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A B S T R A C T   

The growth of commercial air transport arguably translates into more aging passenger aircraft 
queuing up for major maintenance, modifications, and/or freighter conversion with the aircraft 
maintenance industry. In the competitive business environment, this increased maintenance de-
mand possesses the potential to stress the industry and make safety vulnerable. In the aircraft 
maintenance industry, several aircraft accidents and incidents have resulted from organizational 
failure to learn from the past. To address this chronic problem, this study aims to (a) establish a 
learning process model for the aircraft maintenance industry, (b) identify the factors that influ-
ence learning, and (c) determine the effect of identified factors on learning from the past. A re-
view of scholarly articles and regulatory publications enabled the development of learning from 
the past process model and a data collection tool, followed by structural equation modeling to 
quantify the relationship among influencing factors. The study was conducted in the Indian 
aircraft maintenance environment and is based on the perspective of the front-line maintenance 
staff. The study found that safety communication is the decisive stage for learning from the past. 
Contextualization of the safety information and evaluating the lessons learned during safety 
communication strongly impact learning from the past, for which existing regulatory provisions 
are vulnerable. The findings of this study are meant to assist State regulators and management of 
the aircraft maintenance industry; nevertheless, safety managers and practitioners in other ultra- 
safe, high-risk sectors may also apply the results in compliance with the respective regulatory 
guidelines.   

1. Introduction 

Today, aviation has an experience base of over a century, and the plethora of ‘safety data’ and ‘safety information’ derived from the 
investigation reports supposedly available to stakeholders. However, numerous industrial accidents indicate that organizations have 
failed to learn lessons from the past [1]. To exemplify this, an Indian scheduled operator flight 9W 2423 met with an accident during 
the landing roll at Khajuraho, India airport on April 13, 2015 [2]. After touching down the runway, the aircraft deviated to the left from 
the center line as the left main landing gear (MLG) collapsed. The aircraft’s left engine rubbed the runway surface for over 100 meters 
before stopping. The aircraft sustained substantial damage (one of the criteria to define an aircraft accident). In the post-accident 
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inspection, the left MLG aft trunnion pin (a critical part of the MLG assembly that supports and pivots the landing gear) was found 
sheared off. Failure of the aft trunnion pin was determined as the immediate cause of the accident. Consequently, the runway was 
blocked for over three hours before normal operations were resumed. On 03 March 2016, almost a year later, the same scheduled 
aircraft operator, flight 9W 354, met with an accident during the landing roll at Mumbai, India airport [3]. This time, after touching 
down, the aircraft veered to the right from the centerline and fortunately cleared the runway before the collapse of the right MLG on 
the adjoining taxiway. The aircraft sustained substantial damage, and this time, the right MLG aft trunnion pin was found sheared off. 
Both the trunnion pins were fitted in the aircraft after overhaul from the same agency. The investigation reports of both accidents are 
available in the open domain and can be studied to get more insight into the accidents. The purpose of citing these two safety oc-
currences is to draw attention to the aircraft maintenance industry’s complexities and underline the organizational learning from the 
past. 

The commercial aircraft maintenance industry, conventionally known as the Maintenance, Repair, and Overhaul (MRO) sector in 
the aviation business ecosystem, is a critical service provider. The growth of the MRO market is estimated to be around 115 billion US 
Dollars by 2028 [4]. The commercial air transport sector is poised to grow, especially in the Indian subcontinent and Asian Pacific 
regions [5,6]. This growth means more airlines, increased aircraft in operations, and additional departures with more accidents and 
incidents (if the present rate of 1.93 accidents/million departures [7] is maintained). On the other hand, the cascading effect of this 
growth is expected to translate into more aging passenger aircraft queuing up for major maintenance, modifications, and/or freighter 
conversion with the MRO industry. This increased aircraft maintenance demand, along with the prevailing competitive business 
environment, possesses the potential to stress the aircraft maintenance industry and make safety vulnerable [8]. illustrate that “all the 
low-hanging fruits have already been picked,” now, the real challenge for service providers and national safety regulators is improving 
the safety of an already ultra-safe industry. This statement implies that all the technological innovations, metallurgical advancements, 
system automation, improved regulations, and human factor interventions are already practiced in managing safety in the aviation 
industry and, thus, intend to underscore the need for a more micro-level understanding of aviation business processes. Perhaps the 
solution to improve safety from the present level is probably seen in the all-inclusive participative contemporary safety management 
framework, which is essentially a pragmatic approach rather than prescriptive [9]. In this framework, one of the essential aspects is 
learning from the past, which is fundamentally a reactive safety management method to prevent at least the recurrence of accidents 
and incidents. At the same time, this methodology has the potential for the front-line maintenance staff to gainfully utilize safety 
information learned from the past for hazard identification and risk management (HIRM) in daily work. 

Learning from the past is not a novel concept. Researchers have explored this subject under the different names of “learning from 
incidents (LFI),” “learning from accidents and disasters,” and “learning from experience or experience feedback” etc. [10,11]) [1, 
12–21]. The abovementioned studies have predominantly viewed the ‘past’ based on the occurrences of accidents and incidents; this 
approach may have the possibility to confine learning from the past as aviation is one of the safest means of transportation, and 
accidents or even incidents are rare. This concept’s more significant operational dimension has surfaced in light of the current safety 
management regulatory framework, which underscores drawing safety data and information from day-to-day maintenance activities 
rather than relying only on rarely occurring events [22]. In the aircraft maintenance industry, while reporting accidents, serious in-
cidents, and incidents falls under the mandatory occurrence reporting (MOR) category, the hazards and near misses that frontline 
maintenance staff observe in day-to-day work are reported under voluntary reporting. Contrary to the previously used term ‘Learning 
from Incidents’ (LFI), this study uses the term ‘LPSIs’ (Learning from Past Safety Investigations) for two main reasons. Firstly, ‘safety 
investigation’ applies to both the rare accidents (reported under MOR) and the near misses or hazardous conditions observed during 
the daily maintenance activities (voluntary reporting). Both reports, when investigated, generate safety data and information that can 
potentially prevent recurrences of accidents and enhance overall safety standards. Secondly, besides the informal and unrecorded 
experience sharing amongst the maintenance personnel, the ‘safety information’ drawn from these investigation reports is the solitary 
organizational learning repository. 

