in human adipocytes and selectively modu-
lates PPAR-γ responsive genes in 3T3-L1 adipocytes. Com-
pared with rosiglitazone, HA is unable to efficiently induce
genes involved in fatty acid storage and transport, such as
FABP4, CD36, GyK, and PEPCK. In vivo, halofenate pos-
sesses acute antidiabetic properties in diabetic ob/ob mice.
Compared with rosiglitazone, long-term treatment of obese
Zucker (fa/fa) rats with halofenate has comparable insulin
sensitization efficacy in the absence of body weight increases.
Overall, these in vitro and preclinical data support the con-
cept of halofenate as a novel SPPARγM.

Metaglidasen (formerly MBX-102) is the (−) enantiomer
of halofenate which is currently in Phase II clinical de-
velopment as an oral glucose-lowering agent for the treat-
ment of type 2 diabetes. In vitro and in vivo preclinical
studies revealed that metaglidasen, like halofenate, behaves
as a SPPARγM with antidiabetic and hypolipidemic activ-
ity in multiple diabetic and insulin-resistant rodent models
[46]. Compared to full PPAR-γ agonists, metaglidasen acts
as a partial PPAR-γ agonist/antagonist that interacts with
PPAR-γ in a distinct manner. The key amino acid, Tyr473,
required for the binding between full agonists to human
PPAR-γ is not required for metaglidasen activity. Metagli-
dasen also shows the lack of ability or weak ability to recruit
coactivators, including CBP, DRIP205/TRAP220, and p300.
Consistently, when compared to rosiglitazone, metaglidasen
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Table 1: Investigational SPPARγM ligands for the treatment of type 2 diabetes.

Compound
Transcriptional
activity
(% full agonist)

Adipogenesis
(versus full
agonists)

Body weight gain
(versus full agonist)

Cofactors recruitment
capacity
(versus full agonists)

Development
stage Refs.

GW0072 ∼20–40% Partial No data

Decreased
(CBP, SRC1, TIF2, SCR3)

Preclinical [14, 15]Similar (PGC1-α)

Lack of recruitment
(NCoR, SMRT)

FMOC-L-Leucine ∼40–100% Partial None in a week

Decreased (p300, PGC1-α)

Preclinical [14, 20]Lack of recruitment
(CBP, TIF2, SCR3)

Inconsistent data for SRC1

nTZDpa ∼25% Partial Decreased No data Preclinical [21]

L-764406 ∼25% Partial No data Decreased (CBP) Preclinical [22]

YM440 ∼10–80% (CV-1) Minimal None Similar (p300, SRC1) Phase II
discontinued [23–25]

100% (hepG2)

DRF-2593
(balaglitazone) ∼78% Partial Moderate No data Phase II [26–28]

MCC555
(netoglitazone) ∼50–100% Similar None Decreased (CBP, SRC1) Phase II [29–31]

Similar (SMRT)

CLX-0921 100% Partial None in 9 days
Recruit CBP (no data in
comparison with full
agonists)

Preclinical
discontinued

[32]

Compound 24
(benzoyl-2-methyl
indole)

21% Partial Minimal No data Preclinical [33]

Compound 12
(N-benzyl-indole) 24% Minimal No data No data Preclinical [34]

Compound 5 (aryl
indole-2-carboxylic
acid)

31% No data Minimal
in 11 days No data Preclinical [35]

FK-614 ∼65% Similar Similar
Decreased (CBP, SRC1)

Preclinical [36–39]Similar (PBP, PRIP,
PGC1-α, NCoR, SMRT)

KR-62980 ∼30% None to partial Decreased
Decreased
(AIB-1, SRC1, TRAP220) Preclinincal [40]

Similar (TIF2, p300)

Telmisartan (ARBs) ∼30% Partial Decreased
Decreased (NcoR release)

Marketed [41–44]Similar (DRIP205)

Lack of recruitment (TIF2)

PA-082 ∼40% Partial No data
Decreased
(SRC1, TIF2, SCR3) Preclinical [14]

