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ABSTRACT

Background. Studies evaluating bacteria in insects can provide information about
host-microorganism—environment interactions. The gut microbial community has a
profound effect on different physiological functions of insects. Enterococcus spp. are
part of the gut community in humans and other animals, as well as in insects. The
presence and antimicrobial resistance profile of enterococci are well studied in different
animals; however, data for Heliconius erato phyllis (Lepidoptera: Nymphalidae) do
not yet exist. Therefore, the aims of this study were to evaluate the distribution of
enterococcal species, their antimicrobial resistance profile and virulence genes, and the
genetic relationships between enterococci isolated from fecal samples from sibling and
non-sibling H. erato phyllis caterpillars collected from different sites in South Brazil.
Methods. Three H. erato phyllis females were captured (two from a forest fragment
and one from an urban area), and kept individually in open-air insectaries. Eggs were
collected and caterpillars (siblings and non-siblings) were fed daily with Passiflora
suberosa leaves. Fecal samples (n = 12) were collected from fifth-instar caterpillars,
inoculated in selective medium, and 15 bacterial colonies were randomly selected from
each sample. Enterococci were identified by PCR and MALDI-TOF, analyzed by disk
diffusion antimicrobial susceptibility tests, and screened for resistance and virulence
genes by PCR. The genetic relationships between the strains were determined using
pulsed-field gel electrophoresis (PFGE).

Results. A total of 178 enterococci strains were identified: E. casseliflavus (74.15%;
n=132), E. mundtii (21.34%; n = 38), E. faecalis (1.12%; n = 2) and Enterococcus sp.
(3.37%; n=6). High rates of resistance to rifampicin (56%) and erythromycin (31%)
were observed; 120 (67.41%) of the isolates showed resistance to at least one antibiotic
and six (3.37%) were multidrug-resistant.None of the erythromycin-resistant strains
was positive for the erm(B) and msrC genes. The virulence genes esp, ace, and gelE
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were observed in 35%, 7%, and 1% of the strains, respectively. PFGE separated the
enterococci into 22 patterns, four being composed of strains from sibling caterpillars.
Conclusion. Enterococcus casseliflavus was the dominant species in fecal samples of
fifth-instar caterpillars. Resistant enterococci strains may be related to environmental
pollution or the resistome. The PFGE analysis showed genetic relationships between
some strains, suggesting that the enterococci isolated from fecal samples of the sibling
caterpillars might have come from common sources, e.g., via diet (herbivory) and/or
vertical transmission (through the egg surface). Further studies will be conducted
to better understand the role of Enterococcus in the microbial community of the
gastrointestinal tract of these insects, and the mechanisms involved in acquisition and
maintenance of enterococci.

Subjects Ecology, Microbiology, Molecular Biology

Keywords Lepidoptera, Enterococcus casseliflavus, Molecular typing, Antimicrobial profile,
Enterococcal species

INTRODUCTION

Heliconius (Lepidoptera: Nymphalidae) represents a widespread genus of butterflies
distributed throughout tropical and subtropical regions, from South America to the
southern United States (Brown, 1981; Merril et al., 2015). Adults feed on pollen as well
as nectar (Gilbert, 1972; Merril et al., 2015), and this food supply provides a better use of
resources and a reduction in competition since the same flower can provide nutrients
for both Heliconius and other butterflies that exclusively use nectar as food. This diet

is rich in amino acids that allow adult females to oviposit on a daily basis during their
lives (Gilbert, 1972). Heliconius erato phyllis is a subspecies commonly found in forests
and urban environments from northeastern Brazil to northern Argentina. Adult females
are monandrous, i.e., they mate only once, and lay their eggs individually in the apical
meristem of a host plant, to minimize potential cannibalization of eggs by first-instar
caterpillars (De Nardin, Da Silva ¢ Araiijo, 2016). Several species of passionflower vines,
including Passiflora suberosa, P. misera and P. capsularis, are host plants for oviposition
and feeding of caterpillars. These Passiflora species, commonly found in Southern Brazil
where this study was conducted, have cyanogenic glycosides, which are assimilated by the
caterpillars to make them unpalatable to potential predators. However, adults of H. erato
phyllis are also able to synthesize cyanogenic glycosides and transfer them to their eggs
(Hay-Roe & Nation, 2007).