The critical aspect of the LPSI is why organizations are not learning, or, in other words, what factors influence the LPSIs despite the 
necessary regulatory framework? The objective of this research is to identify the influencing (barrier and catalyst) factors (organi-
zational and individual) and measure the impact of each factor on learning from the past in the regulatory framework. Studies 
mentioned in the previous paragraph have followed the qualitative approach wherein accurate weighing of factors influencing LPSIs is 
unavailable. Moreover, no study has been conducted in the aircraft maintenance industry where factors influencing LPSIs were 
identified and measured. Further, unlike previous research, this study views the ‘past’ from two different perspectives. Firstly, the 
‘safety information’ produced from investigating historical accidents and incidents, and secondly, ‘safety information’ derived by 
investigating the hazards, errors, and near-misses reported by the front-line maintenance staff in day-to-day functioning; in this case, 
the past may be very recent, depending upon organizational agility. Therefore, this research article aims to (a) establish the ‘learning 
from past safety investigation’ process model for the aircraft maintenance industry, (b) identify the factors that influence the learning 
from past safety investigations, and (c) develop a model to determine the effect of identified factors on learning from past safety 
investigations. 

In this study, the frontline maintenance staff of the aircraft maintenance industry is at the center stage. This consideration is based 
on two reasons. Firstly, they are the first to observe hazards in the aircraft maintenance process, and secondly, their actions are the last 
before the aircraft is released for flying after maintenance. These two factors make them valuable assets for this study. Moreover, the 
utility of lessons learned from past safety investigations will likely be demonstrated in hazard identification capabilities while 
maintaining an aircraft. The standard terms, for instance, “accident,” “serious incident,” “incident’, “safety data,” “safety information,” 
“causes,” and “contributory factors” are used as defined in ICAO Annex 13, twelfth edition, ICAO Annex 19, second edition and ICAO 
Safety Management Manual fourth edition. The term “safety occurrences” implies accidents, serious incidents/incidents and the words 

A. Tyagi et al.                                                                                                                                                                                                          



Heliyon 9 (2023) e21620

3

“maintenance staff” or “maintenance personnel” includes but is not limited to licensed aircraft maintenance engineers (AMEs), hangar 
floor supervisors, workshop supervisors, non-certifying staff working with AMEs, in tool and component (bonded or quarantine) stores, 
monitoring and updating components, engine, and aircraft performance and utilization data, etc., working in MRO sector. Finally, the 
findings of this study are meant to assist State regulators, management of the MRO sector, and safety practitioners working in other 
high-risk ultrasafe industries in identifying the weak areas in their context in the various stages of the LPSI process model and 
formulating safety management strategies to enhance safety. 

2. Literature review, hypothesis, and conceptual model 

2.1. Literature review 

This section examines applicable aviation regulations to the aircraft maintenance industry and scholarly research articles on 
learning from the past concept. The systematic literature review of [23] is the baseline for distinguishing the research articles, whereas 
updated regulatory publications of ICAO are referred for regulations. 

2.1.1. Regulatory framework and LPSIs 
The prerequisite for learning from the past is the organization’s formally structured learning system wherein safety information is 

drawn from the occurrences based on investigations and communicated to stakeholders for individual and organizational learning 
[13]. The aviation industry is highly regulated, and its organizational structure, policies, and procedures comply with global regu-
lations. ICAO Annex 13 [22] deals with aircraft accident and incident investigation, which mandates that each safety occurrence be 
reported and investigated to prevent at least the recurrences. The critical aspect of preventing recurrence is the extent of individual and 
organizational learning. To facilitate this, the regulatory framework of ICAO Annex 19, “Safety Management” [24], is currently 
implemented in the global MRO sector. To comply with the standards and recommended practices (SARPs) of Annex 19, States 
formulate their State Safety Programmes (SSPs) to ensure that each stakeholder of the aviation industry implements a Safety Man-
agement System (SMS) in its business processes. ICAO document 9859, fourth edition [25] is the Safety Management Manual (SMM) 
intended to assist States and the aviation industry in implementing SSPs and SMS at appropriate levels. These current safety man-
agement regulations are a paradigm shift and assert that employees’ knowledge, experience, suggestions, and opinions must be drawn 
to improve safety performance [26]. This is an all-inclusive and participatory approach to safety management, and its implementation 
and maturity levels will likely differ in the global aircraft maintenance industry. 

Hazard Identification and Risk Management (HIRM) is the cornerstone of the current SMS, wherein hazards are typically identified 
based on two methodologies, i.e., reactive and proactive [25]. Safety information drawn from the safety investigation reports of ac-
cidents and incidents can avert the recurrences if appropriately utilized at individual and organizational levels. In contrast, voluntary 
reporting is directly from the front-line maintenance staff they encounter while performing aircraft maintenance activities on a 
day-to-day basis. When investigated, this anonymous or confidential reporting system provides safety information about the orga-
nization’s latent unsafe conditions or acts without legal and administrative obligations [25,27]. A voluntary reporting mechanism 
offers learning opportunities to maintenance staff and aircraft maintenance organizations without suffering severe consequences if 
effectively and efficiently exercised [28]. In the regulatory framework, although voluntary reporting is considered a proactive hazard 
identification method, the safety information drawn from this methodology provides enhanced hazard identification capabilities for 
safety management, as today’s reported hazard is a piece of safety information for tomorrow’s safe work. 

2.1.2. LPSI process model: generic 
Learning is difficult to define and is one of the most intensely studied topics [29]. However, in the industrial safety environment, 

learning is; drawing information from the personnel involved in the safety occurrence and from the safety occurrence itself and 
converting it into knowledge for the entire organization, or at least for the stakeholders for whom it is critical [13]. In the context of 
this study, the learning is described as enhanced hazard identification and risk management capabilities of front-line maintenance staff 
based on the safety information drawn from past investigations. Ideally, enhancement of capabilities to an extent at least the hazards 
reported and causes of accidents identified in the past safety investigations are promptly identified and managed. Learning at the 
individual level (front-line maintenance staff of the aircraft maintenance industry) and learning at the organizational level are 
different, with the former being necessary but insufficient for the latter [30]. The underpinning of the learning theory [31], the 
conventional term of single-loop learning, primarily applies to the front-line maintenance staff by demonstrating improved hazard 
identification skills, while double-loop learning is mainly for the management by reviewing policies, procedures, and resource 
allocation. 

A model of accident investigation and prevention was developed by Ref. [32], also known as the CHAIN model or model of 
experience feedback. It consisted of five stages; ‘reporting,’ ‘selection,’ ‘investigation,’ ‘dissemination,’ and ‘prevention,’ with all the 
stages contributing to the learning process to varying degrees. Another learning from the past model consisting of eleven steps under 
four stages was presented by Ref. [1]. The first stage included safety occurrence reporting and analysis; the second stage focused on 
formulating a practical action plan based on the analyzed results; the third was related to resource allocation for the action plan; the 
last stage evaluated the learning. This model can also be compared with the [33] Plan-Do-Study-Act cycle, which describes learning as 
an iterative process in which results are studied, and causes of failure are investigated to formulate revised plans for action. A six-stage 
LFI process model was developed based on the energy sector studies [18]. All the mentioned models are predominantly in unison and 
create an envelope for learning with the starting point ‘reporting’ or, in other words, the origin of learning contents. At a glance, the 
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stages/activities of all three models can be viewed in Fig. 1. 

