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Abstract: Selective gas sensing is of great importance for applications in health, safety, military,
industry and environment. Many man-made and naturally occurring volatile organic compounds
(VOCs) can harmfully affect human health or cause impairment to the environment. Gas analysis
based on different principles has been developed to convert gaseous analytes into readable output
signals. However, gas sensors such as metal-oxide semiconductors suffer from high operating
temperatures that are impractical and therefore have limited its applications. The cost-effective
quartz crystal microbalance (QCM) device represents an excellent platform if sensitive, selective
and versatile sensing materials were available. Recent advances in affinity ionic liquids (AILs) have
led them to incorporation with QCM to be highly sensitive for real-time detection of target gases at
ambient temperature. The tailorable functional groups in AIL structures allow for chemoselective
reaction with target analytes for single digit parts-per-billion detection on mass-sensitive QCM.
This structural diversity makes AILs promising for the creation of a library of chemical sensor arrays
that could be designed to efficiently detect gas mixtures simultaneously as a potential electronic in
future. This review first provides brief introduction to some conventional gas sensing technologies
and then delivers the latest results on our development of chemoselective AIL-on-QCM methods.

Keywords: volatile organic compound; chemoselective gas analysis; ionic liquid; quartz crystal
microbalance

1. Introduction

Gas, one of the four fundamental states of matter, has a unique place in the eye of human. To say
the least, the air human inhale contains oxygen that serves as an oxidizing agent in cellular respiration
to release adenosine triphosphate (ATP), the molecular unit of currency for our everyday activity.
Also, the carbon dioxide exhaled by human is the main ingredient for plants to undergo photosynthesis
and release oxygen back to the atmosphere. Analysis of gases is of great importance for a myriad of
applications in health, safety, military, industry and environment. For example, breath volatile organic
compounds (VOCs) have found immense value in noninvasive disease diagnosis and metabolism
monitoring [1–8]. Food industry uses gas sensing technologies for quality control of fruit ripeness
and detection of meat spoilage [9–13]. Analysis of indoor air quality domestically and industrially
has been implemented for monitoring hazardous and asphyxiant gases [14–16]. Moreover, selective
detection of gases is used as means of both homeland securities for early detection of chemical warfare
agents (CWAs) [17] and industrial regulation for greenhouse emission [18]. As a result, it is obvious
that, in sync with the advance of science technology, increase in human activities, improvement in
life quality and health, demands for gas analysis will only continue to grow. However, to provide
quantification analysis of gases is rather difficult than it may sound.
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Unlike liquid or solid, gas is shapeless and invisible to the naked human eye due to the large
discretion between each molecule, allowing them to move quickly and freely. To add on, the abundance
of gaseous molecules such as single atom gases (e.g., noble gases: He, Ni and Ar), single type of atom
gases (e.g., O2 and N2) or multiple atom gaseous molecules (e.g., CH4 and CO2) augments the difficulty
for specific trace detection. Therefore, considering the complexity of the constituents in gas mixtures
along with other properties, the importance to develop capable gas sensing methods has never been
more on demand.

Gas analysis has long been an important field of study that can be dated back to Hippocrates
for his study on breath aroma [19]. Yet, due to the lack of sufficient detection methods and tools,
the development of gas analysis had largely stand pat at qualitative analysis. With the advances in
science and technology, scientists had started to employ new devices capable of providing quantitative
analysis. Most notably, in 1950s, Keeling and coworkers deployed an infrared gas analyzer to give
birth to the renowned graph, the Keeling Curve, which was first to provide the direct linkage of
human activities to climate change in continuous measurement of carbon dioxide concentration for
20 years [20]. In 1971, Pauling and coworkers spent 3 years to develop a gas-liquid chromatography
system that permits the determination of more than 250 substance in breath and urine vapor, signaling
the start of modern breath analysis [21]. Since then, great strides have been made in the development
of analytical methods, many of which are powerful tools that provide comprehensive information on
gas analysis. A brief survey of the available tools is provided in Figure 1. However, given the wide
ranges available, not one is without flaw and can be satisfied for all needs. In this review, general
description on common gas sensing methods is provided, along with ionic liquids (ILs), the materials
that have garnered our interest due to their unique properties. Finally, a detail account is reported on
affinity ionic liquid (AIL) by quartz crystal microbalance (QCM), a chemoselective sensing method
with great potential for commercial use.
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Figure 1. Number of articles published in English on the subject of analytical tools used
for “gas sensing,” as determined by SciFinder on 18 August 2018. IR, infrared spectroscopy;
GC-MS, gas chromatography-mass spectrometry; DOAS, differential optical absorption spectroscopy;
LIBS, laser-induced breakdown spectroscopy; PTR-MS, proton-transfer reaction mass spectrometry;
MOS, metal oxide semiconductor; MOF, metal organic framework; OCP, organic conducting polymer;
SAW, surface acoustic wave; QCM, quartz crystal microbalance.