It has been recognized for a long time that microorganisms play key roles in various
physiological functions of animal hosts. The gut microbial community promotes an
especially diverse range of benefits for insects, e.g., by improving nutrition via synthesis
of vitamins and/or establishment of metabolic pathways, actively participating in
degradation of xenobiotic compounds, and contributing to the defense against invading
pathogens and immune system modulation (Douglas, 2015; Shao et al., 2017). The presence
of microorganisms in the gastrointestinal (GI) tract of insects can be explained by
environmental bacteria ingested with food and/or acquired by maternal transfer (Engel
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¢ Moran, 2013). A growing number of studies have addressed the importance of the

microbiota in the GI tract of insects (Engel ¢ Moran, 2013; Chen et al., 2016; Douglas,

2018), and Enterococcus is one of the most frequent bacterial genera present in the gut
microbiota at different life stages of Lepidoptera (Brinkmann, Martens ¢ Tebbe, 2008;

Chen et al., 2016; Snyman et al., 2016; van Shooten et al. 2018; Allonsius et al., 2019).

The Enterococcus genus is often found in the GI tract of humans and animals, as well as
in the guts of insects (Shao et al., 2017). Hammer, McMillan & Fierer (2014) reported that
Enterococcus was the most abundant genus found in immature stages and adults of H. erato
from Panama. Furthermore, it has also been reported in insects of other orders, such as
Coleoptera (Kim et al., 2017), Hymenoptera (Audisio et al., 2011), and Diptera (Ghosh et
al., 2014). A characteristic of this genus is its intrinsic resistance to several antimicrobial
agents and a great ability to transfer and acquire resistant genes (Hollenbeck ¢ Rice, 2012).
Despite the environmental resistome, the intense use of antimicrobials and anthropogenic
activities, such as animal husbandry, agronomic practices, and wastewater treatment, play
an important role in the emergence and spread of resistant-enterococci and/or antibiotic
resistance genes in the environment, especially in soil, water, wastewater, and food (Gothwal
& Shashidhar, 2014; Singer et al., 2016).

Antimicrobial resistance is one of the most serious public health problems, because
of the spread of resistant bacteria leading to persistent infections, which are difficult to
treat, and contamination of natural environments (Watkins ¢» Bonomo, 2016; Ferri et al.,
2017; Aslam et al., 2018). Insects have a wide distribution and can move freely between
different environments; they may play an important role as reservoirs of drug-resistant
strains and as their disseminators between animals and humans, especially when in contact
with organic waste, livestock and their surrounding environment, and hospital facilities
(Zurek & Ghosh, 2014; Mohammed et al., 2016; Schaumburg et al., 2016; Zhang et al., 2017;
Onwugamba et al., 2018). In relation to insects caring antibiotic—resistant bacterial strains,
studies have identified flies (Ahmad et al., 2011; Usui et al., 2015; Mohammed et al., 2016;
Schaumburg et al., 2016; Zhang et al., 2017; Onwugamba et al., 2018) and cockroaches
(Ahmad et al., 2011; Pai, 2013; Moges et al., 2016) as hosts of extended-spectrum beta-
lactamase- and carbapenemase-producing Enterobacteriaceae, vancomycin-resistant
E. faecium (VRE), and methicillin-resistant Staphylococcus aureus (MRSA). Insects collected
from food establishments and in association with stored products were also found to be
colonized by antimicrobial-resistant bacteria (Macovei ¢ Zurek, 20065 Channaiah et al.,
2010; Mohammed et al., 2016). Despite their importance, few studies have addressed the
concern of insects carrying resistant enterococci (Allen et al., 2009; Channaiah et al., 2010;
Ahmad et al., 2011; Lowe ¢ Romney, 2011).

As previously mentioned, the Enterococcus genus is often found in the GI tract in
Lepidoptera (Hammer, McMillan ¢ Fierer, 2014; Chen et al., 2016; Snyman et al., 2016;
van Shooten et al. 2018; Allonsius et al., 2019), and it may play a fundamental role in
the development and regulation of bacterial communities in these insects (Chen et al.,
2016; Shao et al., 2017). The identification of enterococcal strains and their resistance
profile in insects is an important aspect that must be addressed for host-microorganism—
environment interactions. To our knowledge, there have been no studies to date evaluating
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enterococci in H. erato phyllis. The aims of our research were to analyze enterococcal

species distribution, their antimicrobial resistance profile and virulence genes, and the
genetic relationships between enterococci isolated from fecal samples from sibling and
non-sibling H. erato phyllis caterpillars collected from different sites in South Brazil.

MATERIALS & METHODS

Sample collection

The fecal samples used in the present study were collected from fifth instar caterpillars.
The caterpillars were sourced from three different populations of Heliconius erato phyllis
butterflies and consisted of sibling from the same female. The H. erato phyllis females (HE)
were captured with entomological nets in Rio Grande do Sul, South Brazil. The first female
(HEAB2) was collected in a forest fragment located in Aguas Belas Agronomical Station
(30°02'18.1”S; 51°01'23.0"W), the second female (HEV2) from a population in an intense
urban area in Viamao (30°09'40.5”S; 50°55’01.5”W) and the third female (HES2) in a
forest fragment located in Sdo Francisco de Paula (29°26'34.1”S; 50°36/48.8"W).

