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Abstract: African swine fever virus (ASFV) is responsible for enormous economic losses in the global
swine industry. The ASFV genome encodes approximate 160 proteins, most of whose functions
remain largely unknown. In this study, we examined the roles of ASFV K205R in endoplasmic
reticulum (ER) stress, autophagy, and inflammation. We observed that K205R was located in both
the cytosolic and membrane fractions, and formed stress granules in cells. Furthermore, K205R
triggered ER stress and activated the unfolded protein response through activating the transcription
factor 6, ER to nucleus signaling 1, and eukaryotic translation initiation factor 2 alpha kinase 3
(EIF2AK3/PERK) signaling pathways. Moreover, K205R inhibited the serine/threonine kinase 1 and
the mechanistic target of the rapamycin kinase signaling pathway, thereby activating unc-51 like
autophagy activating kinase 1, and hence autophagy. In addition, K205R stimulated the translocation
of P65 into the nucleus and the subsequent activation of the nuclear factor kappa B (NF-κB) signaling
pathway. Inhibition of ER stress with a PERK inhibitor attenuated K205R-induced autophagy and
NF-κB activation. Our data demonstrated a previously uncharacterized role of ASFV K205R in ER
stress, autophagy, and the NF-κB signaling pathway.
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1. Introduction

African swine fever virus (ASF), the only known DNA arbovirus, is prevalent in
Africa, Europe, and Asia [1]. It causes a highly infectious and fatal hemorrhagic disease
affecting the global swine industry [2]. Its genome contains approximately 160 major open
reading frames (ORFs) and encoding products, including enzymes, structural proteins, and
scaffolding proteins [3]. Some ASFV ORFs have been shown to be involved in regulating
viral replication and host antiviral responses. For instance, ASFV A224L, A179L, EP153R,
and DP71L inhibit apoptosis and prevent premature cell death, while ASFV E199L induces
mitochondria-dependent apoptosis, supporting viral replication [4,5]. In addition, ASFV
MGF-505-7R and MGF-505-11R negatively regulate the stimulator of IFN genes (STING)-
dependent antiviral responses [6,7]. However, the function of most ASFV ORFs remains
largely unknown. Given the lack of an effective vaccine against ASFV, it would be of great
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significance to characterize the function of ASFV proteins, providing new insight into ASFV
vaccine development.

Various viruses induce endoplasmic reticulum (ER) stress and the subsequent unfolded
protein response (UPR) [8]. Three signaling pathways, involving eukaryotic translation
initiation factor 2 alpha kinase 3 (EIF2AK3/PERK), ER to nucleus signaling 1 (ERN1/IRE1),
and activating transcription factor 6 (ATF6), are essential for the UPR [9]. ASFV structural
protein p17 induces the generation of ER stress-reactive oxygen species, which inhibit cell
proliferation [10]. ASFV activates the ATF6 branch of UPR, thus promoting infection [11].
CCAAT-enhancer-binding protein homologous protein (CHOP) is induced by ATF6 [12],
but ASFV does not activate CHOP and instead inhibits the induction of CHOP through
several exogenous stimuli [13]. Whether there are other ASFV proteins modulating ER
stress remains unknown.

Autophagy is a conserved self-degradative process, which is important for cellu-
lar homeostasis and host-pathogen interactions [14]. ASFV E199L promotes autophagy
through interacting with pyrroline-5-carboxylate reductase 2 and down-regulates its ex-
pression [15]. ASFV MGF505-11R interacts with the stimulator of interferon response
cGAMP interactor 1 and stimulates its degradation through autophagy, suggesting that
ASFV evades the innate immune response through hijacking autophagy [7]. In contrast,
ASFV A179L has been found to inhibit autophagosome formation through interaction
with Beclin-1 [16].

ASFV K205R has been found to be expressed in the early stages of infection, from 4 h
post-infection, and is located in viral factories. Therefore, the K205R gene has received
extensive research attention [16]. Adenovirus-vectored ASFV K205R elicits robust immune
responses in swine [17]. ASFV K205R has high antigenicity and can be recognized by
hyperimmune antisera from infected pigs, suggesting that K205R has the potential to be
used for the detection of ASFV-specific antibodies [18]. In the present study, we report that
ASFV K205R activates autophagy and the inflammatory response through triggering ER
stress. Our results indicated a novel function of ASFV K205R.