A complete sensing scheme may be divided into five parts. First, an inert reference gas such as
N2 for baseline determination serves as a sample carrier. Second, a chamber is used for introduction of
sample via injection or headspace sampling. Third, physical or chemical adsorption of gaseous sample
on sensing substrate will result in either a physical, optical, or electrical change. Then, an analogue
digital converter capable of reading the physical, optical, or electrical change will convert it into digital
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signals for computer analysis. Last, data analysis is proceeded with mathematical algorithm. A basic
flow diagram is depicted in Figure 2. In this review, the bulk sensing methods are categorized into
four domains: spectroscopic, spectrometric, conductivity and piezoelectricity methods. It is also worth
noting that these techniques can be used together via an interdisciplinary approach. In addition,
the pros and cons of the techniques will be provided for the evaluation of its selectivity, sensitivity,
cost, response time and potential for real-time application.
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2. Gas Sensing Methods

2.1. Spectroscopic Methods

There are many spectroscopic methods available in the sensing of gas molecules, including
differential optical absorption spectroscopy (DOAS) and Fourier transform infrared spectroscopy
(FT-IR), many of which that have been applied in field test [22,23]. The principle behind most
spectroscopic gas analysis is based upon either absorption spectroscopy or emission spectroscopy.
Absorption spectroscopy can be comprehended via the Beer-Lambert’s law, in which the analytes can
be characterized by the wavelength or frequency when absorption occurs. DOAS is an example of this
and is widely used in atmospheric science for its low limit detection and good accuracy. However,
DOAS suffers from interference such as NO2 and stray lights or unremoved sets in the spectra [24].
Emission spectroscopy involves the emission of photons when a molecule is excited and then returned
to ground state and such an example is the laser-induced breakdown spectroscopy (LIBS). In short,
spectroscopic methods have the advantage of being able to provide high selectivity and sensitivity
detection. They however suffer from large instrumentation and high cost. Additional development of
miniaturized instruments with affordable cost will be the next step forward.

2.2. Spectrometric Methods

Another conventional method for gas analysis is the gas chromatography-mass spectrometry
(GC-MS). Evidence through its namesake, GC-MS is composed of two instruments: a gas
chromatography system that is responsible for separation of the molecules in gaseous sample and
a mass spectrometer that provides analysis of the molecules through fragmentation of the molecules
by ionization to obtain mass spectra which can be then correlate to a fingerprint in the database for
determination. Yet, given its advantages against other methods, the GC-MS is handicapped largely by
many factors. These include the lengthy pre-concentration and analysis duration needed that make
GC-MS inapplicable for real-time performance. Also, constant calibration needed by a knowledgeable
operator makes it difficult to popularize [25]. Nevertheless, developments have been made in hope of
refining the methods.
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The solid-phase micro extraction (SPME) is a sample pre-treatment technique developed
to provide a simple, fast and solvent free preparation of the analytes to cut down the lengthy
pre-concentration process [26]. A highly selective polymer coated fused-silica fiber is immersed
into liquid or by exposure in the headspace for desired molecules to be adsorbed onto. This allow
elimination of impedance by solvent peaks and has thus been used in many fields. Further modification
of the fiber is also available to improve selectivity of the sample [27,28]. Albeit it was successful in
decreasing the time needed, it is still not appropriate enough for real-time application [29,30].

Selected ion-flow tube (SIFT) is another method developed to provide better real-time analysis
through alternative ionization method. It requires the chemical ionization of trace gas in air samples.
The samples mixed with thermalizing buffer gas are then carried through for detection by the mass
spectrometer. The method provides real-time, high sensitivity analysis of the molecules, yet, it fails to
detect compounds of the same m/z ratio. Nevertheless, it is still widely applied in fields, including
an on-line quantification of VOCs at the headspace of roasted coffee by Dryahina and coworkers [31],
air quality determination at drug storage areas by Doran and coworkers [29], and breath analysis by
Spanel and Smith [32].

Proton-transfer reaction mass spectrometry (PTR-MS) is developed for better detection of gaseous
organic compounds. It relies on the chemical ionization of gas sample by proton transfer (H3O+) inside
the drift tube. Furthermore, a more compact instrumentation relative to SIFT with the advantages
of higher sensitivity, online measurement with no requirements of pre-concentration and substance
calibration is provided. Due to its proton-transfer thermodynamics, PTR-MS receives no interference
with photon affinities [33]. However, this also implies that small molecules such as CO, CO2 and
methane cannot be detected using standard PTR-MS [34]. Although it provides superior size advantage
and user-friendliness in comparison to other MS methods, it is still considered bulky. In addition,
similar to SIFT it also fails to differentiate isobaric compounds.