Similar (PGC1-α)

Halofenate/
metaglidasen ∼10–15% Partial Decreased

Decreased
(CBP, P300, TRAP220) Phase II

(metaglidasen) [45–47]

Similar (NCoR, SMRT)

AMG-131 Cell type Minimal No data Decreased (DRIP205) Phase II
[48, 49]

T-131 dependent Increased association (NCoR) discontinued
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shows moderate ability to promote adipogenesis and dis-
plays largely attenuated induction of PPAR-γ target genes
involved in fatty acid uptake, synthesis, and storage in pri-
mary human adipocytes and mouse 3T3-L1 adipocytes. In
vivo, metaglidasen lowers plasma glucose levels in multiple
diabetic rodent models (db/db mice and ZDF rats) to com-
parable levels seen with full agonists without causing sig-
nificant body weight gain, heart weight [46, 47], or plasma
volume expansion (unpublished data), a parameter believed
to contribute to edema. These observations further support
the SPPARγM concept, confirming the feasibility to separate
efficacy and side effects such as edema and weight gain. With
respect to edema, thiazolidinediones have been recently re-
ported to expand body fluid volume through PPAR-γ stim-
ulation of ENaC-mediated renal salt absorption [51, 52].
Determining if metaglidasen lacks the ability to stimulate
increased amiloride-sensitive Na(+) absorption would there-
fore be important. Consistent with the preclinical findings
reported above, in insulin-treated type 2 diabetic patients,
metaglidasen appears to have comparable efficacy to the mar-
keted TZDs Actos (pioglitazone) and Avandia (rosiglitazone)
while avoiding the limiting side effects of weight gain and
edema [53]. These results position metaglidasen as an opti-
mized SPPARγM with an improved safety profile in compar-
ison to these TZDs.

3. A NOVEL PROMISING CLASS OF SPPARγM: PA-082,
A KEY TO UNDERSTANDING THE DISSOCIATION
BETWEEN WEIGHT GAIN AND INSULIN
SENSITIZATION?

Researchers from Roche have recently described an isoquino-
line derivative PA-082 that behaves as a novel partial agonist
of the PPAR-γ receptor [14]. In cell-based reporter assays,
PA-082 was capable of transactivating PPAR-γ to about 40%
of the level achieved with rosiglitazone. Interestingly this par-
tial agonism was mirrored in its ability to cause partial re-
cruitment of some but not all coactivators to PPAR-γ. Using
a FRET-based in vitro system, the authors demonstrated that
PA-082 elicited a partial recruitment of an LXXLL peptide
derived from SRC1, TIF2, and SRC3 to the PPAR-γ ligand-
binding domain but full recruitment of the LXXLL peptide
derived from PGC1-α. Importantly this selective recruitment
of PGC1-α was also observed with the structurally unrelated
partial agonists GW0072 and FMOC-L-Leu but not with full
agonists that recruited all peptides equally. Preferential re-
cruitment of PGC1-α might therefore be a universal hall-
mark of partial agonists. When compared to the full ago-
nist rosiglitazone, PA-082 prevented triglyceride accumula-
tion during de novo adipogenesis of C3H10T1/2 cells and
was also able to antagonize rosiglitazone-induced lipid ac-
cumulation. In spite of the partial PPAR-γ agonism, PA-082
enhanced insulin-stimulated glucose uptake in adipocytes
as well as rosiglitazone suggesting that PA-082 may act to
improve whole body glucose disposal without increasing
adipose mass. An interesting difference between rosiglita-
zone and PA-082 was revealed by the observation that in
adipocytes PA-082 was more effective than rosiglitazone in

preventing insulin resistance induced by TNFα. The crystal
structure of PA-082 bound to PPAR LBD complexed with
LXXLL peptide from SRC1 was also solved. Not surprisingly
for a partial agonist, PA-082 did not interact with helix 12,
its binding occurring in a part of the binding pocket formed
by helices 3, 5, and 7, a site almost identical to that occupied
by GW0072 [15]. No preclinical in vivo data are currently
available for this compound.

