
Epilepsy Currents
2022, Vol. 22(1) 54–60
© The Author(s) 2021
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/15357597211053687
journals.sagepub.com/home/epi

Toward Understanding the Diverse Roles of
Perisomatic Interneurons in Epilepsy

Barna Dudok1, Peter M. Klein1 and Ivan Soltesz1*

1 Department of Neurosurgery, Stanford University, Stanford, CA, USA
*Correspondence: Ivan Soltesz, Department of Neurosurgery, Stanford University, 1201 Welch Rd, Stanford, CA 94305-6104,
USA. Email: isoltesz@stanford.edu

Abstract
Epileptic seizures are associated with excessive neuronal spiking. Perisomatic γ-aminobutyric acid (GABA)ergic interneurons
specifically innervate the subcellular domains of postsynaptic excitatory cells that are critical for spike generation.With a revolution
in transcriptomics-based cell taxonomy driving the development of novel transgenic mouse lines, selectively monitoring and
modulating previously elusive interneuron types is becoming increasingly feasible. Emerging evidence suggests that the three types
of hippocampal perisomatic interneurons, axo-axonic cells, along with parvalbumin- and cholecystokinin-expressing basket cells,
each follow unique activity patterns in vivo, suggesting distinctive roles in regulating epileptic networks.
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Cellular Diversity of Perisomatic Inhibition

A prevalent strategy to combat epilepsy and seizures is to
suppress neuronal hyperexcitability. Inhibition by GABAergic
interneurons is an intrinsic mechanism in the brain to constrain
glutamatergic neuron excitability,1 and impaired inhibitory
function is an important mechanism of epileptogenesis.2 Some
of our oldest anticonvulsants (benzodiazepines), as well as latest
experimental therapeutic strategies (implanting interneuron
progenitors or optogenetically driving interneuron activity) act
by enhancing inhibition.3-5 However, multiple generations of
antiseizure medications have failed to improve upon the un-
acceptably high proportion of patients with pharmacoresistant
seizures, particularly in temporal lobe epilepsy (TLE).6 Even
with successful seizure control, patient quality of life is ad-
versely affected by the frequent side effects of antiseizure
medications and the various cognitive comorbidities of epi-
lepsy.7,8 Thus, there is an immense unmet need for effective,
disease-modifying, antiepileptic treatments, and the brain’s
innate inhibitory system is a promising target for new strategies.

As an analogy to the epileptic brain with impaired inhibition,
consider a truck with bad brakes. If a seizure is a runaway truck
on a downhill slope, are interneurons brakes that we can engage
to stop seizures? Unfortunately, the picture is more complicated.
Interneurons can be recruited in seizures prior to excitatory
neurons, and inhibition may even actively contribute to gen-
erating pathological, hypersynchronous oscillations.9-14 Inter-
neurons have diverse developmental origins, connectivity,
activity patterns, and synaptic properties, manifesting in at least
20 distinct types within individual brain regions.15-17 The
limited success and frequent side effects of various previous
treatment strategies that aimed to indiscriminately boost inhi-
bition indicate that we need to target specific inhibitory mi-
crocircuit elements that are particularly effective in preventing
seizures. However, our understanding of functional interneuron
diversity remains limited in healthy brains and even more so in
epilepsy.

Perisomatic inhibition controls excitatory cell output, reg-
ulating both action potential rates and their precise timing in
relation to rhythmic network activity.18 Therefore, perisomatic
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inhibition is well positioned to regulate both network excit-
ability and propensity to hyper-synchronization. Cortical py-
ramidal cells receive convergent input from distinct perisomatic
GABAergic interneuron types (Figure 1a): basket cells (BCs)
innervate the somata and proximal dendrites, while axo-axonic
cells (AACs) innervate the axon initial segment, the site of
action potential generation. There are two types of BCs, ex-
pressing either cholecystokinin (CCK) or parvalbumin (PV).
PVBCs receive strong feed-forward and feed-back excitatory
inputs and give rise to temporally precise, fast synaptic currents.
In contrast, CCKBCs receive relatively weak excitatory inputs
and evoke synaptic currents that are temporally imprecise and
longer lasting.19,20 In the healthy brain, while PVBCs critically
maintain theta- and gamma-range synchrony required for
cognitive functions,21 the circuit functions of CCKBCs and
AACs remain largely unknown. In epilepsy, PVBC properties
predict pronounced, yet complex, roles in synchrony during
recurrent seizures that are supported by ample experimental
data. However, the roles of CCKBCs and AACs in epileptic
brain activity remain an open question.