2. Materials and Methods
2.1. Cells

The 3D4/21 (ATCC, CRL-2843), PK-15 (ATCC, CCL-33), and HeLa (ATCC, CCL-2) cells
were cultured in DMEM (Gibco, Waltham, MA, USA) supplemented with 10% FBS (Gibco),
100 units/mL penicillin, and 100 mg/mL streptomycin sulfate (Sangon, Shanghai, China).
All cells were grown in monolayers at 37 ◦C in 5% CO2. The 3D4/21 P65−/−, PK-15 ATG5−/−,
and Beclin-1−/− cells were used and cultivated as previously described [19,20].

2.2. Chemicals and Antibodies

GSK2606414 (S7307) was ordered from Selleck (Pittsburgh, PA, USA), and LPS (HY-
D1056) was ordered from MedChemExpress (Monmouth Junction, NJ, USA). The anti-
bodies, including anti-LC3 (12741), anti-LC3-II (3868), anti-P62 (5114), anti-ATG5 (12994),
anti-ATG12 (4180), anti-Beclin-1 (3495), anti-p-PERK (Thr980, 3179), anti-p-eIF2α (Ser51,
3398), anti-P65 (8242), anti-p-P65 (Ser536, 3033), anti-Lamin B1 (13435), anti-LAMP1 (9091),
anti-IκBα (4814), anti-p-IκBα (Ser32, 2859), anti-mTOR (2983T), anti-p-mTOR (ser2448,
5536), anti-ULK1 (6439), anti-p-ULK1 (ser555, 5869), anti-p-ULK1 (ser757, 14202), anti-
AKT (2920), and anti-p-AKT (Ser473, 4060) were ordered from Cell Signaling Technology
(Danvers, MA, USA); anti-TOM20 (11802-1-AP), anti-GM130 (11308-1-AP), anti-Bip (11587-
1-AP), anti-ATF6 (24169-1-AP), anti-PERK (24390-1-AP), anti-eIF2α (11170-1-AP), anti-ATF4
(10835-1-AP), anti-XBP1 (25997-1-AP), anti-β-actin (20536-1-AP), and anti-GFP (50430-2-AP)
were ordered from Proteintech (Rosemont, IL, USA); anti-Calnexin (C4731) was ordered
from Sigma-Aldrich (St. Louis, MO, USA); and anti-TIA-1 (sc-166247) was ordered from
SCBT (Dallas, TX, USA).
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2.3. Plasmids and Transfection

The coding sequence of ASFV K205R was synthesized by GenScript and cloned
into pcDNA3.1 (Invitrogen, Waltham, MA, USA) fused with an HA tag sequence or into
pEGFP-C1 (Clontech, Mountain View, CA, USA). All plasmids were transfected with
Lipofectamine 3000 (Invitrogen), according to the manufacturer’s instructions.

2.4. Cell Viability Assays

The HeLa cells were seeded in 60-mm dishes at a density of 4 × 105 cells per dish
and transfected with pcDNA3.1 (vector, 5 µg) and K205R-HA plasmid (5 µg) for 24 and
48 h, respectively. The cell viability was determined with a CCK-8 cell counting assay kit
(DingGuo, Beijing, China), according to the manufacturer’s instructions.

2.5. Immunoblotting Analysis

The cells were seeded in 60-mm dishes at a density of 7 × 105 cells per dish and trans-
fected with indicated plasmids (0–5 µg) for 24 h. The cells were collected in RIPA buffer
(Solarbio, Beijing, China) supplemented with protease and phosphatase inhibitor cocktail
(MedChemExpress). The protein concentrations of the lysates were quantified with a BCA
Protein Assay Kit (DingGuo). The protein samples were separated by SDS-PAGE and trans-
ferred to membranes (Millipore, Billerica, MA, USA), which were incubated in 5% nonfat
milk (Sangon) at room temperature for 1 h afterwards. The membranes were incubated
with primary antibodies at 4 ◦C overnight and then incubated with horseradish-peroxidase-
conjugated secondary antibodies (Jackson ImmunoResearch Laboratories, West Grove, PA,
USA) for 1 h. The immunoblotting results were visualized with Luminata Crescendo West-
ern HRP Substrate (Millipore) on a GE AI600 imaging system. The densitometric analysis
of target proteins was performed with the ImageJ software (https://imagej.nih.gov/ij/
accessed on 27 September 2021).