2.1.3. LPSI process model: aviation industry 
There is no process model based on aircraft maintenance industry studies per se; therefore, to achieve the study’s objective and 

underscore the difference in activities of the aircraft maintenance industry, the researchers have formulated the LPSI process model 
(Fig. 2) based on the models described in the previous paragraph and the regulatory framework [25]. The critical differences are in the 
‘reporting’ and ‘investigation’ stages. Aircraft accidents, serious incidents, and incidents are compulsory to report (rather too big to 
hide, hence reported) and follow mandatory occurrence reporting (MOR) procedures. The state is responsible for investigating such 
reports by following the SSP based on the SARPs of ICAO Annex 13. In contrast, the frontline maintenance staff and other stakeholders 
are expected to voluntarily report hazards, unsafe conditions, unsafe acts, errors, and near misses. Voluntary reporting is investigated 
in-house by the concerned organization. Both safety investigations aim to generate safety information for dissemination to the relevant 
stakeholders at the ‘safety communication’ stage. Finally, the effectiveness of LPSI in an organization is evaluated at the ‘Safety audit’ 
stage by the organization itself and the regulatory agency. All the stages of the process model have the potential to offer learning value 
to the stakeholders; however, ‘safety communication’ is the formal learning zone for the maintenance staff and the organization in 
which safety data extracted from investigations are contextualized into safety information and is communicated in written (emails, 
safety circulars, bulletins, newsletters, etc.) and audiovisual (safety training, human factor training, continuity training, safety 
meetings, etc.) mode to organizational entities. 

2.2. Barriers in LPSI Process Models 

‘Barriers’ are the factors that impede learning in one or more learning stages/activities [15]. All four stages of [1] model were 
identified with barriers that adversely affected the learning process. Another analogous study conducted focus group discussions with 
seven companies (four chemicals, one manufacturing and service provider to chemical plants, and a construction company) and 
identified the causes and conditions that impede learning from the past [15]. The study used the same model [1] and underscored the 
reluctance of the employees to report safety occurrences. Since the ongoing research is specific to the aircraft maintenance industry, 
the barriers to the different stages (Fig. 2) are viewed in the light of ICAO regulations which all the stakeholders comply with in their 
business processes. 

2.2.1. Barriers to the ‘reporting’ stage 
In the case of accidents and incidents (MORs), the ‘reporting’ stage is not assessed as a barrier. Also, no scholarly literature sub-

stantiated the bottlenecks in safety reporting for accidents and incidents, or maybe owing to widespread media coverage and other 
social implications; these safety occurrences are impossible to conceal for organizations/individuals, hence reported. Nevertheless, 
reporting hazards, latent conditions, near misses, and events of low safety consequences dependent on the individual maintenance staff 
(voluntary reporting) remains a concern in the aviation sector. Voluntary reporting is critical for safety management, and (Reason, 
1997) illustrates that minor incidents and near misses, not with severe consequences, are not reported. In aviation organizations 
consisting of typically all operational streams such as flying, air traffic controls, and maintenance, the barriers impacting the effec-
tiveness of the ‘voluntary reporting’ channel were classified as ‘organizational barriers, ‘work environment barriers,’ and ‘individual 
barriers’ [26]. Although the study identified the reporting system barriers based on a military aviation organization survey, most 
attributes are also consistent with commercial aviation. The motives for aircraft maintenance staff to remain silent and not report 
unsafe conditions and acts observed at work were investigated and categorized under four broad categories: prosocial, disengagement, 
fear, quiescence, and acquiescence [27]. [28] highlighted the two most successful voluntary reporting programs, i.e., the Aviation 
Safety Reporting System (ASRS) and British Airways Safety Information System (BASIS). The identified three essentials for a thriving 
voluntary reporting culture are the trust between the reporters and management, the ease of reporting experienced by the reporters, 
and the usefulness of reporting as perceived by the reporters [28]. Based on the abovementioned literature review, obtaining both 
facets, i.e., the barriers and facilitating factors of ‘safety reporting’ (voluntary reporting), was possible. Therefore, given the SMS 
framework’s intent of an all-inclusive participatory ecosystem in the organization, this study views the ‘voluntary reporting’ system 
primarily as an organizational management function and explores the perception of maintenance staff towards it. Based on the above 
literature review, the following hypotheses are formulated: 

Fig. 1. Lfi process models.  
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H1. In the voluntary reporting stage, a ‘lack of trust’ between the maintenance staff and management is negatively related to the 
safety communication stage of the LPSI process model. 

H2. In the voluntary reporting stage, the ‘complicated voluntary reporting procedure’ is negatively related to the safety commu-
nication stage of the LPSI process model. 

H3. In the voluntary reporting stage, the perception of the ‘lack of usefulness of voluntary reporting’ in maintenance staff is 
negatively related to the safety communication stage of the LPSI process model. 

2.2.2. Barriers to the ‘safety investigation’ stage 
The next stage after ‘safety reporting’ is ‘safety investigation.’ On ‘safety reporting,’ the investigation route is bifurcated into two 

streams based on the reporting category, whether MOR or voluntary reporting (Figure: 2). Both streams generate critical ‘safety data’ 
and ‘safety information’ for an individual (maintenance staff) and the organization. In the case of MORs, numerous accident inves-
tigation methods are described in the scholarly literature; however, an aviation safety occurrence reported under the MOR category is 
investigated following ICAO Annex 13 and the associated safety manual (document 9756 part I to IV). To understand the vulnerability 
of these regulatory guidelines, the first edition of Annex 13 was adopted on 11 April 1951 and regularly amended and revised after 
that; probably one of the reasons behind these revisions was continued learning. On the analysis of this base document, it was observed 
that the Accident/Incident Data Reporting System (ADREP) was introduced in the ninth edition of Annex 13 in Feb 2001; the revised 
provision of ‘causes’ and ‘contributory factors’ included in tenth edition in Feb 2010 and so on. Currently, ICAO Annex 13, the twelfth 
edition (eighteen amendments), is the document that provides SARPs for investigating aircraft accidents and incidents. The purpose of 
mentioning the developmental background of this regulatory document is to underscore the inadequacy of ‘safety data’ and ‘safety 
information’ generated from past investigations. Based on the past investigation report analysis, it was observed that ‘investigation’ is 
an area that lacks objectivity and focus [23], and the regulatory framework does not include the guidelines and quality standards 
norms of safety recommendations [34]. The example of the Indian scheduled operator quoted in the ‘Introduction’ section can also be 
viewed with this reflection. However, the shortcomings of past investigations are beyond the scope of this study, although they are 
credible barriers to comprehensive learning from the past. This study takes safety data and information produced by past investigations 
as potential learning content. Since maintenance staff is the core of this study, for this stage, the scope of the study includes the 
contribution of maintenance staff in safety investigations and the outcomes they perceive from it. ICAO document 9756-part III [35] 
deals with investigating a safety occurrence and provides guidelines to ascertain maintenance errors on different counts, such as 
human factors, skill, knowledge, equipment, etc. An honest and proactive contribution of the maintenance staff in the investigation 
process perhaps generates more credible safety information about the hazardous latent conditions in the organization. Thus, this study 
evaluates the contribution of maintenance staff to investigating processes in ascertaining the causal and contributory factors of safety 
occurrences. This aspect will likely provide insight into maintenance staff’s perception of the Reason’s ‘blame cycle,’ and the regu-
latory intent of ‘investigation is to prevent a recurrence.’ Based on the above literature review, the following hypothesis is formulated: 

H4. ‘Lack of contribution’ of the maintenance staff in the safety investigations is negatively related to the safety communication stage 
of the LPSI process model. 