Butterflies were kept individually in open-air insectaries with dimensions of 2.3 m x 3
m x 3 m (width, length, height) approximately. Insectaries had many plants for simulation
of natural conditions, including P. suberosa, used by females for oviposition. The butterflies
were fed daily with a mixture containing water, honey and pollen.

A total of 12 eggs were collected (five from HEAB2, five from HEV2 and two from
HES2) with the assistance of a paintbrush. The eggs were transported to the laboratory,
and caterpillars were grown individually in cylindrical plastic pots. Immatures were fed
exclusively with P. suberosaleaves (Fig. 1). Fecal samples were collected from each caterpillar
individually after 48 h of molting to the fifth instar (n = 12), with the aid of a disposable
plastic spoon, stored in 1.5 mL microtubes and maintained at —80 °C until processing.
The oviposition dates are shown in Table S1.

This study was carried out in accordance with the recommendations of Chico
Mendes Institute for Biodiversity Conservation (ICMBio). The protocol was approved
by Information Authorization System in Biodiversity (SISBIO) number 33404-1. This
study has the Council for the Management of Genetic Patrimony - CGEN - under the
Ministry of Environment number A720680.

Isolation and identification of Enterococci
Isolation and identification of enterococci were performed as previously described in
Santestevan et al. (2015), with modifications. One milligram of fecal sample was transferred
to 10 mL of saline 0.85% and incubated at 37 °C for 24 h. One mL was inoculated in nine
mL of Azide Dextrose Broth selective medium (Himedia, Mumbai, India) and incubated
for 24 h at 37 °C. Aliquots (one mL) were placed in nine mL of saline 0.85%, and initial
samples were further diluted 10-fold. From dilution 10~ and 107°, 100 pL was inoculated
in brain heart infusion (BHI) agar plates (Himedia, Mumbai, India) supplemented with
6.5% NaCl, incubated for 48 h at 37 °C.

Fifteen colonies were randomly selected from each fecal sample. Phenotypic criteria
(size/volume, shape, color, gram staining, catalase production and bile aesculin reaction)
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Figure 1 Illustration of Heliconius erato phyllis butterflies and caterpillars used in the study. (A) Fe-
male HEAB2 and offspring (6, 7, 10, 11, and 14); (B) female HEV2 and offspring (9, 18, 26, 27, and 29);
(C) female HES2 and offspring (3 and 17). Illustration credit: Lucas de Oliveira Einsfeld and Gabriella
Oliveira de Aradjo.

Full-size Gal DOI: 10.7717/peerj.8647/fig-1

were used to separate the enterococci group and the non-enterococcal strains. Selected
pure colonies were stored at —20 °C in a 10% (w/v) solution of skim milk (Difco, Sparks,
MD, USA) and 10% (v/v) glycerol (Neon Comercial Ltda, Sao Paulo, SP, BR).

Genomic DNA was extracted by physicochemical method as previously described
by Depardieu, Perichon & Courvalin (2004). Polymerase chain reaction (PCR) assay was
carried out using genus-specific primers targeting the tuf gene, which encodes elongation
factor EF-Tu (Ke et al., 1999) (Table 1). Amplifications were performed in a total volume
of 25 nL containing: 100 ng of template DNA, 1 X reaction buffer (Ludwig Biotechnology),
0.4 pM of each primer (Ludwig Biotechnology), 1.5 mM MgCl,, 200 uM of ANTP (Ludwig
Biotechnology), 1 U Taq DNA polymerase (Ludwig Biotechnology), and MilliQ water.
Amplification was carried out in a conventional thermocycler (Applied Biosystems 2720
Thermal Cycler) according to the following program: initial denaturation at 95 °C for 3
min, followed by 35 cycles of 95 °C for 30 s, 54 °C for 30 s and 72 °C for 1 min, and a
final extension at 72 °C for 7 min. The PCR products were visualized using electrophoresis
on 1.5% (w/v) agarose gel, stained with SYBR® Safe DNA Gel, and visualized on a
photocumenter. E. faecalis ATCC 29212 was used as positive control.

Characterization of enterococci species

Isolates were screened with the species-specific PCR assay for Enterococcus faecalis,
Enterococcus faecium, Enterococcus casseliflavus and Enterococcus mundtii (Cheng et al.,
1997; Jackson, Fedorka-Cray ¢ Barrett, 20045 Sedgley et al., 2005). The primers and
annealing temperature used are listed in Table 1. Amplifications were prepared as described
to fuf gene. PCR amplification was performed in the conventional thermocycler (Applied
Biosystems 2720 Thermal Cycler) according to the following program: 94 °C for 5 min
followed by 35 cycles of 94 °C for 1 min, appropriate annealing temperature for each
species for 1 min, extension at 72 °C for 1 min, and a final extension at 72 °C for 5 min.
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Table 1 Primers used in the PCRs carried out in this study.