2.3. Conductivity Based Methods

2.3.1. Metal Organic Semiconductors

Metal oxide semiconductors (MOSs) are solid-state gas detecting devices commonly used in
industry for its low-cost, easy production and compact size [35,36]. The working principle of MOS is
straightforward: the measurement of changes in conductivity of the metal oxide layer when interaction
(e.g., redox reactions) with the surrounding environment occurred. Furthermore, high sensitivity by
MOSs have led to numerous applications in gas sensing of nitrogen oxides, sulfur dioxide, hydrogen
sulfide, hydrogen, ozone, VOCs and CWAs [37]. However, these sensors usually suffered from
poor selectivity given their vulnerability to poisoning (e.g., ethanol, volatile sulfur compounds and
humidity) [38]. In addition, high temperature (>400 ◦C) required for operation and the extensive
functionalization needed to further improve sensitivity also hampers its practical applications. To tackle
aforementioned problems, recent research works have demonstrated promising improvements in
selectivity and thermal stability through the doping of nanostructures (e.g., nanotubes and nanowires)
and nanocomposites (e.g., Pt, Nb, CeO2, or PdO) or by structure modification to increase surface
area [39–41]. However, it has to be mentioned that besides the exact working mechanisms for
modified MOSs via doping remain uncertain, there are still multiple aspects that needs to be addressed.
In a recent review detailed by Korotcenkov and Cho, these aspects include: small to little improvements
in gas sensing sensitivity, limited reproducibility due to the complex material involved, careful
monitoring for large number of parameters needed for optimal control of the material and the trade-off
of other parameter of sensor for improvement in selectivity and sensitivity [42]. Therefore, it is clear
that further efforts need to be made in understanding the mechanism of the conductivity response
occurred at the metal oxide layer.
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2.3.2. Metal Organic Framework

In part of their highly tunable and diverse structures, metal organic frameworks (MOFs) have
garnered increasing interests over the past years. Furthermore, an outburst of development directed at
numerous fields has been made, including catalysis, gas storage, separation, electric capacitors [43],
energy storages [44], lithium ion batteries [45] and chemical sensors [46,47]. Given our focus in sensing
tools, we will look into solely on its recent development as gas sensing methods.

As one can expect from its versatility to multiple fields, many facets of MOF properties have
been experimented for possible gas sensing applications. For example, its low conductivity has
led to the introduction of impedance spectroscopy in detecting different gases. Although recent
success has been made in detecting ammonia and methanol, studies for better selectivity are still
required for further applications [48–51]. Another application that utilized low conductivity of MOFs
is its role as a chemiresistive sensor. Initial works in the field have displayed slow recovery time
and high temperature requirement [52]. However, recent works by Campbell and coworkers have
shed light through introducing new fabrication methods of the MOFs that were able to discriminate
different VOC vapors [53]. Other works have also provided improvements through various fabrication
methods [54]. Nonetheless, it should be noted that such method is still at its embryonic stage and the
exact mechanisms are unknown and further studies are required [55].

Optical responses are another way MOFs can contribute in gas sensing. The method involves
changes that are detected based upon either a shift in the emission spectrum, or a change in
luminescence intensity. The former can be achieved by two passages: a change in solvent polarity and
a change in the coordination environment of the metal ion. The latter usually involves the quenching
(turn-off) or enhancement (turn-on) of photo-induced emission due to guest adsorption, with the
effectiveness determined by the nature of the guest-host interactions [56]. The good sensitivity
and regenerability have led to success in sensing numerous gaseous molecules, as reviewed in
literature [57–59]. However further development is required for it to become fully applicable as
its limitations include medium stability and the insufficient knowledge to fully address the selective
nature of this method [46,60]. In addition, MOFs, as a selective sorbent layer, can be incorporated with
mass-sensitive sensors, such as acoustic wave sensors, to achieve better selectivity of analytes.

2.3.3. Organic Conducting Polymer

Other than the MOSs and MOFs, organic conducting polymer (OCP) is another conventional
method that has been studied extensively [61,62]. However, due to low conductivity and stability
of organic materials, further fabrication is required to enhance conductivity through protonation
or redox reactions, thus lead to many nanocomposite derivatives [61]. A typical OCP sensor setup
constitutes of two electrodes fabricated with an insulating polymer. Modulation of the insulating
polymer via spraying, spinning, or coating allows improvement in conductivity. Once exposed to
gas, physical properties of the insulating substrate changes due to gaseous molecule interaction with
the sensing substrate upon adsorption, thus a change in resistance occurs and measurements can be
made accordingly [62]. In comparison to its inorganic conducting counterparts, OCP sensors have the
advantage of short response time at room temperature with high sensitivity. Moreover, the adoption
of nanocomposites increases their surface-volume-ratio to decrease response time. Thus, an array of
OCPs, acting as an e-nose system, can lead to commercial applications for real-time analysis such as
continuous industrial hazardous VOCs monitoring [11]. However, the improvement in response time
is upstaged by the low reproducibility, selectivity and stability of the OCP structure. Furthermore,
the conductivity of polymers can also be influenced by many factors, including temperature
fluctuation [63]. In addition, as mimics of enzyme-substrate complexes, molecularly imprinted
polymers (MIPs) can provide high selectivity for adsorption of target analytes with template-tailored
cavities. These structure-directed sensing materials have been reported to successfully analyze organic
molecules for determination of optimal harvest maturity in fruits. Nonetheless, the complete removal
of analytes from the MIPs can be challenging and limits its productivity [64].
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2.4. Piezoelectric Methods