In the case of investigation of voluntary reportings, management’s intent and actions on voluntary reportings determine the quality 
and quantity of content for LPSI [13]. The generation of safety information through the investigation of voluntary reports is hindered 
as maintenance staff does not actively participate in voluntary reporting of unsafe conditions and acts because of several factors, 
including organizational culture, feedback, and trust in management [27]. In other words, if voluntary reportings are not appropriately 
investigated, this eventually becomes the barrier to ‘safety reporting’ (included under the barriers to voluntary reporting) and, in turn, 
to LPSI. 

2.2.3. Barriers to the ‘safety communication’ stage 
In pursuit of identifying the other barriers to the LPSI process model, scholarly literature suggested that the investigation reports 

are generally voluminous, and technicalities, including the expression of contents and the taxonomy used, are unavailable in a suf-
ficiently accessible format [12]. This underscores the need to analyze and formulate the extracted ‘safety data’ and ‘safety information’ 
from the ‘safety investigations’ in the organizational context wherein maintenance staff comprehends the objective aspects of what 

Fig. 2. LPSI Process Model for Aircraft Maintenance Industry 
(Developed by the authors based on literature review and the regulatory framework). 
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Table 1 
Influencing factors to LPSI.  

Stages Construct and Description Research and Regulatory 
publications 

Voluntary Reporting Lack of Trust: Trust between the frontline maintenance staff and the management of aircraft maintenance facilities. [26,28], and [27]. 
Complicated reporting procedure: The extent to which the frontline maintenance staff finds voluntary reporting difficult. 
Lack of Utility of Reporting: The degree of benefit (in terms of prompt action by management, recognition, organizational policy, etc.) perceived by the frontline 
maintenance staff for voluntary reporting. 

Safety Investigations Lack of contribution: The extent to which frontline maintenance staff participates in a safety investigation. [28,35]. 
Safety 

Communication 
Safety Communication: The extent to which safety information drawn from past safety investigations is organized in an organizational context for communicating to 
maintenance staff through emails, newsletters, safety circulars, bulletins, etc., and safety training, human factor training, continuity training, safety meetings, etc. 

[1,36], 
[20,25,37] 

Safety Audit Organizational Commitment to Safety Communication: The extent to which resources regarding time, technology, and money are allocated to safety 
communication. 

[21,37] 

Learning Indicators to LPSIs. [13,25]  
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happened and why the accident/incident occurred [36]. Conceptually, this contextualized safety information indicates hazards in the 
working system that either have caused/contributed to past events (applicable for MOR) or have the potential to cause/contribute to 
future events (relevant to voluntary reports) [25]. This is the essence of learning for HIRM and is closely associated with the orga-
nization’s communication strategies and the ‘safety communication’ stage of the LPSI process. ‘Safety communication’ is a formally 
structured process, and in the aircraft maintenance industry, safety information drawn from safety investigations is communicated to 
stakeholders in written form through emails, newsletters, safety circulars, bulletins, etc., and audiovisual modes of safety training, 
human factor training, continuity training, safety meetings, etc., wherein each method of communication have barriers as argued by 
Refs. [1,20,25,36,37]. Therefore, it is hypothesized that: 

H5. The safety communication stage of the LPSI process model is positively related to learning from past safety investigations. 

2.2.4. Barriers to the ‘safety audit’ stage 
‘Safety audit’ in the aircraft maintenance industry can be viewed with two connotations: the internal audit, usually conducted by 

the organization itself (in some cases, may be outsourced to a third party), and the external audit conducted by the regulatory agency. 
A safety audit (internal or external) aims to verify compliance with the regulations and conformance with the procedures and good 
safety aviation practices [38]. However, safety oversight is restricted to only the delivery of training programs rather than verifying 
their effectiveness during the ‘safety audit’ stage [21]. Organizations focus more on remedial measures recommended in safety in-
vestigations rather than preventing recurrence or remedy quality [1]. The financial implication to the organization is seen as a sig-
nificant factor when planning safety communication, such as training need analysis, continuity training programs, and human factor 
training [20]. In the competitive business environment, aircraft maintenance organizations are inclined to demonstrate minimum 
compliance rather than only consider it a baseline. Based on the above literature review, the following hypothesis is formulated: 

H6. Organizational commitment is positively related to the safety communication stage of the LPSI process model. 

It is important to note that (mentioned in the previous paragraph) the aircraft safety occurrence investigation procedure has 
undergone various changes, including common ADREP taxonomy and many such requirements with time. Therefore, converting 
‘safety data’ and ‘safety information’ in an organizational context is the most critical step for learning effective and efficient HIRM. 
Finally, to ascertain the effectiveness of the learning of the maintenance staff, “A model for levels of learning from incidents” [13] was 
taken as a reference along with the regulatory publication [25]. The barriers to various stages of LPSI are summarized in Table 1. It can 
be assimilated that although the stages are named independently, they are interlinked, and the performance of one stage affects the 
other stages. 

2.3. Conceptual model 

The two primary outcomes of the previous section are, firstly, the LPSI model specific to the aviation industry (Figure: 2) 
underpinned by the models of [1,18,32] and the regulatory framework [25] and secondly, the identification of the factors affecting 
LPSI based on [13,21,23,26,37]. Combining the two, a conceptual model depicting the effect of variables on safety communication 
and, eventually, on learning from the past is developed by the researchers (Fig. 3). 

Fig. 3. The conceptual model to assess the effect of barriers on learning from past safety investigations.  
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3. Research methodology 

Partial Least Square-Structural Equation Modeling (PLS-SEM) is a class of multivariate analysis techniques that includes factor 
analysis and regression, which enables the researchers to simultaneously evaluate the relationship between measurable (items) and 
unmeasurable variables (constructs) and between the constructs [39]. This method develops more accurate estimates and avoids the 
indeterminacy problem as its algorithm calculates construct score as precise linear combination of the observed variables [40]. The 
multivariate normality of the data set was tested using Mardia’s multivariate calculator. The skewness and kurtosis were observed to 
be out of limits of ±1 and ± 20, respectively, thus ruling out the multivariate normality and suitability of the data’s parametric 
statistical analysis Covariance Based-Structural Equation Modeling (CB-SEM). Therefore, in this study, PLS-SEM is preferred over 
CB-SEM for the complexities of the latent variables and their indicators to identify key driver constructs [40]. 