Primer Nucleotide sequence (5’-3") AT? (°C) Amplicon Reference
(bp)

Genus
tuf-F TACTGACAAACCATTCATGATG

54 112 Ke et al. (1999)
tuf-R AACTTCGTCACCAACGCGAAC
E. faecalis
El16s-F CCGAGTGCTTGCACTCAATTGG

66 138 Sedgley et al. (2005)
El6s-R CTCTTATGCCATGCGGCATAAAC
E. faecium
EMI1A-F TTGAGGGACACCAGATTGACG

62 658 Cheng et al. (1997)
EM1B-R TATGACAGCGACTCCGATTCC
E. casseliflavus
CAl TCCTGAATTAGGTGAAAAAAC 59 288 Jackson, Fedorka-Cray & Barrett
CA2 GCTAGTTTACCGTCTTTAACG (2004)
E. mundtii
MUI1-F CAGACATGGATGCTATTCCATCT 60 94 Jackson, Fedorka-Cray ¢ Barrett
MU2-R GCCATGATTTTCCAGAAGAATG (2004)
16s rRNA
8F AGAGTTTGATCCTGGCTCAG
519F CAGCAGCCGCGGTAATAC 60 1,514 Coenye et al. (1999)
926R CCGTCAATTCCTTTGAGTT
1522R AAGGAGGTGATCCAGCCGCA
Erythromycin
erm(B)_F GAAAAGGTACTCAACCAAATA 5 639 Sutcliffe, Tait-Kamradt & Won-
erm(B)_R AGTAACGGTACTTAAATTGTTTAC drack (1996)
msrC_3 AAGGAATCCTTCTCTCTCCG 5 343 Werner, Hildebrandt & Witte
msrC_4 GTAAACAAAATCGTTCCCG (2001)
Gelatinase
gelE_TE9 ACCCCGTATCATTGGTTT

50 419 Eaton & Gasson (2001)
gelE_TE10 ACGCATTGCTTTTCCATC
Cytolysin
cylA_TE17 TGGATGATAGTGATAGGAAGT )

59 517 Eaton & Gasson (2001)
cylA_TE18 TCTACAGTAAATCTTTCGTCA
Adhesion
acel_F AAAGTAGAATTAGATCCACAC

59 320 Mannu et al. (2003)
ace2_R TCTATCACATTCGGTTGCG
Biofilm
ESP46 TTACCAAGATGGTTCTGTAGGCAC

60 913 Shankar et al. (1999)
ESP47 CCAAGTATACTTAGCATCTTTTGG
Aggregation
agg TE3 AAGAAAAAGAAGTAGACCAAC

60 1,553 Eaton ¢ Gasson (2001)
agg TE4 AAACGGCAAGACAAGTAAATA

Notes.

*AT, annealing temperature.
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The DNA fragment amplified by PCR was analyzed in 1.5% (w/v) agarose gels stained with
SYBR® Safe DNA Gel, and visualized on a photocumenter.

Strains that were not identified by PCR reactions were submitted to matrix-assisted laser
desorption and ionization time-of-flight technique (MALDI-TOF) applied to Enterococcus
sp., according to Sauget et al. (2017).

Isolates classified as Enterococcus sp. were identified by Sanger sequence analysis. The
PCR product of 165 rRNA gene, using the 8F and R1522 primers (Coenye et al., 1999)
(Table 1), was purified with Illustra™ GFX™ PCR DNA and gel band purification kit (GE
Healthcare, Buckinghamshire, UK). To perform Sanger sequencing two additional primers,
519F and 926R, were used (Coenye et al., 1999) (Table 1). Sequencing was performed with
the ABI PRISM® BigDye® Primer Cycle Sequencing Ready Reaction Kit in an ABI PRISM®
3100 Genetic Analyzer (Applied Biosystems®), according to the manufacturer’s protocol.
The sequence obtained was compared to nucleotide sequences of reference enterococci
strains deposited in GenBank.

Antimicrobial susceptibility testing
Antimicrobial susceptibilities were determined by Kirby-Bauer disk diffusion method
recommended by the Clinical and Laboratory Standards Institute (CLSI, 2016). Eleven
antibiotics used in clinical and veterinary medicine were tested: ampicillin 10 pg (AMP),
vancomycin 30 pg (VAN), erythromycin 15 pg (ERY), tetracycline 30 pg (TET),
ciprofloxacin 5 pg (CIP), norfloxacin 10 pg (NOR), nitrofurantoin 300 pg (NIT),
rifampicin 5 pg (RIF), chloramphenicol 30 g (CHL), gentamicin 120 pg (GEN) and
streptomycin 300 pg (STR).