New Tools Make Perisomatic
Interneurons Accessible

Interneurons display strikingly specific expression of certain
neuropeptides and calcium-binding proteins, such as PV, CCK,
somatostatin (SST), and vasoactive intestinal polypeptide
(VIP). These classical markers are often used as proxies to
define interneuron classes and for genetically targeting indi-
cators (to record) or actuators (to modulate) the activity of each
class. Despite proving extremely useful for earlier investiga-
tions, classical marker expression cannot differentiate inter-
neuron types along all dimensions of diversity. For example, in
the hippocampus, the brain area most impacted by TLE, PV
expresses in multiple anatomical cell types: not only in peri-
somatic BCs and AACs, but also in dendrite-innervating bis-
tratified cells. Classical CCKBC markers, CCK and the
cannabinoid receptor type 1 (CB1), are also expressed by

pyramidal cells. Consequently, there has previously been a lack
of genetic tools to selectively label each perisomatic interneuron
type, which has significantly hindered our understanding of
their precise roles in epilepsy and relative utility as targets of
future antiepileptic therapies.

Fortunately, the set of available tools is expanding at a
staggering pace. Interneuron taxonomy based on single-cell
whole-transcriptome RNA sequencing has identified interneu-
ron types that are conserved across brain areas and species.22-25

Integrated analysis of morphologic, electrophysiologic, and
transcriptomic features revealed 28 distinct interneuron types.26

As opposed to loosely related groups of cells expressing an
arbitrary marker gene, cell types defined based on the whole
transcriptome (i.e., by clustering cells considering the quanti-
tative expression levels of all genes) are more likely to corre-
spond to distinct morpho-functional cell types representing
circuit elements with unique roles in brain function.26 Impor-
tantly, such advances in transcriptomics allow researchers to
computationally identify differentially expressed genes (typi-
cally transcription factors or cell adhesion molecules) in each
cell type. As a result, interneuron type-specific transgenic
mouse lines or synthetic viral enhancers are rapidly becoming
available,27-31 including transgenic lines for selectively labeling
CCKBCs (Sncg-Flp)32 or AACs (Nkx2.1-CreER, Unc5b-
CreER, or Vipr2-Cre).27,33,34

Distinct Activity Patterns of Perisomatic
Interneurons in vivo

Seizures do not emerge from a vacuum: the striking association
of seizures with diurnal and ultradian patterns and sleep stages
highlight the critical role of brain states in seizure generation
both in patients and in animal models.35-37 Mechanistic un-
derstanding of unprovoked, spontaneously occurring seizures
requires model systems with the excitatory, inhibitory, and
modulatory connections, and energy and metabolic homeostasis
intact, preferably in vivo. However, methods that allow re-
cording identified interneurons in vivo, such as the sharp

Figure 1. Activity patterns of perisomatic interneurons. (a) Pyramidal cells (PC) receive convergent perisomatic input from PV- and CCK-
expressing basket cells, and axo-axonic cells. The inserts symbolize the timing and precision of postsynaptic currents during rhythmic network
activity. (b) Brain state–specific recruitment of pyramidal cells and perisomatic interneurons. (c) Scaling modes of perisomatic interneurons with
average network activity. Note: PV: parvalbumin; CCK: cholecystokinin.
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electrode or juxtacellular techniques, have historically been
extremely laborious. Interneuron type-specific transgenic driver
lines now open the door to using high-throughput in vivo re-
cording methods, such as multielectrode arrays and two-photon
calcium imaging.