3.1. Measuring tool 

This study views the influencing factors to LPSIs based on the perspective of the front-line maintenance staff. To measure their 
perceptions, a qualitative data collection tool, ‘survey,’ was developed by the researchers. The survey questionnaire was drafted on the 
literature review outcomes, which yielded an item pool of 48 questions to reflect on seven constructs. Underpinned on the developed 
LPSI process model, while three constructs reflect the factors influencing the voluntary reporting stage, the other three represent the 
‘safety investigation,’ ‘safety communication,’ and ‘safety audit’ stages. The last construct is an indicator of learning. The items under 
each construct of the survey questionnaire are adapted from previous research articles and/or regulatory publications. For instance, 
two studies associated with the aircraft maintenance industry [26,27] have identified the factors that adversely influence voluntary 
reporting by the maintenance staff, whereas [28] underscores the essentials for a successful voluntary reporting system. Hence, in the 
questionnaire, three essential features of a successful voluntary reporting system, i.e., trust, ease of reporting, and usefulness, are 
defined as constructs, and the items are adapted based on [26,27]. The items of constructs ‘safety investigation,’ ‘safety communi-
cation,’ and ‘safety audit’ stages were adapted from Ref. [18] and subsequently developed in the aviation context as the study was 
based on energy sector findings. Finally, a construct ‘learning indicator’ was developed to manifest the learning from the past. As 
mentioned earlier (para 2.1.2), the scope of this study is limited to viewing learning from the past as a continual demonstration of 
improved hazard identification and risk management capabilities of front-line maintenance staff based on the safety information 
drawn from past safety investigations. The items of this construct are based on the regulatory requirements of ICAO Annex 19 and 
SMM. In the validation process of the questionnaire, two academicians (one from organizational behavior and another one from a 
decision science background) and three aircraft maintenance experts were invited to validate the formulated item pool. Researchers 
designed a validation form for this purpose, and each expert’s opinion was sought independently for each item. The validation form 
had 3 Rs (Retain, Remove, and Review) options against each item, and experts were requested to elaborate on the reason in case 
“Remove” is recommended. Finally, a 42-item data collection tool was developed to reflect seven constructs on a 5-point Likert-type 
scale for data collection, having a neutral point to eliminate the forced response. To maintain unidimensionality, all the items of a 
construct are either positively or negatively worded [41]. Finally, a mix of positive (for three constructs) and negative (for four 
constructs) items are used in the questionnaire. The formulated survey form was piloted with nine maintenance staff for face vali-
dation, and all 42 items were retained for subsequent data collection and quantitative analysis. The coding details of each construct 
along with other acronyms used in this study and survey questionnaire are provided in Appendix 1 and Appendix 2 respectively. 

3.2. Sample size 

PLS-SEM is characterized to obtain solutions with small sample sizes of the models with multiple constructs and items [42]. 
Contrary to this [43], suggest the possibility of questionable results if fundamental sampling theory guidelines are not complied with. 
An extensively used “10-times rule” suggests ten times the maximum number of arrows pointing to a particular latent variable to 
ascertain the minimum sample size in PLS-SEM [44]. Although this sample size estimation is simple and user-friendly, it has been 
attributed to inaccurate estimation in the past [45]. The “inverse root square method” for minimum sample size estimation is 
reasonably accurate and straightforward [44]. Specific to this study, while the “10-time rule” suggests a minimum sample size of 100, 
the “inverse root square” method with a minimum path coefficient between 0.11 and 0.20 at a 5 % significance level and a power of 80 
% recommends the minimum sample size of 155 [46]. A-priori online calculator with a medium (0.3) anticipated effect size, 0.8 
statistical power level, and p-value of 0.05 suggests the minimum sample size of 170 to detect the effect and 200 for model structure 
[47]. Based on these three different approaches, it is reasonable to summarize that the minimum sample size of 200 is sufficient to get 
credible results. Therefore, this study is synthesized on the sample size of 287 valid participants to achieve its objectives. 

3.3. Data collection 

To achieve the study’s objectives, the target population is maintenance staff (defined in the introduction section), recently retired 
and/or working in the Indian aircraft maintenance industry. A mix of purposive and snowball sampling was used for data collection. 
While the purposive sampling approach guides toward the object of the study and provides essential views of the participants [48], the 
snowball sampling approach relies on networking and referrals for data collection [49]. Mixing both sampling approaches will likely 
induce relevancy and efficiency in the data collection. The data was collected through a survey questionnaire. The first author was a 
delegate at an International Conference on Emerging Trends in Aviation MRO Industry [EAMRO 2023] organized on 22 April 2023 at 
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the Indian Aviation Academy, India. The event had the participation of experienced maintenance staff from Indian MROs. Following 
the networking and referrals approach, this opportunity was utilized for data collection, and eventually, 311 responses were received 
against the distribution of four hundred survey forms. Eventually, 287 survey forms are identified as valid by applying the filtering 
criteria that respondent must have completed formal SMS training organized by the employing organization or with the regulatory 
agency-approved establishment. 

4. Results 

4.1. Demographic profile 

In the survey form, the licensed AMEs are classified into two broad categories, category A1 and category (B1, B2, and/or C), 
primarily to differentiate the maintenance expertise of the maintenance staff directly working in aircraft line maintenance, hangar 
floor, component workshops, and engine shops. Non-licensed maintenance staff, personnel working in tool stores, spare warehouses, 
and/or having limited maintenance approvals are placed under the ‘others’ category. Further, only those forms were included in the 
study wherein the respondent has completed formal SMS training organized by the employing organization or with the regulatory 
agency-approved establishment. This filtering criterion aims to include responses aligned with the current regulatory framework, 
resulting in 287 valid participants out of 311 received responses. The demographic and professional details of the valid respondents are 
depicted in Table 2. 

4.2. Measurement model 

The outer model is a reflective measurement model as a particular latent variable’s independent measurable variables (indicators) 
are substantially correlated, and removing any indicator does not change the nature of the latent construct [42]. The reporting 
sequence of results largely complies with the [42] recommendations. Analysis of the measurement model is carried out in three steps. 
First, the reflective indicator loading assessment; second, the reliability and the convergent validity check; and lastly, the constructs’ 
discriminant validity assessment. 