Intermediate and resistant strains were considered in a single category and classified as
resistant. Strains showing resistance to three or more unrelated antibiotics were considered
as multidrug-resistant (MDR) (Schwarz et al., 2010).

Detection of resistance and virulence genes

Erythromycin-resistant strains were tested by PCR for the presence of resistance encoding
genes more commonly associated to clinical and environmental enterococci: erm (B),
which encodes a ribosomal methylase that mediates MLSB resistance; and msr C, which
encodes for a macrolide and streptogtamin B efflux pump. The presence of virulence
associated genes gelE (gelatinase enzyme), cylA (activator of cytolysin), ace (accessory
colonization factor), esp (associated to biofilm formation) and agg (aggregation substance)
was determined by PCR in all enterococcal isolates. The amplifications were performed as
described in Prichula et al. (2016). Amplifications were prepared as described to tuf gene.
PCR amplification was performed in the conventional thermocycler (Applied Biosystems
2720 Thermal Cycler) according to the following program: 94 °C for 3 min followed by
35 cycles of 94 °C for 1 min, appropriate annealing temperature for each resistance or
virulence gene for 1 min, extension at 72 °C for 1 min, followed by final extension at 72 °C
for 5 min. The DNA fragment amplified by PCR was analyzed in 1.5% (w/v) agarose gels
stained with SYBR® Safe DNA Gel, and visualized on a photocumenter. The sequences of
the primers and annealing temperature are described in Table 1.
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Molecular typing of Enterococci by Pulsed-field gel electrophoresis
(PFGE)

Eight six enterococci strains isolated from siblings and non-sibling caterpillars were
selected for PFGE analysis according to the following criteria: maternal origin (females
HEAB2, HEV2 or HES2), hatched larvae, enterococcal species and antimicrobial profile.
Chromosomal DNA extraction and electrophoresis conditions were prepared according
to Murray et al. (1990) and Saeedi et al. (2002). The restriction enzyme used was Sma |
(Invitrogen®). The electrophoresis was carried out using a clamped homogeneous electric
field (CHEF-DRII device; Bio-Rad Laboratories, Richmond, Calif.), with ramped pulse
times recommended by Saeedi et al. (2002) at 11 °C. Lambda Ladder PFG Marker (New
England Biolabs) was used. The gels were stained with ethidium bromide (0.5 pg/mL for 20
min). The PFGE patterns were interpreted using the program GelCompar IIv. 11 6.6, with
1.0% of tolerance, and the percentage of similarity was estimated using the Dice coefficient.
The pulsotypes were clustered using the unweighted pair group whit arithmetic averages
(UPGMA). A dendrogram was generated to examine the relatedness of PFGE patterns for
selected isolates, and cutoff level of 80% applied to this dendrogram (Tenover et al., 1995).

Statistical Analysis
Simpson’s index of diversity (D) was calculated to assess the differentiation of enterococci
species among the caterpillars from different maternal origins (Hunter ¢~ Gaston, 1988).

RESULTS

Enterococci species present in fecal samples of Heliconius erato
phyllis caterpillars

A total of 178 strains of Enterococcus were isolated from fecal samples from fifth-instar
caterpillars (Table 2). Enterococcus casseliflavus was the most common species identified
(74.15%; n = 132), followed by E. mundtii (21.34%; n = 38) and E. faecalis (1.12%; n=2).
Six strains (3.37%) could not be identified to species level.

Differences in the composition of enterococci were detected between the three groups
of caterpillars, as shown in Table 2. The Simpson’s diversity index was different between
the three populations, with higher diversity of enterococci species from fecal samples of
caterpillars from HES2 (1-D = 0.68), followed by HEV2 (1-D = 0.49) and HEAB2 (1-D
=0.27).

Antimicrobial susceptibility
One hundred and twenty (67.41%) enterococci were resistant to at least one evaluated
antimicrobial agent. The frequency of antibiotic-susceptible strains is shown in Table 3.
The rifampicin-resistance phenotype was the most commonly observed (56%; n = 100),
followed by erythromycin (31%; n=>55). Eight strains (4%) were resistant to norfloxacin
and five (3%) to ciprofloxacin. All investigated strains were susceptible to ampicillin,
vancomycin, tetracycline, nitrofurantoin, chloramphenicol, gentamicin, and streptomycin.
Single- (SR), double- (DR), and multiple-drug resistance (MDR) were observed in 67%
(n=280), 28% (n=34), and 5% (n = 6) of strains, respectively, of the 120 resistant strains.
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Table 2 Distribution of Enterococcus sp. isolated from fecal samples of Heliconius erato phyllis cater-
pillars.