In awake non-epileptic mice, the dominant brain states in-
clude periods of theta-frequency (5–10 Hz) rhythmic activity
(typically associated with exploratory behavior, such as loco-
motion), alternating with periods of irregular activity (associ-
ated with quiet wakefulness). Intermittently, during these quiet
periods, hippocampal ensembles are briefly reactivated during
high-frequency (120–200 Hz) sharp wave-ripple episodes.38

Perisomatic interneuron activity is remarkably brain state–
specific (Figure 1b).15 Interestingly, PVBC activity is high in
the same brain states in which pyramidal cell activity is also
relatively high, including theta- and ripple oscillations. On the
contrary, CCKBCs are suppressed in these brain states, yet they
are active when the rest of the network is suppressed, potentially
owing to a mutual inhibitory connectivity between the PVBC
and CCKBC populations.32 AACs are recruited during theta-,
but not during ripple oscillations.33,39,40 Similar trends were
found on the time scale of seconds, during smaller activity
fluctuations within behavioral states: while PVBC activity is
strongly positively correlated to pyramidal cell activity, AAC
activity is only weakly correlated and CCKBC activity is clearly
negatively correlated (Figure 1c).32,33

This latter observation is especially surprising because
previous reports (lacking specific CCKBC labeling) suggested
that interneuron activity typically scales positively with network
activity, both in control and epileptic brains. Positively scaled,
also known as balanced inhibition, contributes to stabilizing
network dynamics across a wide range of activity levels.41 In
sensory cortices, presentations of simple tactile, olfactory, au-
ditory, or visual stimuli lead to coordinated activation of py-
ramidal cells and fast-spiking interneurons alike.42 However,
the significance of negatively scaled inhibition is less obvious.

The stark contrast of positively and negatively scaled activity
of the two basket cell populations raises a point critically im-
portant for epilepsy research. Returning to our metaphor: can we
stop the runaway truck by pressing harder on a brake pedal that
is already maximally engaged? One may argue that further
boosting positively scaled inhibition, which is already highly
active during seizures, is unlikely to be the most efficient in-
tervention. However, engaging negatively scaled inhibition that
remains underutilized in the first place may have a greater effect
during seizures, much like activating emergency brakes on a
speeding vehicle.

Unfortunately, data on interneuron type-specific activity
patterns during spontaneous seizures in chronic epilepsy models
are scant. Due to the relative sparsity of seizures in most chronic
epilepsy models (such as mouse models of TLE), only certain
types of seizures have been amenable for interneuron type-
specific in vivo recording. One such example is the Scn1a +/�
model of Dravet syndrome, in which seizures are provoked by
increasing the body temperature of head-restrained mice, while
recording neocortical interneuron activity using two-photon

calcium imaging.43 PV interneuron activity was found to be
already elevated interictally compared to controls at baseline
temperatures, and activity rose further with increasing tem-
perature, before reaching maximal activation at seizure onset. In
this paradigm, PV, SST, and VIP INs and pyramidal cells all
increase their activity leading up to, and during, epileptic sei-
zures.44 Such coordination indicated that just like in control
brains, most interneurons are positively scaled in epilepsy. Of
note, VIP cells that innervate other interneurons and thus have a
net disinhibitory effect45,46 are also recruited by seizures and
thus may change inhibitory dynamics in complex ways by
differentially affecting other interneuron subtypes in epi-
lepsy.47,48 However, given the prior inability to identify
CCKBCs during in vivo recordings, we do not know yet if
CCKBCs are negatively scaled in epilepsy. Speculatively, the
demonstrated high PVBC (and perhaps VIP) interneuron ac-
tivity may contribute to CCKBC suppression during seizure
generation.

Brake or Accelerator: Antiepileptic Effects of
PV Interneurons

The ultimate test of cell type-specific roles of interneurons in
epilepsy is to determine whether interventions targeting each
type are effective at preventing or curtailing seizures, and at
improving comorbidities. In the case of PVBCs, the results are
mixed. Optogenetically driving PV cells within PV–Cre
transgenic mice reliably terminated spontaneous seizures
when photostimulation was triggered by an on-line seizure
detection system.49 Such precise intervention may also have
disease-modifying effects, as similarly suppressing seizures
over weeks leads to increased cognitive performance in mice
with chronic TLE.50 Permanent PV cell silencing reduced
seizure threshold,51 corroborating their antiepileptic effects.
However, chronically driving PV cells may eventually elicit
seizures.52 The loss of efficacy with prolonged PVBC activation
may be due to postsynaptic GABAergic responses becoming
depolarizing53 or PV cells entering the depolarization block.54

As mentioned, an important caveat is that PV–Cre driver lines
label multiple cell types, including PVBCs and AACs. Axons of
both PVBCs and AACs are reorganized in epilepsy, but their
numbers may change in opposite directions, a conundrum re-
viewed extensively elsewhere.55-62