2.6. Separation of the Soluble and Insoluble Fractions from Cells

The cells were seeded in 60-mm dishes at a density of 7 × 105 cells per dish and
transfected with indicated plasmids (5 µg) for 24 h. For separation of soluble and insoluble
fractions, the cells were lysed in RIPA buffer (Solarbio) supplemented with protease and
phosphatase inhibitor cocktail (MedChemExpress), and centrifuged at 12,000× g at 4 ◦C for
15 min. The supernatant was considered the soluble fraction, whereas the insoluble pellet
was directly mixed with 1 × NuPage LDS Sample Buffer (Invitrogen) and heated at 100 ◦C
for 30 min. The extracted fractions were subjected to immunoblotting analysis.

2.7. Nuclear and Cytoplasmic Extraction from Cells

The cells were seeded in 60-mm dishes at a density of 7 × 105 cells per dish and
transfected with indicated plasmids (5 µg) for 24 h. Nuclear and cytoplasmic extraction
was performed with NEPER Nuclear and Cytoplasmic Extraction Reagents (Thermo Fisher
Scientific, Waltham, MA, USA), according to the manufacturer’s instructions. The extracted
fractions were subjected to immunoblotting analysis.

2.8. Separation of Cytosolic and Membrane Fractions from Cells

The cells were seeded in 60-mm dishes at a density of 7 × 105 cells per dish and
transfected with indicated plasmids (5 µg) for 24 h. Briefly, the cells were homogenized
in 0.5 mL of homogenization buffer (10 mM HEPES pH 7.4, 10 mM KCl, 1.5 mM MgCl2,
5 mM sodium EDTA, 5 mM sodium EGTA, and 250 mM sucrose) supplemented with
protease and phosphatase inhibitors (MedChemExpress), then centrifuged at 1000× g at
4 ◦C for 7 min. The pellet, containing the crude nuclear fraction, was discarded, and the
supernatant was centrifuged at 12,000× g at 4 ◦C for 15 min. The resulting supernatant
comprised the cytosol, and the pellet containing the membrane fraction was dissolved in
lysis buffer (10 mM Tris HCl pH 6.8, 100 mM NaCl, 1% SDS, 1 mM EDTA, and 1 mM EGTA)
supplemented with protease and phosphatase inhibitors. The whole cell lysate, cytosolic,

https://imagej.nih.gov/ij/
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and membrane samples were mixed individually with 4 × SDS loading buffer, boiled at
95 ◦C for 5 min, and subjected to SDS-PAGE and immunoblotting analysis.