Species Number (%) of enterococci strains isolated of caterpillars from*:
HEAB2 HEV2 HES2 Total (%)

E. faecalis 2 (2.04) 0 0 2(1.12)

E. casseliflavus 83 (84.69) 42 (65.62) 7 (43.75) 132 (74.15)

E. mundtii 13 (13.26) 19 (29.68) 6 (37.50) 38 (21.34)

Enterococcus sp. 0 3 (4.68) 3 (18.75) 6(3.37)

Total 98 (100) 64 (100) 16 (100) 178 (100)

Notes.

HEAB2, female from Aguas Belas; HEV2, female from Viamao; HES2, female from Sdo Francisco de Paula.

Table 3 Antibiotic resistance profiles in enterococci isolated from fecal samples of Heliconius erato phyllis caterpillars.

Female® Species (n) Number (%) of resistant strains” Profiles®
ERY CIP NOR RIF SR DR MDR

HEAB2 E. faecalis (2) 2 (100) 0 0 2 (100) 0 2 (100) 0

E. casseliflavus (83) 25 (30) 4(5) 8 (10) 70 (84) 48 (58) 21 (25) 5(6)

E. mundtii (13) 0 0 0 0 0 0 0
HEV2 E. casseliflavus (42) 27 (64) 0 0 23 (55) 28 (67) 11 (26) 0

E. mundtii (19) 0 0 0 0 0 0 0

Enterococcus sp. (3) 0 0 0 3 (100) 3 (100) 0 0
HES2 E. casseliflavus (7) 0 0 0 0 0 0 0

E. mundtii (6) 0 0 0 0 0 0 0

Enterococcus sp. (3) 1(33) 1(33) 0 2(67) 1(33) 0 1(33)
Total (178) 55 (31) 5(3) 8 (4) 100 (56) 80 (45) 34(19) 6(3)

Notes.

IHEAB2, female from Aguas Belas; HEV2, female from Viamao; HES2, female from Sdo Francisco de Paula.
b Antibiotics: ERY, erythromycin; CIP, ciprofloxacin; NOR, norfloxacin; RIF, rifampicin.
Profiles: SR, single resistant; DR, double resistant; MDR, multidrug resistant.

Determinates of resistance and virulence

None of the 55 erythromycin-resistant strains was positive for erm(B) and msrC genes. The
presence of virulence genes was evaluated in all strains, and the esp gene was detected in
35.39% (n=63), ace in 6.74% (n=12) and gelE in 1.12% (n =2). No strain was positive
for the cly A and agg genes.

Genetic relationships between enterococci isolated from sibling and
non-sibling caterpillars in the fifth-instar

Of the 178 strains isolated, 86 (E. casseliflavus, n = 58; E. mundtii, n = 23; E. faecalis, n = 2;
and Enterococcus sp., n = 3) were chosen for PFGE (Table 51). From the sibling caterpillars,
numbered 6, 7, 10, 11 and 14, of the HEAB2 female were picked E. casseliflavus (n=32), E.
mundtii (n=8) and E. faecalis (n =2). All strains were isolated from caterpillars hatched
closely in time and fed the same batch of P. suberosa leaves. From the offspring of the HEV2
female (sibling caterpillars 9, 18, 26, 27, and 29) E. casseliflavus (n=19), E. mundtii (n=9)
and Enterococcus sp. (n = 3) were selected. These isolates were recovered from siblings
that hatched at different times and were fed different batches of leaves. From the offspring
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of the HES2 female (sibling caterpillars 3 and 17) E. casseliflavus (n = 7) and E. mundtii
(n=6) were selected.

The hierarchical relationship between enterococci selected from sibling and non-sibling
caterpillars showed 22 patterns (15 patterns and 7 single strain—[singleton]; Fig. 2). Four
patterns generated by PFGE indicated a genetic relationship between strains isolated from
sibling caterpillars (P7, P8, P9, and P13); 11 were composed of strains isolated from
the same caterpillars (P1, P2, P3, P4, P5, P6, P10, P11, P12, P14, and P15). No genetic
relationships were observed for strains isolated from non-siblings.

The band patterns for E. casseliflavus (n = 32) isolates from sibling caterpillars (6, 7,
10 11 and 14) of the HEAB2 female showed six PFGE patterns (P5, P7, P8, P9, P11 and
P12) and three singletons. Three PFGE patterns (P7, P8, and P9) included 18 of the 32
strains that were isolated from sibling caterpillars 6, 7, 10, and/or 11, with low levels of
genetic variability. P5 and P11 each contained two isolates, and P12 with eight isolates
showed genetic variation; the remaining three E. casseliflavus isolates were singletons
and represented unique PFGE patterns. All E. mundtii isolates from caterpillar 14 were
genetically closely related and were clustered into one pattern (P10), as were the two E.
faecalis (P3) isolates from caterpillar 6. These results demonstrate that strains may originate
from a single lineage.