2.4.1. Surface Acoustic Wave

Surface acoustic wave (SAW) sensors and bulk acoustic wave (BAW) sensors are two of the
most used methods applying piezoelectric effect. SAW sensors differ from BAW sensors in that its
acoustic wave mainly propagates and is confined within the near surface region, typically beneath
one wavelength of the surface, whereas the wave of BAW sensors covers the whole body [65,66].
Nevertheless, the sensing mechanism for both is similar: the measurement and analysis of the change
in wave frequency resulted from chemical or physical adsorption at the substrate.

The basic components of a SAW sensor include an input interdigitated transducer (input IDT),
an output interdigitated transducer (output IDT) and a gas-sensitive coating substrate on piezoelectric
substrate, as illustrated in Figure 3. An input IDT set at one end of the substrate initiates an acoustic
wave that propagates along the surface of the substrate to the output IDT located on the other end.
Midway through the propagation, a change of the coated region upon interactions of the gas molecules
at the surface of the substrate will result in a change in the oscillation frequency. The output IDT
receives the signal and outputs it to an analyzer for further computation. The interactions involved
usually result to a change of mass, viscoelasticity and conductivity that will cause a time delay between
the input and output IDTs, thus a wave shift that can be correlated proportionally with mass will occur,
giving it its high sensitivity [67–69].
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nanocomposites and others.

The modulation of the propagation path is crucial component of a SAW-based sensor. In fact,
the selectivity, sensitivity and repeatability largely depend on the sensing materials deposited on the
piezoelectric substrate. Common coating materials include polymers, MOSs, MOFs, carbon nanotubes
and nanoparticles. Polymer films have shown to provide short response and recovery time through
physical adsorption of gas molecules. However, poor selection requires a better structure and doping.
Metal oxides and MOFs, given by their high thermal stability, can detect inorganic gases and VOCs
through redox reactions at high temperatures [69]. Carbon-nanotubes provide high sensitivity at
room temperature due to their large surface to volume ratio, providing quick response and high
adsorption capacity.

2.4.2. Bulk Acoustic Wave

Quartz crystal microbalance (QCM) belongs to the larger group of BAW that has been studied
extensively and applied to many fields. For example, coated QCM with antibody and gold
nanoparticles has been used recently for disease diagnosis and antigen detection in solutions [70–74].
Study of cells can be conducted through the examination of cell-substrate adhesion with QCM [75,76].
Furthermore, detection of environmental pollutants can also be done with QCM immunosensors [77].
The high sensitivity, stability, fast-response and low-cost characteristics have made QCM one of the
most common tools applied.
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Unlike a ST-cut quartz used for SAW sensors, the QCM is made up of an AT-cut quartz sandwiched
between two electrodes that is usually attached to an AC voltage, as shown in Figure 4. Upon molecular
adsorption or reaction at the surface, a shift in the oscillating frequency of the quartz substrate
occurs, indicative of a change in mass [78]. This working mechanism in gas phase is depicted by
the Sauerbrey equation [79], where the shifting oscillation frequency can be correlated to the change
of mass. Later, Kanazawa and Gordon derived a new equation for fluids based on the Sauerbrey
equation, allowing further applications [80]. Similar to SAW, high sensitivity and yet low selectivity of
the device also imply low tolerance to slight changes in the environment, making it highly susceptible
to interference. Nevertheless, developments have been made for different uses of QCM. For example,
to account for viscoelasticity common to biological molecules, inclusion of dissipation led to the
introduction of QCM dissipation (QCM-D). Electrical QCM (EQCM) can be used to characterize
electrochemical process. Moreover, carbon nanotubes, polymers, MOSs, MOFs and ionic liquids can
also be fabricated, deposited on QCM sensors to improve performance.
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QCM-D is an often-used technique developed to provide better analysis of biological molecules
but hardly applied in gas sensing. The technique relied on the monitoring of dissipation to obtain
information on the structure of the substrate. This is achieved by turning off the power of the oscillating
crystal and allows the oscillation decay to be measured [81–83]. A combination of the dissipative and
resonant frequencies allows better estimation of the viscoelastic mass.

EQCM utilizes both amperometric sensing and mass sensing to provide cross validation in
analysis. For an electrochemical experiment, three electrodes are immersed in liquid phase to perform
methods such as cyclic voltammetry, differential pulse voltammetry, or square wave voltammetry.
Most applications of EQCM have been focused on fields related to characterization of biological
molecules and energy storage studies [84–87]. Furthermore, the introduction of ionic liquids, which
provide features such as conductivity and great adsorption ability for gases, has opened a new door for
new applications with EQCM. Yu and coworkers were able to employ ionic liquids as both electrolytes
and sorption solvents for cross analysis of ethyl nitrobenzene [88].