2.9. The qRT-PCR

The cells were seeded in 12-well plates at a density of 3 × 105 cells per dish and
transfected with indicated plasmids (2 µg) for 24 h. Total RNA was isolated with TRIzol
Reagent (TaKaRa, Shiga, Japan) and subjected to cDNA synthesis with a PrimeScript™
RT reagent Kit (TaKaRa). qRT-PCR was performed in triplicate with SYBR Premix Ex Taq
(TaKaRa), according to the manufacturer’s instructions. The data were normalized to the
level of β-actin expression in each individual sample. The melting curve analysis indi-
cated formation of a single product in all cases. The 2−∆∆Ct method was used to calculate
relative expression changes. The primers used for qRT-PCR were as follows: β-actin-Fw:
5′-CTGAACCCCAAAGCCAACCGT-3′, β-actin-Rv: 5′-TTCTCCTTGATGTCCCGCACG-3′;
Atf4-Fw: 5′-CCCTTTACGTTCTTGCAAACTC-3′, Atf4-Rv: 5′-GCTTCCTATCTCCTTCCGA
GA-3′; Gadd34-Fw: 5′-AAGAGCCTGGAGAGAGGAGAG-3′, Gadd34-Rv: 5′-GTCCCCAGG
TTTCCAAAAGCA-3′; Chop-Fw: 5′-CTCAGG AGGAAGAGGAGGAAG-3′, Chop-Rv: 5′-
GCTAGCTGTGCCACTTTCCTT-3′; Xbp1(s)-Fw: 5′-GAGTCCGCAGCAGGTG-3′, Xbp1(s)-
Rv: 5′-CCGTCAGAATCCATGGGG-3′; Xbp1(t)-Fw: 5′-TCCGCAGCACTCAGACTACGT-3′,
Xbp1(t)-Rv: 5′-ATGCCCAAGAGGATATCAGACTC-3′; ERdj4-Fw: 5′-CAGAGAGATTGCA
GAAGCATATGA-3′, ERdj4-Rv: 5′-GCTTCTTGGATCGAGTGTTTT-3′; Il-6-Fw: 5′-GCCTGA
GGGCCATTCGGATA-3′, Il-6-Rv: 5′-TGTGCCCAGTGGACAGGTTT-3′; Il-18-Fw: 5′-AGGG
ACATCAAGCCGTGTTT-3′, Il-18-Rv: 5′-CGGTCTGAGGTGCATTATCTGA-3′; and Tnfa-
Fw: 5′-CTGTAGGTTGCTCCCACCTG-3′, Tnfa-Rv: 5′-CCAGTAGGGCGGTTACAGAC-3′.

2.10. Immunofluorescence Analysis

The cells were seeded in 12-well plates with coverslips at a density of 3 × 105 cells per
dish and transfected with indicated plasmids (2 µg) for 24 h. The cells were fixed with 4%
paraformaldehyde in PBS for 30 min at room temperature and were then washed three
times with PBS. The cells were permeabilized in PBS containing 0.1% Triton X-100 and
blocked with 10% FBS in PBS. The primary antibodies were diluted with 10% FBS in PBS
and incubated with the cells for 1 h at room temperature. After being washed with PBS,
the cells were incubated with Alexa Fluor 568 goat anti-mouse IgG or Alexa Fluor 568 goat
anti-rabbit IgG (Invitrogen) for 1 h at room temperature. The cells were finally washed in
PBS and mounted in ProLong Diamond with DAPI (Invitrogen). Images were captured
with a Zeiss LSM 800 confocal microscope.

2.11. ELISA

The cells were seeded in 12-well plates with coverslips at a density of 3 × 105 cells per
dish and transfected with indicated plasmids (2 µg) for 24 h. Concentrations of porcine
IL-18 were measured in the cell supernatants with ELISA kits (Advanced BioChemical,
Lawrenceville, GA, USA), according to the manufacturer’s instructions.

2.12. Statistical Analysis

All data were obtained from three independent experiments for quantitative analyses
and are expressed as means ± standard errors. All data were analyzed in Prism 7 software
(GraphPad Software, Inc., San Diego, CA, USA) with two-tailed Student’s t-tests, and
p < 0.05 was considered statistically significant.

3. Results
3.1. Physical and Biochemical Parameters of ASFV K205R

To preliminarily determine the function of ASFV K205R, we first analyzed its physi-
cal and biochemical parameters. K205R consisted of 205 amino acids comprising 31.48%
carbon, 50.33% hydrogen, 9.58% oxygen, 8.16% nitrogen, and 0.45% sulfur (Figure 1A,B).
We analyzed the half-life of K205R with ProtParam (https://web.expasy.org/protparam/