4.2.1. Indicator loading 
The latent variables, a brief description of associated items with the codes, and the psychometric analysis of the measurement 

model are given in Table 3. Three items, SC1, SC2, and SC5 of the ‘Safety Communication (SC),’ and CSIN5 of the ‘Contribution to 
Safety Investigations (CSIN)’ constructs are below the acceptable reflective indicator loading limits (0.708). The SC construct’s 
Average Variance Extracted (AVE) (0.480) is also below the minimum acceptable level (0.500). While items SC1 and SC2 are far below 
the threshold value of loading SC5 at 0.646 and CSIN at 0.658, loadings are at the margin. Therefore, only two indicators highlighted in 
red (SC1 and SC2) are discarded from the analysis as they appear to reflect some other constructs. Discarding these two items from the 
study, the revised AVE (0.593) of the construct also falls within acceptable limits. 

4.2.2. Reliability and convergent validity 
The second step of assessing data reliability is measuring “composite reliability” and “Cronbach’s alpha.” While the measurement 

of the former is too liberal, the latter is considered too conservative, and the actual reliability of the construct lies within these two 
extreme values [42]. To address this issue [50], suggested a more accurate measure of construct reliability in the form of “rho-a,” 
which varies between 0.881 and 0.915 for the data set. The convergent validity of each construct measures the variance of its items, 
and the metric used for this is the average variance extracted (AVE), with 0.50 as the minimum acceptable AVE. The AVE values of 
constructs lie between 0.593 lowest to 0.704 maximum (see Table 4). 

Table 2 
Demographic and professional profile of the respondents.  

Age n Academic Qualifications n 

Less than 30 years 58 High School 22 
30–40 years 97 Intermediate (10 + 2) 46 
41–50 Years 85 Bachelor’s 176 
More than 50 years 47 Postgraduate and above 43 

Gender  Aircraft Maintenance Experience  

Male 278 Ten years or less 56 
Female 09 11–20 years 105 
Others 00 21–30 years 97   

More than 30 years 29 

License Details    

Category A1 76   
Category (B1, B2, and/or C) 113   
Others 98    
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4.2.3. Discriminant validity 
The next step is to assess the discriminant validity of the data set to understand the extent to which each construct is statistically 

distinct from others. Various methods are recommended to determine the discriminant validity. One way associated with variance and 
AVE suggests that all model constructs ‘shared variance’ should not be more significant than their AVEs [51]. In contrast [52], argue 
that the Fornell-Larcker measure does not hold well, especially when the indicator loadings are too close and differ only slightly, and 
proposed “Heterotrait-Monotrait” ratio (HTMT) to assess the empirical distinction among constructs. HTMT value above 0.90 indicates 
the nonexistence of discriminant validity; however, when the constructs are conceptually more distinct, a more conservative value 
such as 0.85 is suggested. The data set displays the maximum HTMT ratio of 0.607 (see Table 5) and thus establishes the discriminant 
validity. 

Table 3 
Properties of measurement model. 

Table 4 
Reliability and convergent validity.  

Constructs Cronbach’s alpha Composite reliability (rho_a) Composite reliability (rho_c) Average Variance Extracted (AVE) 

OCSC 0.896 0.897 0.918 0.616 
CPR 0.882 0.915 0.913 0.677 
CSIN 0.882 0.910 0.914 0.684 
LID 0.879 0.881 0.912 0.674 
SC 0.901 0.903 0.921 0.593 
LT 0.894 0.896 0.922 0.704 
UR 0.893 0.905 0.920 0.698  
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4.3. Structural model 

4.3.1. Collinearity assessment 
The first step is evaluating the collinearity of the model’s predictor constructs and separating the potential collinearity sets for 

further evaluation. Collinearity describes the linearly related predictor variables in the statistical model, which may lead to unstable 
parameters and biased inference statistics [53]. The Variance Inflation Factor (VIF) estimates the degree of collinearity. Its recom-
mended value ranges between 0.20 and 5; in the case of exceedance, the model will be reviewed, and constructs will be merged or 
eliminated (Hair et al., 2016). This study’s data set demonstrates the VIF values for the pair of constructs between 1.000 and 1.546, 
which is well within the acceptable limits (see Table 6). 

4.3.2. Common method bias 
A single measuring scale (Likert scale 1 to 5, used in this study) for all survey questions can introduce measurement errors, usually 

known as common method bias [54]. argues that if all VIFs are within the threshold (3.3), the model may be treated free from common 
method bias. In this study, the maximum value of VIF is 1.546, which is well within the defined limits. However, for this study, the 
common method bias was also tested using the most widely used method, ‘Harman’s single factor test,’ which resulted in the average 
variance against a single item being 26 % (within the limits of 50 %). Therefore, it is concluded that the data received in this study is 
free from common method bias. 

4.3.3. Significance and relevance of the model relationship 
On verifying the degree of collinearity and absence of common method bias, the model is assessed as suitable for further assessment 

and hypothesis testing. Hypothesis H1 states that a lack of trust between the management and the maintenance staff in voluntary 
reporting is negatively associated with safety communication. The results reveal that ‘lack of trust’ has a significant and negative 
impact on ‘safety communication’ (B = − 0.308, t = 5.085 and p = 0.000), and thus H1 is supported. Similarly, hypotheses H2 to H6 
are tested, and the results are summarized. All the hypotheses are endowed with significant p values. The results are presented in 
Table 7, and the structure model is shown in Fig. 4. 

4.3.4. Coefficient of determination (R2) of endogenous constructs 
After ascertaining the non-existence of collinearity, common method bias, and significance of model relationship in the structural 

model, the third step is evaluating the R2 values of endogenous constructs, also implied as in-sample predictive power [55]. R2 value 
describes the variance in the endogenous variables by the exogenous variables and is also considered to measure the explanatory 
power of the model [56]. The range of R2 varies from 0 to 1, and as a guideline, the values of 0.25,0.50 and 0.75 are treated as weak, 
moderate, and substantial [42]. In this study’s structural model, the R2 of learning indicators (LID) and safety communication (SC) are 
0.277 and 0.503, respectively. 

4.3.5. Effect size (F2 value) 
F2 value indicates the change in R2 when an exogenous variable is deleted from the model and varying effect size is defined by the 

[57] rule of thumb as, ≥0.02 is small, ≥0.15 is medium, and ≥0.35 is large. The effect size results on this study’s endogenous variable 
are given in Table 8. 

4.3.6. Predictive relevance (Q2 value) 
The Q2 of the PLS path indicates the model’s predictive accuracy, and a model is considered to have predictive relevance if the Q2 

value is more than zero. In the case of this study, the Q2 values for both the endogenous constructs (LID and SC) are 0.152 and 0.478, 
respectively, indicating that the model has predictive relevance, and these values conform to small and moderately large predictive 
relevance [42]. 