Seven different PFGE patterns (P4, P6, P13, P15, and three singletons) were obtained
from sibling caterpillars 9, 18, 26, 27, and 29 of the HEV2 female. The analysis of the
fragment profiles of the E. mundtii (n =9) and Enterococcus sp. (n = 1) strains isolated
from caterpillars 18, 26, 27, and 29 demonstrated a genetic relationship between them
(P13). The 19 E. casseliflavus strains showed four PFGE patterns: P4, P6, and P15, each
containing six, three, and nine isolates, respectively, and one singleton. These distinct
patterns are suggestive of genetic events in these strains.

The seven E. casseliflavus strains from caterpillars 3 and 17 (offspring of the HES2
female) showed two distinct patterns (P1 and P2) with 100% of genetic similarity between
them. P1 contained four isolates and P2 had three isolates. Of the six E. mundtii isolates
from caterpillar 3, five showed 100% similarity and were clustered in the P14 pattern,
suggesting that these strains may be progeny from a single lineage. One strain had distinct
and unrelated PFGE by the criteria of Tenover et al. (1995). In addition, most of the
patterns were shared by isolates with the same antimicrobial profile.

DISCUSSION

An increasing number of studies have aimed to investigate the microbial communities
in the GI tract of insects. In the Lepidoptera, a high abundance of Enterococcus has been
found, both in immatures and adults, raising questions about the role of these bacteria
in invertebrates and their importance in maintaining the health of individuals (Hammer,
McMillan & Fierer, 2014; Holt et al., 2015; Chen et al., 2016; Snyman et al., 2016; Shao et al.,
2017; Van Schooten et al., 2018; Allonsius et al., 2019). To our knowledge, only Hammer,
McMillan & Fierer (2014) and, more recently, Van Schooten et al. (2018) have addressed
the microbial communities in the Heliconius GI tract, and have reported that the genus
Enterococcus is dominant in microbial samples from different Heliconius species.
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Figure 2 Dendrogram of enterococci isolated from fecal samples of Heliconius erato phyllis caterpil-

lars. HEAB2, H. erato phyllis from Aguas Belas; HEV2, H erato phyllis from Viamao; HES2, H. erato phyl-
lis from Sao Francisco de Paula. Antibiotics: RIF, rifampicin; ERY, erythromycin; NOR, norfloxacin; CIP,
ciprofloxacin; S, susceptible; R, resistant.
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Enterococcus is associated with the environment and a wide range of organisms, including
plants (Miiller et al., 2001; Byappanahalli et al., 2012; Sdanchez Valenzuela et al., 2012). In
the present study, the most abundant Enterococcus species in the feces of H. erato phyllis
caterpillars was E. casseliflavus. The diet of insects constitutes an additional source of
microorganisms in the GI tract. Enterococci in the GI tract of caterpillars can play an
important role in the protection against other pathogens, since these bacteria are able to
produce lactic acid (causing a decrease in pH) and enterocins (peptides with antimicrobial
activity). Since E. casseliflavus is frequently a part of microbial communities on plants
(Byappanahalli et al., 20125 Micallef et al., 2013; Ong et al., 2014), the predominance of
this species in fecal samples of H. erato phyllis caterpillars could be explained by the
plant diet of juveniles, resulting in the dominance of this species. As noted by Chen et
al. (2016), enterococci stably colonize the larval gut of Spodoptera littoralis (Lepidoptera:
Noctuidae), and may act beneficially in caterpillars by promoting nutrient supplementation
(metabolism of terpenoids and polyketides) and host defense (production of antimicrobials
by E. mundtii). However, further studies are needed to understand the role of these bacteria
as members of the GI tract in H. erato phyllis caterpillars.

Resistant enterococcal strains isolated from fecal samples of caterpillars are a matter of
concern, since these larvae had not been exposed to antibiotics. Studies that highlight the
resistance profile of enterococci isolated from insects in natural environments are scarce.
Channaiah et al. (2010) described enterococci isolated from insect pests of stored products;
they were resistant to tetracycline, streptomycin, erythromycin, kanamycin, ciprofloxacin,
ampicillin, and chloramphenicol; this suggests that these animals can be potential vectors in
disseminating antibiotic-resistant strains. Ahmad et al. (2011) reported MDR enterococci
isolated from house flies and cockroaches in a confined swine production environment,
and have suggested that these insects may be potential vectors and/or reservoirs of resistant
enterococci. Despite the occurrence and spread of resistant strains intensifying due to the
use of antimicrobials, the isolation of resistant enterococci in the present study could be
related to the resistance that occurs naturally in the environment (environmental resistome)
and/or to anthropogenic activities (contamination of the environment) (Martinez, 2008;
Allen et al., 2010).