The strategic positioning of axo-axonic GABAergic inputs near
the site of action potential generation, where voltage-gated sodium
channel density is maximal, predicts a decisive role of AAC
activity in gating pyramidal cell output. However, the axon initial
segment also has low levels of potassium chloride cotransporters.63

Because GABAA receptors are ligand-gated chloride channels,
their postsynaptic effect is strongly influenced by the function of
chloride pumps.64 For example, extreme chloride accumulation
inside glutamatergic neurons may produce excitatory GABAergic
responses and contribute to epileptic seizures.65-68 While AAC
activation suppresses CA1 pyramidal cell spiking in non-epileptic
mice in vivo,33 whether AACs have excitatory or inhibitory effects
in epilepsy remains to be determined.
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Do We Have Emergency Brakes? Loss of CCKBC
Function in Epilepsy

While epilepsy is frequently accompanied by loss of inter-
neurons and their inhibitory function, the precise extent and
type of interneuron loss remained difficult to determine. Loss of
multiple interneuron types, including PV, SST, and CCK in-
terneurons, has been reported in various models.69,70 CCKBC
loss may differ depending on the model system and brain area,
as well as between anatomical or functional measures, and
therefore remained imprecisely understood. Anatomical evi-
dence shows that the CA1 density of CCK-positive axons was
reduced in the mouse pilocarpine model of TLE.70 However,
perisomatic synapses, including from PV and CCKBCs, were
preserved in human TLE patients.59,71 In a genetic lissence-
phaly model featuring seizures, the sublayer-specificity of
CCKBC synapses in the CA1 was impaired, but the synapses
themselves were not eliminated.54 CCKBC function, including
the cholinergic signaling mechanisms that preferentially de-
polarize CCK-, rather than PVBCs,72 may be impaired even
without apparent anatomical synapse loss. Carbachol-induced
(presumably CCKBC) postsynaptic currents were reduced in
the hippocampus of TLE mice, supporting a reduced CCKBC
perisomatic control of pyramidal cell activity in epilepsy.70,73 In
addition, CCKBCs express presynaptic CB1 cannabinoid re-
ceptors at high levels,74 which can silence GABA release (note
that CB1 receptor expression may be reduced on glutamatergic
and perhaps even on GABAergic terminals in certain chronic
epilepsy models).70,75,76 Cannabinoid-mediated, depolarization-
induced suppression of inhibition becomes permanently poten-
tiated in a febrile seizure model,77 which may reduce CCKBC
GABA release. Furthermore, endocannabinoid levels elevated by
seizures may also mute CCKBC synapses.78,79 Of note, reduced
release of the CCK peptide by CCKBCs may also reduce PVBC
synapse efficacy.80

Altogether, these data indicate that CCKBC synapses are
anatomically preserved in epilepsy, although their function may
diminish due to some combination of reduced cholinergic drive,
reduced cellular excitability, and altered cannabinoid signaling.
Notably, the “dormant basket cell hypothesis” has proposed the
anatomical presence, but functional deficit, of perisomatic in-
hibition in the epileptic dentate gyrus, resulting from the loss of
excitatory drive to PVBCs, weakening recurrent inhibitory
mechanisms.81-84 Somewhat similarly, silenced CCKBC syn-
apses may also contribute to epileptic pathology in various brain
areas.

Summary and Outlook

Because temporally precise inhibition is necessary for hippo-
campal function, impaired interictal interneuronal activity in
epilepsy may contribute to cognitive performance deficits.85-87

Therefore, future therapeutic strategies aimed at enhancing
inhibition to combat seizures should ideally avoid compro-
mising the critical role of interneurons in synchronizing net-
works outside seizures. Altogether, CCKBC properties suggest

they are ideally suited to reduce postsynaptic pyramidal cell
excitability, without affecting network rhythmicity underlying
cognitive function. Future studies will be necessary to test this
hypothesis in chronic epilepsy models. Overall, through en-
abling a better understanding of the diverse roles of inhibitory
interneurons, the emergence of novel tools for interneuron type-
specific recordings and interventions may lead to identifying
better targets for anti-epileptic treatments.
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74. Katona I, Sperlágh B, Sı́k A, et al. Presynaptically located CB1
cannabinoid receptors regulate GABA release from axon terminals
of specific hippocampal interneurons. J Neurosci. 1999;19(11):
4544-4558.
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