5. Discussion 

As the conceptual model depicts (Fig. 3), ‘safety communication’ is the heart of learning from past safety investigations. Based on 
the conceptual model, the structural model was developed, where the predictive relevance of the ‘safety communication’ construct is 
observed as moderately large, which supports the conceptual model and the relations of safety communication with other constructs. 

Table 5 
HTMT values of constructs for discriminant validity.   

OCSC CPR CSIN LID SC LT UR 

OCSC        
CPR 0.077       
CSIN 0.222 0.055      
LID 0.356 0.157 0.275     
SC 0.607 0.150 0.452 0.590    
LT 0.400 0.100 0.590 0.358 0.605   
UR 0.166 0.038 0.174 0.129 0.330 0.113   

A. Tyagi et al.                                                                                                                                                                                                          



Heliyon 9 (2023) e21620

12

Also, the results derived based on the [42] recommendations indicate the model’s validity with values of different parameters within 
acceptable limits. This study was conducted keeping maintenance staff at the center stage with the participation of 287 maintenance 
staff with varying experience in the aircraft maintenance domain (Table 2). However, the opinions of other stakeholders, for instance, 
safety managers, quality control managers (QCM), Accident/incident investigators, and accountable managers (AM), may add more 
value to understanding this reactive methodology. Thus, an opportunity exists for future research to explore organizational 

Table 6 
Collinearity test for the pair of different 
constructs.  

Construct Pair VIF 

CRP - > SC 1.010 
CSIN - > SC 1.416 
LT - > SC 1.546 
OCSC - > SC 1.171 
SC - > LID 1.000 
UR - > SC 1.041  

Table 7 
Direct relationships.  

Hypothesis Beta Coefficient Standard Deviation T statistics P values 

Trust - > Safety Communication (H1) − 0.308 0.061 5.085 0.000 
Complicacy - > Safety Communication (H2) − 0.097 0.042 2.231 0.026 
Utility - > Safety Communication (H3) − 0.201 0.047 4.224 0.000 
Contribution - > Safety Communication (H4) − 0.144 0.056 2.539 0.011 
Safety Communication - > Learning Indicator (H5) 0.526 0.043 12.134 0.000 
Commitment - > Safety Communication (H6) 0.370 0.050 7.448 0.000  

Fig. 4. Path coefficient and t-values for the structural model.  
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management and investigators’ perspectives on learning from the past. 
In the SEM, the three constructs (LT, CPR, and UR) relate to the factors that influence the ‘voluntary reporting’ stage of the LPSI 

process model. In other words, the first three hypotheses (H1, H2, and H3) establish the relationship between the ‘voluntary reporting’ 
stage and ‘safety communication’ stage of the LPSI process model (Fig. 2). The results indicate that among the factors that influence 
voluntary reporting, ‘lack of trust’ (LT) between the maintenance staff and the management is the most muscular construct for safety 
communication (− 0.308), followed by the ‘Usefulness of reporting’ (UR) at (− 0.199). In contrast, the construct of a ‘complicated 
reporting procedure’ (CPR) is evaluated to have the least impact (− 0.093) on voluntary reporting, as perceived by the maintenance 
staff. As measured in the model, the lack of trust between the maintenance staff and the organization’s management is the prime reason 
that prevents maintenance staff from reporting hazards and near misses they observe in the aircraft maintenance facilities. This 
condition makes the all-inclusive and participatory pillar of contemporary SMS weak. Safety information about these hidden threats is 
not communicated at the ‘safety communication’ stage as it does not exist in the organizational repository. This adversely affects 
learning from the past because organizations fail to collect safety data and information. Moreover, non-reporting by the maintenance 
staff keeps the safety threats hidden until combined with other conditions to get converted into incidents and accidents. When viewed 
from the maintenance staff’s perspective, the other interpretation of these three latent variables is the importance of the ‘trust’ and 
‘usefulness’ components in voluntary reporting. This implies that when maintenance staff are convinced of the usefulness of voluntary 
reporting and have high trust in the organizational management, procedural complicacy and inconvenience in voluntary reporting are 
likely to be diminished. Aligned with this finding [58] suggested a conceptual model, “Diagnosis in Communication and Trust in 
Aircraft Maintenance (DiCTAM),” which established a positive relationship between the maintenance staff communication (voluntary 
reporting) and their trust in organizational management. Analogous studies [59,60] conducted in military and civil environments also 
present similar results to define the relationship between the attitude of maintenance staff in communicating their errors and the trust 
they perceive with other organizational entities. The structural model is useful in prioritizing the problems; for example, the various 
indicators that reflect the ‘lack of trust’ indicator LT5 (management is production-centric, so I prefer to find my safe solution rather 
than reporting) has a maximum impact (0.901) as perceived by the maintenance staff. The management has to be cautious about this 
aspect as it may lead to ‘disengaged silence’ of maintenance staff [27] and defy the fundamental tenet of the participative and 
all-inclusive approach of the current safety management system. The accountable manager and the senior management of the aircraft 
maintenance organization may utilize the indicators impact factor to address and prioritize the problem areas. 

The ‘lack of contribution’ of maintenance staff to the safety investigation negatively affects safety communication (− 0.142). Lack of 
contribution invariably results in a shortfall of safety information generated by the investigations. Thus, safety information about some 
causal or contributory factors or latent unsafe conditions will likely be excluded from safety communication. The critical indicator 
reflecting this barrier, as seen by the maintenance staff, is CSIN2 (investigation is time-consuming, with many legal implications, so I 
refrain from associating with it unless called for by the investigating team), with an impact factor of 0.928. This indicates that the 
maintenance staff generally view the investigation process differently than the purpose it is meant for. The role of management and the 
investigating team is crucial to address this point. Honest communication with the organization’s maintenance personnel highlighting 
the investigation’s intent before commencing the investigation may encourage maintenance staff to participate without their self- 
imposed fear. The factors influencing the learning from past old investigations reports are not included in the scope of this study as 
firstly, it is not aligned with the target population (maintenance staff) of this study, and secondly, contextualization of the safety 
information of old investigation reports in the current context may be a separate area of research. 

‘Safety communication’ has a positive and significant impact (0.526) on learning (Fig. 4). This stage of the LPSI process model is 
also the formal learning zone where the learning product is delivered to maintenance staff. The learning product’s delivery is typically 
accomplished by first contextualizing the safety information drawn from the investigation reports, followed by communicating it in 
written and audiovisual modes. The latent variable ‘safety communication’ was defined by eight indicators. The indicators measure all 
aspects of safety communication, i.e., contextualized safety information followed by delivery in written and audiovisual methods. SC9 
and SC10 are the most significant indicators, with load factors of (0.819) and (0.827), respectively. These two indicators relate to 
maintenance staff awareness about the hazards at the workplace and their ability to identify them based on learning at the safety 
communication stage. This aspect makes contextualizing safety information one of the critical activities for safety communication. 
Safety managers must ensure that the safety information drawn from investigation reports is contextualized in the organizational 
working processes and environment before communicating it in written and audiovisual modes. The learning indicators of construct 
‘LID,’ which explores the perception of maintenance staff on learning from the past, also supports that safety information is to be 
integrated with their work procedures (LID3) with the maximum load factor (0.844), which eventually establishes that maintenance 
staff perceives learning when safety communication is in their working context. 