The most widespread mechanism of resistance to macrolides in enterococci is mediated
by the erm and msr C genes (Aarestrup et al., 20005 Santestevan et al., 2015; Prichula et al.,
2016). Nevertheless, none of these genes was detected in the present study. It is possible
that these strains harbored other erythromycin-resistance genes, such as erm D, E, and
F, and other efflux pump genes such as msr A. A low percentage of virulence genes was
detected in enterococci of H. erato phyllis caterpillars. Although these genes are related
to pathogenicity of clinical enterococcal strains, their presence in strains in fecal samples
from caterpillars may be associated with the maintenance of cells of the GI tract, and
consequently with microorganism and host interactions.

From the analysis of the PFGE fingerprint, E. casseliflavus, E. faecalis, E. mundltii,
and Enterococcus sp. isolated from fecal samples of sibling and non-sibling caterpillars
demonstrated unrelated or related patterns based on maternal origin. The unrelated
patterns found in P1, P2, P3, P4, P5, P6, P10, P11, P12, P14, and P15 demonstrated genetic
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diversity among these strains. The genetic variation in these strains may be associated
with genetic events, such as mobile elements or mutation, a common characteristic of
enterococci (Lebreton, Willems & Gilmore, 2014). The related patterns observed among
strains isolated from sibling caterpillars (P7, P8, P9, and P13) may be associated with

a common source, e.g., diet (herbivory) and/or vertical transmission (through the egg
surface). Since the fecal samples used in the present study were collected from fifth-instar
caterpillars, the last stage before the pupa, the results present here may be suggest vertical
transmission of enterococci that are being replaced from the diet. Plants are a food source
for bacteria present in the GI tract of insects; these bacteria improve the quality of diets
poor in nutrients and take part in development and maturation of the immune system to
protect the host against pathogenic microorganisms (Dillon ¢ Dillon, 2004; Engel ¢ Moran,
2013). Therefore, it is likely that herbivory provides an abundant supply of enterococci
throughout the larval stage of H. erato phyllis. Considering that Passiflora leaves are the
only food of the caterpillars, those leaves could be the source of Enterococcus sp. in their GI
tracts.

Besides the diet, vertical transmission from the female to her offspring can also be a
source of bacteria. Some studies have described the mechanism for vertical transmission
of bacteria in different species of Lepidoptera (Brinkmann, Martens ¢ Tebbe, 2008; Chen
etal., 2016; Teh et al., 2016; Shao et al., 2017). The caterpillar hatches by chewing a hole in
the chorion and emerging through it from the egg. Brinkmann, Martens ¢ Tebbe (2008)
reported that the Enterococcus spp. present in the gut of the larvae of Manduca sexta
(Lepidoptera: Sphingidae) were acquired via ingestion of their eggshell, demonstrating
maternal transmission of microorganisms. Chen et al. (2016) analyzed the composition
and activity of microbiota in the moth Spodoptera littoralis, which is an agricultural pest;
they found that enterococci associated with adult females were also in the egg mass, and
further colonized the larval gut of individuals, suggesting vertical transmission of these
bacteria. Teh et al. (2016) showed the route of transmission of E. mundtii in S. littoralis
when administered in vivo; the authors reported the presence of E. mundtii at all life stages
of this insect. In addition, they established the presence of these bacteria in oocytes and
the muscle tissue in the first-instar larvae of the second-generation offspring, highlighting
again the vertical transmission of enterococci in this lepidopteran. The enterococci isolated
in the present study may be linked to herbivory; however, although our analysis does
not include adult females and the bacterial communities of Passiflora leaves, we do not
rule out the possibility that enterococci could also be transmitted from the female to the
offspring through the surface of the egg, as previously demonstrated for other species of
Lepidoptera.

CONCLUSIONS

Enterococcus casseliflavus was the dominant enterococcal species isolated in fecal samples
of the fifth-instar caterpillars of H. erato phyllis. Resistant strains present in the caterpillars
studied may be related to the environmental resistome and/or anthropogenic activity.
In addition, the presence of MDR enterococci may be an indication of contamination
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of the environmental by antibiotics. The results obtained by PFGE analysis suggest that
the enterococci isolated from fecal samples of sibling caterpillars might have come from
common sources, e.g., the diet (herbivory) and/or vertical transmission (through the egg
surface). Further studies will be conducted to better understand the role of Enterococcus
in the GI tract microbial community of H. erato phyllis butterflies, and the mechanisms
involved in acquisition and maintenance of these bacteria. In addition, the data obtained
can be used in future comparative analyses of the microbiota present in adult H. erato
phyllis females and their offspring, to confirm the occurrence of vertical transmission of
Enterococcus sp. in this model organism.
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