Better sensing through fabricating the surface of the substrate to achieve higher selectivity
and sensitivity remains to be the most dominant pathway in gas sensing with QCM. Likewise,
the incorporation of MOSs and MOFs allowed improved sensitivity and selectivity through
redox reaction and high surface ratio but required higher temperature and longer response time.
The incorporation of molecularly imprinted polymers on QCM also showed high affinity and sensitivity
toward target molecules [89]. Polymers through their porous structures are another commonly applied
method for better selectivity [9,90,91]. Nanostructured modified QCM was also used for successful
detection of plasticizer vapors, hydrogen sulfide and ammonia [92–94].

Although surface modifications of QCM provide various advantages in gas sensing, it also
brought along its disadvantages to be solved. How to provide further modifications for better



Molecules 2018, 23, 2380 8 of 20

sensitivity, selectivity and reproducibility under ambient conditions for real-time applications remains
as a challenging task. Ionic Liquids, with its many advantages, have the potential to fill this need.

3. Ionic Liquids and Its Use for Adsorption Analysis of Gases on QCM

Room temperature ionic liquids (RTILs) are liquidus molten salts at ambient temperature and
composed entirely of ions. Their diverse properties in providing excellent physical, chemical, thermal
and electrochemical stability, nonflammability, very low vapor pressure, good solubility and tunability
have garnered them significant studies in wide range of fields (Figure 5) [95,96]. For example, tailorable
physical properties such as melting points, viscosity, density, solubility and hydrophobicity have made
RTILs ideal solvents for catalytic and synthetic reactions [97]. Excellent solubility of RTILs to dissolve
a wide range of biomass matrices have them actively applied for extraction and separation of bioactive
compounds [98]. High tailorability, good water solubility and biodegradability allow ionic liquids to
gain penetration to ecological system for the purpose of drug delivery, drug synthesis, biomedical
analysis in pharmaceutics and medicine [99]. The negligible volatility, high thermal stability, good
electric conductivity and large electric window have enabled RTILs to serve not only as valuable
electrolytes but also as precursors for carbon material electrodes [100]. Nonflammability, high thermal
stability and oil-solubility satisfy the requirements for use as lubricants and lubricant additives [101].
Figure 6 gives structures of common cations and anions for ionic liquids.
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For gas sensing purpose, ILs present great value specifically in its tunable structure and high
adsorption for VOCs [96,102,103]. Liang and coworkers were first to report ionic liquid on QCM for
VOCs [104]. The successful detection of VOCs molecules via modification of functional groups at
cations and anions displayed the tailorability of ionic liquid [104]. Later, Jin and coworkers was able to
obtain promising results through employment of an IL-based sensor array on QCM [105]. Flammable
organic molecules (ethanol, benzene, heptane and dichloromethane) showed linear response with
increase of concentration at both room and high temperatures, though a deviation occurred at high
concentration for dichloromethane due to exceed of its own vapor pressure. Statistical analysis further
showed that IL-based array can be promising through providing unique response patterns for each
vapor [105]. In addition, further modification of ILs and incorporation with other materials (e.g., ethyl
cellulose matrix, electrospun nanofiber, or carbon nanotubes) have led to successful sensing of CO2

and SO2 [106–109].

4. Ionic Liquid on QCM for Chemoselective Gas Sensing

Since 2010, we have put in efforts to the development of a series of affinity ionic liquids (AILs)
targeted specifically for chemoselective gas sensing [110–117]. Albeit the bulk reports from others in
the past have been successful in detecting gas molecules via physical adsorption, the challenge for
those methods remains for better specificity to discriminate structurally similar gas molecules from
others. Chemoselective gas analysis, on the contrary, can provide a simpler solution through inducing
reaction-based selection via chemical reactivity of the compounds. In addition, we have been able to
use this chemoselectivity as the advantage in successfully isolating target analytes from common VOCs
interference (e.g., water, methanol, acetone, ethyl acetate, hexane, acetonitrile) at room temperature.
Figure 7 and Table 1 provide the structures of AILs developed in our laboratory and mechanisms
employed for chemoselectivity to target gas molecules.
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Table 1. A brief description of the working principles AILs employed, the targeted analytes and the
sensitivity of detection.