4. ANGIOTENSIN RECEPTOR ANTAGONISTS: A NOVEL
APPROACH TO ADDRESS THE MULTIFACTORIAL
COMPONENTS OF THE METABOLIC SYNDROME?

Recently, angiotensin receptor blockers (ARBs) were re-
ported to have selective PPAR-γ modulating activity [41–
43, 54, 55]. Among the commercially available ARBs, struc-
turally unique telmisartan appears to be the most potent
in terms of PPAR-γ activation when tested at concentra-
tions typically achieved in plasma with conventional oral
dosing. A growing body of data indicates that telmisartan
is a SPPARγM. In cell-based gene reporter assays, telmis-
artan behaves as a partial agonist of PPAR-γ, giving ∼30%
of the maximal PPAR-γ activation by full agonist rosiglita-
zone [41]. Molecular modeling of telmisartan in the PPAR-
γ ligand-binding domain reveals a different binding mode
between telmisartan and rosiglitazone. Specifically, the su-
perimposition of telmisartan on the cocrystal structure of
rosiglitazone and PPAR-γ showed that telmisartan, like other
partial agonists including GW0072 and nTZDpa [15, 21],
does not appear to make direct contact with the activation
function helix (AF-2). Interaction with the AF-2 helix has
been shown to be responsible for receptor stabilization and
activation by full agonists of PPAR-γ [13]. The lack of inter-
action of telmisartan with the AF-2 helix likely explains its
inability to fully activate the receptor. This differential bind-
ing of telmisartan to PPAR-γ produced a distinct conforma-
tional change compared with rosiglitazone as assessed using
a protease protection assay [42]. This in turn results in se-
lective cofactor binding, with the absence of TIF2 recruit-
ment and an attenuated release of the nuclear receptor core-
pressor NCoR compared with rosiglitazone as assessed by
GST pulldown and FRET assays. Differential gene expression
profiles by telmisartan versus rosiglitazone were also seen in
adipocytes. Compared with rosiglitazone, telmisartan treat-
ment resulted in attenuated induction of genes involved in
FA transport and TG storage, including GyK and CD36. Al-
though telmisartan was able to induce adipocyte differen-
tiation [41, 56], the induction was relatively modest com-
pared with full agonists. This is consistent with previous re-
ports showing that other partial agonists of PPAR-γ are rel-
atively weak stimulators, or even inhibitors, of adipogenesis
[15, 21, 29]. These in vitro data suggest that telmisartan has
the potential to lead to less weight gain than the full ago-
nists. This was recently confirmed in vivo. Experiments us-
ing diet-induced obese mouse models showed that telmisar-
tan improved insulin sensitivity without causing weight gain
[42, 44]. In one study, 10 weeks of telmisartan treatment sig-
nificantly reduced fasting plasma insulin and glucose levels
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and improved glucose tolerance and insulin sensitivity. In
terms of body weight gain and body fat content, compared
with mice treated with vehicle or pioglitazone, mice treated
with telmisartan had significantly less weight gain and de-
creased body fat content in absence of change in food in-
take [42]. Similar results were reported in a second study
of telmisartan treatment for 14 days in diet-induced obese
mice. While improving the hyperglycemia, hyperinsulinemia
and hypertriglyceridemia, telmisartan treatment attenuated
the diet-induced weight gain and decreased the weight of vis-
ceral adipose tissue without affecting food intake. Further-
more, telmisartan treatment was also accompanied with in-
creased adiponectin mRNA in visceral white adipose tissue
and the serum adiponectin level, reduced the serum level
of resistin, increased UCP1 mRNA in brown adipose tis-
sue, and increased oxygen consumption [44]. This suggests
that telmisartan treatment may prevent the development of
obesity and related metabolic disorders by altering the levels
of adiponectin, resistin, and uncoupling protein 1 in these
mice. Telmisartan represents a new class of SPPARγM with in
vivo preclinical evidence of maintaining insulin sensitization
efficacy while lacking of or preventing weight gain. Although
it is unclear yet how much of the efficacy seen is contributed
by the attenuated body weight gain and decreased fat mass,
preclinical results indicate that telmisartan may be used for
treatment of metabolic syndrome and prevention of obesity
including visceral obesity.