Table 8 
Effect size.  

Exogeneous-Endogenous Relations F2 SE T Stats P values Effect Size 

Commitment - > Safety Communication 0.237 0.025 1.156 0.248 Medium 
Complicacy - > Safety Communication 0.017 0.017 1.032 0.302 Insignificant 
Contribution - > Safety Communication 0.029 0.052 2.353 0.019 Small 
Safety Communication - > Learning Indicator 0.382 0.073 3.233 0.001 Large 
Trust - > Safety Communication 0.123 0.088 4.32 0 Small 
Utility - > Safety Communication 0.076 0.04 1.897 0.058 Small  
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Organizational commitment to safety communication (OCSC) is the most influential variable that affects safety communication 
(0.372). The construct ‘OCSC’ relates to the ‘safety audit’ stage of the LPSI process model. The measurement model indicator OCSC 3 
(The regulatory agency evaluates my learning in safety training) with the maximum load factor (0.832) underscores the importance of 
assessing the knowledge acquired by the maintenance staff in the safety communication stage. As stated in the previous study [21], 
regulatory safety oversight is restricted to delivering safety communication rather than verifying its effectiveness. If the organization 
and regulatory agency are not evaluating the learning outcomes of the safety communication stage, learning from the past is negatively 
affected. The measurement model provides each indicator’s impact while measuring the organizational commitment to safety 
communication in the Indian context. This may vary, and some more indicators (not considered in this study) be surfaced. Therefore, 
management must holistically assess their organizational working culture and consider the indicators applied in this study as a 
baseline. 

6. Conclusion 

The LPSI process model and the structural model developed in this paper provide a systematic and comprehensive understanding to 
the decision-makers on the chronic issue of the aviation maintenance industry, i.e., learning from the past. The application of these 
models allows the state regulators and senior management to estimate the impact of various factors on learning from the past. In this 
study, research articles were viewed through the prism of regulatory framework primarily to include the practicalities of hangar floor 
level. Firstly, the word ‘past’ was evaluated with two different considerations; one is based on accidents and incidents occurrences 
(rare), while another is associated with hazards and near-misses encountered by the maintenance staff at the workplace (frequent). 
This approach considerably enhances the safety data availability besides aligning with the contemporary systemic safety management 
strategy. Secondly, based on the research articles and regulatory publications, an aircraft maintenance industry-specific learning 
process model was developed, which can also be applied to other high-risk ultra-safe industries by combining with the applicable 
regulatory guidelines to study the learning from past issues. Finally, the structural equation model establishes the relationship between 
learning from the past and its influencing factors. The primary outcome of this study is as follows: 

• When maintenance staff are convinced of the usefulness of voluntary reporting and trust the management, they intend to volun-
tarily report the hazards and near-misses to the organizational system even if the reporting procedure is complicated and 
inconvenient.  

• Generally, maintenance staff avoid contributing to safety investigations because they perceive it as time-consuming with legal 
implications. This eventually leads to the loss of safety information and adversely impacts learning from the past. It is the need for 
State regulators and the management to create an atmosphere where frontline aircraft maintainers proactively involve in the safety 
investigation process.  

• Safety communication has a substantially strong impact on learning from past safety investigations. Presently, no regulatory 
framework exists to assess the effectiveness of safety communication and associated learning from the past. This may lead to or-
ganizations conducting safety communication as an activity without paying much attention to its intent. Demonstrating ‘minimum 
compliance’ (of safety communication) to regulators eventually wastes resources if the objectives of safety communication are not 
achieved.  

• Contextualization of safety information is critical for effective safety communication as maintenance staff perceives learning from 
the past when safety communication is related to their work processes and environment.  

• Maintenance staff perceive learning from the past to be manifested in enhancing their capabilities to identify workplace hazards. 

This study underscores the criticality of the ‘safety communication’ stage in learning from the past process; as such, it is the only 
established and policy-driven mechanism in aircraft maintenance organizations to share learning content with maintenance staff. State 
regulators and management can easily adapt the models developed in this study to assess the weak areas in their context in the various 
stages of the LPSI process model. This study can also be the foundation for further building up the concept of learning from the past, as 
it is based only on the perception of the frontline maintenance staff. The experience of regulators, management, and accident in-
vestigators can also be included to understand the issue comprehensively. Another aspect, the organizational commitment towards 
safety, was also limited to ‘safety communication.’ The other dimensions of organizational commitments to learning from the past, 
such as financial support, human resource allocation, and technological interventions, can also be considered while developing more 
detailed models. 

Data availability statement 

Data included in article and supplementary material. 

CRediT authorship contribution statement 

Alok Tyagi: Writing – original draft, Software, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. 
Rajesh Tripathi: Writing – review & editing, Validation, Supervision, Resources, Methodology, Investigation, Formal analysis. 
Soufiane Bouarfa: Writing – review & editing, Visualization, Validation, Supervision, Resources, Methodology, Investigation. 

A. Tyagi et al.                                                                                                                                                                                                          



Heliyon 9 (2023) e21620

15

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Appendix 1. Abbreviations and Acronyms  

ADREP Accident/Incident Data Reporting System 

AM Accountable Manager 
AME Aircraft Maintenance Engineer 
ASRS Aviation Safety Reporting System 
AVE Average Variance Extracted 
BASIS British Airways Safety Information System 
CB-SEM Covariance Based-Structural Equation Modeling 
CPR Complicated Reporting Procedure 
CSIN Contribution to Safety Investigations 
DGCA Directorate General of Civil Aviation, India 
EAMRO Emerging Trends in Aviation MRO 
HIRM Hazard Identification and Risk Management 
HTMT Heterotrait-Monotrait 
ICAO International Civil Aviation Organization 
LFI Learning From Incidents 
LID Learning Indicators 
LPSI Learning from Past Safety Investigations 
LT Lack of Trust 
MLG Main Landing Gear 
MOR Mandatory Occurrence Report/Reporting 
MRO Maintenance, Repair, and Overhaul 
OCSC Organizational Commitment to Safety Communication 
PLS-SEM Partial Least Square-Structural Equation Modeling 
QCM Quality Control Manager 
SARP Standards and Recommended Practice 
SC Safety Communication 
SMM Safety Management Manual 
SMS Safety Management System 
SSP State Safety Programme 
UR Utility of Reporting 
VIF Variance Inflation Factor  

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.heliyon.2023.e21620. 
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