Ionic Liquid Target Gas Species Sensing Mechanism Sensitivity of Detection Literature

AIL1 aldehydes; ketones imination ∆F = −1.0 Hz:
4.5 ppb 1; 148 ppb 2 [110]

AIL2 aldehydes imination ∆F = −2.0 Hz:
4.6 ppb 3 [111]

AIL3 acyclic and cyclic
ketones

hydrazone adduct
formation

∆F = −1.0 Hz:
0.6 ppb 4 [112]

AIL4 amines transamination ∆F = −1.0 Hz:
2.5 ppb 5 [110]

AIL5 amines nucleophilic aromatic
addition

∆F = 10 Hz:
8.0 ppb 6 [113]

AIL6 amines nucleophilic aromatic
addition

∆F = 10 Hz:
5.4 ppb 7 [113]

AIL7 azides Huisgen 1,3-dipolar
[3 + 2] cycloaddition

∆F = 10 Hz:
5 ppb 8; 35 ppb 9 [114]

AIL8 control group inert inert [114]

AIL9 dienes Diels-Alder [4 + 2]
cycloaddition N/A [115]

AIL10 dienes Diels-Alder [4 + 2]
cycloaddition

∆F = −1 Hz:
1.5 ppb 10 [115]

AIL11 CWA mimics nucleophilic
substitution

∆F = 5 Hz:
20 ppb 11 [116]

Sensitivity of detection with respect to 1 butyraldehyde; 2 2-butanone; 3 propionaldeyhyde; 4 cyclohexanone
with 2 mol% Sc(OTf)3; 5 propylamine with 1 mol% Sc(OTf)3; 6,7 propylamine; 8 benzyl azide; 9 butyl azide;
10 cyclopentadiene; 11 diethyl chlorophosphate.

4.1. Chemoselective Sensing of Aldehyde and Ketone Gases

Negligible vapor pressure and nonflammability have made room-temperature ionic liquids ideal
materials to thin-coat on mass sensing transducer, QCM. The negligible vapor pressure ensures
that ionic liquid does not dry out and is free of leakage during setups and experiments, while the
nonflammable property allows for easy deposition of ionic liquid on QCM by dilution in methanol,
which can be readily removed through short baking in oven.

In 2010, we first reported AIL1 on QCM for detection of gaseous aldehydes and ketones through
the formation of a Schiff base by the imination of the amine group in AIL1 [110]. Further quantitative
studies were carried out to test selectivity between two model gases of identical molecular weight,
butyraldehyde and 2-butanone, that is, to differentiate aldehyde from ketone. In coherent with its
reactivity towards aldehyde, butyraldehyde was able to response better with higher sensitivity of
detection. Furthermore, metal containing ionic liquid AIL2 was also employed for gas analysis due to
high affinity for alkylamine that resulted in easy preparation. Although AIL2 has significant drawbacks
in lesser stability under light; it exhibited a better response for propionaldehyde as evidenced in
Figure 8 [111].



Molecules 2018, 23, 2380 11 of 20
Molecules 2018, 23, x FOR PEER REVIEW  11 of 19 

 

 
Figure 8. Chemoselective detection of common VOCs (e.g., ammonia, dichloromethane, chloroform, 
water, ethyl acetate, hexane, methanol, acetone, acetonitrile) and propionaldehyde gases at 100 ppb 
by a multi-channeled QCM thin-coated with AIL1 and AIL2 (33 nmol each, 200–300 nm thickness). 
Carrier gas (N2) had a flow rate of 3 mL/min and analyte injection was made at 100 s. A larger 
frequency change for propionaldehyde was observed for AIL2. 

In 2013, we went further to study chemoselective detection of gaseous ketones by using AIL3 
[112]. This is achieved by the formation of stable hydrazone adduct and a sensitive detection for low 
concentration of acetone (98 ppb) could be observed. Moreover, Lewis acid species were introduced 
to facilitate better hydrazone formation, with 2 mol% Sc(OTf)3 found to provide the most 
enhancement in detection sensitivity (Figure 9). For cyclic ketones, cyclopentanone, cyclohexanone 
(a signature compound emanating from C-4 explosive) and cycloheptanone were tested. 
Cyclohexanone displayed the largest response, in part of a greater reactivity with AIL3 due to its 
sterically-free chair conformation (Figure 10) [112]. 

 
Figure 9. An ultrasensitive, 2 mol% Sc(OTf)3-catalyzed detection of acetone gas (58 ppb) by 9 MHz 
QCM thin-coated with AIL3 (3.3 nL each, 300 nm thickness). AIL1 was used here as the control ionic 
liquid. Gaseous acetone sample was injected at 300 s. 

 
Figure 10. Chemoselective detection of acyclic and cyclic ketone gases (76 ppb each) on display by a 
9 MHz QCM thin-coated with AIL3 (3.3 nL, 300 nm thickness) with 2 mol% Sc(OTf)3. Ketone gas 
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Figure 8. Chemoselective detection of common VOCs (e.g., ammonia, dichloromethane, chloroform,
water, ethyl acetate, hexane, methanol, acetone, acetonitrile) and propionaldehyde gases at 100 ppb
by a multi-channeled QCM thin-coated with AIL1 and AIL2 (33 nmol each, 200–300 nm thickness).
Carrier gas (N2) had a flow rate of 3 mL/min and analyte injection was made at 100 s. A larger
frequency change for propionaldehyde was observed for AIL2.