Whether telmisartan has clinical efficacy in terms of in-
sulin sensitization remains an open question. Several re-
cent studies support the view that telmisartan exerts bene-
ficial effects on lipid and glucose metabolism that involves
more than its ability to block the angiotensin II receptor. In
an open label post-marketing surveillance study, telmisartan
treatment of patients with diabetes (40–80 mg/day in 3642
patients for 6 months) reduced serum glucose and TG com-
pared with baseline [57]. In a randomized, parallel-group
study with 40 patients, telmisartan treatment (80 mg/day
for 3 months) reduced fasting plasma glucose, insulin resis-
tance (HOMA-IR), and glycated hemoglobin compared with
baseline, whereas losartan treatment had no significant ef-
fect on any of these parameters [58]. Others angiotensinogen
receptor antagonists including losartan, eprosartan, valsar-
tan, and candesartan have also been investigated. In a ran-
domized double-blind, placebo-controlled study with 119
patients, telmisartan treatment (40 mg/day for 12 months),
but not eprosartan treatment, reduced plasma total choles-
terol, LDL cholesterol, and TG compared with placebo. No
change in BMI or glucose metabolism was observed in any
group [59]. In a recent study in which valsartan or can-
desartan were replaced with telmisartan in hypertensive pa-
tient with diabetes, the switch to telmisartan was associ-
ated with significant reductions in plasma insulin, serum TG,
serum CRP levels, as well as increases in serum adiponectin
[60]. Telmisartan also reduced serum insulin levels and
improved insulin sensitivity as assessed by the homeosta-
sis model in hypertensive nondiabetic patients [61]. Over-
all, compared with full PPAR-γ agonists, the magnitude of
the sensitizing effect observed with telmisartan appeared

weaker. In terms of adverse effects, no peripheral edema or
fluid retention was observed. So far no comprehensive clin-
ical study has evaluated the effects of telmisartan on body
weight or adiposity and therefore this remains to be clari-
fied.

5. SUMMARY AND FUTURE DIRECTIONS

The in vitro/in vivo data originating from several newly de-
scribed SPPARγMs validate the SPPARγM concept in term of
differential receptor binding, selective cofactor recruitment,
and subsequent selective gene expression regulation. The in-
ability to recruit adipogenic cofactors (such as TIF2), the at-
tenuated adipogenic gene expression profile, and the attenu-
ated adipocyte differentiation activity of these SPPARγMs are
consistent with their lack of weight gain in preclinical mod-
els. It is still unclear if the ability to recruit energy expendi-
ture prone cofactor PGC1-α is a common characteristic of
SPPARγMs. Nevertheless, the recruitment of PGC1-α may
provide a partial explanation in term of their ability to in-
crease UCP1 levels, energy expenditure, and for their an-
tiobesity effects. At this point, the predictive value of inter-
actions between PPAR-γ and other coactivators remains un-
certain and additional studies using various SPPARγMs are
needed to further our understanding of these complex inter-
actions. The key questions are does the optimal SPPARγM
already exist? If not, what would the ideal profile of such
an optimal SPPARγM be? And can we rationally design pre-
clinical strategies to identify it? There is no doubt that com-
parison of the differential cofactor recruitment and selective
gene expression regulation by various SPPARγMs will gen-
erate a wealth of information that will further our mech-
anistic understanding of SPPARγM biology. Recent clinical
data obtained with metaglidasen confirm that SPPARγMs
can maintain efficacy while lacking the typical side effects
such as edema and weight gain, supporting the concept that
the SPPARγM represents the next generation of insulin sen-
sitizers.
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