In 2013, we went further to study chemoselective detection of gaseous ketones by using AIL3 [112].
This is achieved by the formation of stable hydrazone adduct and a sensitive detection for low
concentration of acetone (98 ppb) could be observed. Moreover, Lewis acid species were introduced to
facilitate better hydrazone formation, with 2 mol% Sc(OTf)3 found to provide the most enhancement
in detection sensitivity (Figure 9). For cyclic ketones, cyclopentanone, cyclohexanone (a signature
compound emanating from C-4 explosive) and cycloheptanone were tested. Cyclohexanone displayed
the largest response, in part of a greater reactivity with AIL3 due to its sterically-free chair conformation
(Figure 10) [112].
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QCM thin-coated with AIL3 (3.3 nL each, 300 nm thickness). AIL1 was used here as the control ionic
liquid. Gaseous acetone sample was injected at 300 s.
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Figure 10. Chemoselective detection of acyclic and cyclic ketone gases (76 ppb each) on display by
a 9 MHz QCM thin-coated with AIL3 (3.3 nL, 300 nm thickness) with 2 mol% Sc(OTf)3. Ketone gas
samples were injected at 300 s. Frequency drops for 3-pentanone, 2-butanone, acetone, cyclopentanone,
cyclohexanone and cycloheptanone were 13, 49, 97, 75, 159 and 69 Hz, respectively.
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4.2. Chemoselective Sensing of Amine Gases

Modification of ionic liquids was made to demonstrate that, as an important part of VOCs as
well as bacterial volatiles, amine gases could be readily captured and detected by AIL4, 5 and 6.
The working mechanism for AIL4 is the transimination reaction. Good selectivity with high sensitivity
results were obtained using propylamine as a model amine gas with the addition of 1 mol% Sc(OTf)3

to serve as a Lewis acid catalyst [110]. In 2017, Li and Chu reported the use of AIL5 and AIL6 for
sensitive detection of amine gases by means of nucleophilic aromatic addition reaction [113]. Briefly,
upon the introduction of amine gases, AIL5 and AIL6 form the Meisenheimer complexes with amine
molecules at the electron deficient 2,4,6-trinitrophenyl (TNP) group in ionic liquids. Here the AILs
served not only as amine-specific reacting agents but also for the purpose of accelerating the reactions
through the TNP-containing arene, which serves as a super electrophile, resulting in the stabilization
of the Meisenheimer complexes formed. QCM results demonstrated that the sensitivity of detection
for AIL5 and AIL6 with propylamine gas at frequency drop of ∆F = −10 Hz was determined to be
8.0 and 5.4 ppb, respectively. Furthermore, steric hindrance that played into the reactivity was also
observed, with the primary amines responding with larger ∆F values in respect to the more sterically
hindered secondary amines (Figure 11). In addition to the mass sensing provided by QCM analysis,
the Meisenheimer adduct, owing to the significant changes in electronic conjugation upon nucleophilic
addition by amines at the aromatic ring carbon located at TNP, was able to display an orange red
color visible by the naked eye. As reported, the instantaneous response of color change in AIL6 upon
exposure to amine gases when loaded on paper gives it potential for future applications as invisible
ink or portable amine detector [113].
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4.3. Chemoselective Sensing of Azide Gases 

In 2014, we demonstrated the sensitive detection of organic azide gases through strain-promoted 
click reactions by AIL7 on QCM. From the structure of AIL7, the strained triple bond on the 
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azide. AIL7 exhibited great reactivities to these gases and, at ΔF = −10 Hz, sensitivity of detection for 
benzyl azide and butyl azide was 5 ppb and 35 ppb, respectively. Furthermore, in line with the 
activation energy study of azides, an order of frequency change on QCM was obtained: benzyl azide 
> phenyl azide > allyl azide. On the other hand, AIL8, as the control group was totally inert to the 
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Figure 11. Chemoselective detection of water, ethanethiol, ethanol, methanol, ethylmethylamine,
methylamine, isopropylamine and propylamine gases (100 ppb each) by 9 MHz QCM thin-coated
with AIL6. The carrier gas had a flow rate of 3 mL/min and the analytes were injected at 500 s.
The sensorgrams above propylamine were purposely shifted vertically (50 Hz in between) for clarity.

4.3. Chemoselective Sensing of Azide Gases

In 2014, we demonstrated the sensitive detection of organic azide gases through strain-promoted
click reactions by AIL7 on QCM. From the structure of AIL7, the strained triple bond on the cyclooctyne
ring was able to display a stronger affinity for organic azide gases. Furthermore, a collection of azide
gases were tested: propyl azide, pentyl azide, butyl azide, allyl azide and phenyl azide. AIL7 exhibited
great reactivities to these gases and, at ∆F = −10 Hz, sensitivity of detection for benzyl azide and
butyl azide was 5 ppb and 35 ppb, respectively. Furthermore, in line with the activation energy
study of azides, an order of frequency change on QCM was obtained: benzyl azide > phenyl azide >
allyl azide. On the other hand, AIL8, as the control group was totally inert to the azide gases used.
Not surprisingly, AIL7 can also readily undergo the Diels-Alder [4 + 2] cycloaddition reaction with the
cyclopentadiene gas [114].
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4.4. Chemoselective Sensing of Alkene Gases

Later on, we incorporated a cyclopentadiene group in AIL9 and a maleimide dienophile group
in AIL10 for QCM studies of its fast Diels-Alder [4 + 2] cycloaddition reactions with alkene and
diene gases, respectively [115]. Sensing by AIL9 was tested on five alkene gas molecules (1-pentene,
cyclopentene, methyl acrylate, acrolein, acryloyl chloride), with acryloyl chloride producing the
largest response in frequency drop. In addition, right after the first [4 + 2] cycloaddition reaction
to afford the Diels-Alder adduct, the dual functionalized acryloyl chloride could be continued
for a second consecutive reaction with an amine gas, a very fast Schotten-Baumann acylation,
as demonstrated in Figure 12. Further on, AIL10 was synthesized for effective diene gas analysis,
also, based upon the Diels-Alder reaction. As expected, the addition of 5 mol% Sc(OTf)3 Lewis acid
further promoted the Diels-Alder reaction and a linear QCM frequency response with increase of
concentration of cyclopentadiene was obtained. A sensitivity of detection of 1.5 ppb at ∆F = −1 Hz
was determined [115]. Next, among three other dienes (2,3-dimethyl-1,3-butadiene, cyclohexadiene
and isoprene) investigated, AIL10 was also able to demonstrate high specificity to cyclopentadiene
gas due to the fact that only it adopts a coplanar s-cis conformation [115].
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Figure 12. Detection of acryloyl chloride and propylamine (503 ppb each) was achieved by AIL9.
Acryloyl chloride was injected at 500 s while propylamine was at 4000 s. The QCM sensorgrams for
two injections of propylamine gas purposely shifted vertically by 10 Hz for clarity [112].

4.5. Chemoselective Sensing of Chemical Warfare Agent Mimics

In 2018, to counter with gaseous chemical warfare agents (CWAs), AIL11 were designed and
synthesized specifically for vapor detection of nerve agents (G-agents) mimics, diethyl chlorophosphate
(DCP) and dimethyl chlorophosphate (DMCP), in our laboratory [116]. The mechanism of reaction
involved the highly reactive azopyridine on AIL11, which serves as a nucleophile to undergo
substitution reaction. The resulting frequency changes, along with the color change in azobenzene
chromophore, were analyzed for quantitative measurements. The sensitivity of detection of AIL11 for
DCP was determined to be 20 ppb at ∆F = −5 Hz. AIL11 displays chemoselectivity to decipher DCP
and its analogous, more volatile dimethyl chlorophosphate DMCP, from common VOCs (Figure 13).
However, in retrospect to its successful detection of DCP and DMCP vapor, AIL11 was found to be
not reactive enough at ambient temperature to detect the vapor of 2-chloroethyl ethyl sulfide (CEES),
a blister sulfur mustard (HD) mimic, due to the poor electrophilicity of CEES. Further studies are
needed so that the appropriate modification can be made for its trace analysis.
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Figure 13. Chemoselective detection of common VOCs (water, ethyl acetate, hexane, methanol, acetone),
DMCP and DCP at 526 ppb each by QCM thin-coated with AIL11 (2.2 nL each, 200 nm thickness).
Carrier gas (N2) had a flow rate of 3 mL/min and analyte injection was made at 500 s.

5. Conclusions and Outlook

Real-time analysis of gaseous molecules remains a challenging task even with current
state-of-the-art analytical tools. Broadly speaking, methods for gas detection can be separated into
two parts. Spectroscopic and spectrometric methods are powerful tools to provide high sensitivity
in detection, yet the shortcomings of their large sizes in instruments, immobility and relatively
expensive cost make them unsuitable for immediate analysis [118]. On the other hand, inspired
by the mammalian olfactory system, various concepts of electronic nose have been employed and
developed. These conductivity and piezoelectric methods involved the collection of highly selective
sensors to comprise an array for analysis of gaseous molecules via pattern recognition or any other
classification algorithm. However, this seem-to-be ideal solution has yet to be achieved due to the
fact that compounds of similar structures can be indistinguishable for most sensors and other limiting
factors such as high operating temperatures for MOSs make them less straightforward for use.

AIL-on-QCM for chemoselective gas analysis has the potential to provide an alternative sensing
system. Though subject to interference, QCM remains to be an electrochemical device that can provide
a highly sensitive platform. The incorporation of AILs embedded with the unique chemical properties
on QCM quartz electrodes make it a promising tool for array sensing of gas mixtures. Also to be
noted are the further studies needed to address factors that may affect changes in the QCM resonant
frequency, such as temperature and humidity. In addition, better engineering in functional groups is
needed to assure competitive reactions with ionic liquids will not occur. Albeit idealization to mimic
that of a dog’s nose is still beyond reach, the envision of a collection of AILs and perhaps a hybrid gas
sensing system to complement each other may regard as a big step forward. After all, at the moment,
not one method is satisfactory for all demands [117].
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