https://web.expasy.org/protparam/
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accessed on 12 November 2021). The estimated half-life of K205R in mammalian retic-
ulocytes was 30 h, which was longer than the approximately 20 h in yeast and 10 h in
Escherichia coli (Figure 1C). The hydrophobicity and hydrophilicity of K205R computed with
ProtScale (https://web.expasy.org/protscale/ accessed on 12 November 2021) indicated
that K205R was more hydrophobic than hydrophilic (Figure 1D). We also analyzed the
secondary and tertiary structure of K205R with Group-based Prediction System Version 5.0
(http://gps.biocuckoo.cn/online_full.php accessed on 12 November 2021) and I-TASSER
(https://zhanggroup.org/I-TASSER/ accessed on 12 November 2021). K205R consisted of
four main α-helices and five β-sheets (Figure 1E,F). Sixteen potential phosphorylation sites
in K205R were indicated by Group-based Prediction System Version 5.0, which might be
phosphorylated by MAPK, AKT EFF2L, PIKK, IKK, and PEK kinases (Figure 1E,G).
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Figure 1. Physical and biochemical parameters of ASFV K205R. (A) Amino acid sequence of K205R.
(B) Atomic composition of K205R. (C) Predicted half-life of K205R in mammalian reticulocytes, yeast
and Escherichia coli. (D) Predicted hydropathicity and hydrophobicity of K205R. (E) Secondary
structure and predicted phosphorylation sites of K205R. (F) Visualization of the predicted tertiary
structure of K205R. (G) Distribution of phosphorylation sites in kinase families.

3.2. Subcellular Localization of ASFV K205R

To better understand K205R’s function, we constructed a plasmid for the expression
of K205R fused with an HA tag. We transfected the plasmid into the 3D4/21 and HeLa
cells and detected its expression by immunoblotting, which confirmed the expression of

https://web.expasy.org/protscale/
http://gps.biocuckoo.cn/online_full.php
https://zhanggroup.org/I-TASSER/
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K205R-HA in both cell lines (Figure 2A). Furthermore, CCK-8 cell counting assay showed
that K205R-HA resulted in lower cell viability than that of control cells (Figure 2B), indicat-
ing that K205R might affect cell viability.
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Figure 2. Expression and subcellular localization of K205R. (A) 3D4/21 and HeLa cells were trans-
fected with K205R-HA plasmid as indicated for 24 h. The expression of K205R-HA was detected
with immunoblotting analysis. (B) HeLa cells were transfected with empty vector or K205R-HA
plasmid for 24 or 48 h. Cell viability was assessed with CCK-8 assays. *** p < 0.001. (C) HeLa cells
were transfected with K205R-GFP plasmid for 24 h. Colocalization of K205R with LAMP1 (lysosome),
TOM20 (mitochondria), GM130 (Golgi), and calnexin (ER) was analyzed with immunofluorescence
analysis. Scale bar: 10 µm. (D) HeLa cells were transfected with K205R-GFP plasmid for 24 h.
Colocalization of K205R with P62 (aggrephagy marker) and TIA-1 (SG marker) was determined with
immunofluorescence analysis. Scale bar: 10 µm. (E) HeLa cells were transfected with K205R-HA
plasmid for 24 h. The distribution of K205R in the cytosolic and membrane fractions was detected
with immunoblotting analysis. (F) HeLa cells were transfected with empty vector or K205R-HA
plasmid for 24 h. The distribution of K205R in soluble and insoluble fractions was detected with
immunoblotting analysis.

We then examined the subcellular distribution of K205R through co-localization assays
with markers of lysosomes (indicated by LAMP1), mitochondria (indicated by TOM20),
Golgi bodies (indicated by GM130), and ER (indicated by calnexin). K205R exhibited no
clear co-localization with LAMP1, TOM20, and GM130, thus suggesting that K205R scarcely
localized to lysosomes, mitochondria, and Golgi bodies (Figure 2C). K205R was diffusely
distributed in the cells in a degree similar to calnexin (Figure 2C). Notably, K205R was found
in punctate structures, in addition to areas with diffuse distribution (Figure 2C). Protein
punctate structures may form as protein aggregates or stress granules (SGs) [21,22]. Protein
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aggregates interact with the selective autophagy receptor P62 and subsequently undergo
aggrephagy [21]. We did not observe co-localization of K205R with P62, indicating that
K205R did not form protein aggregates (Figure 2D). Interestingly, K205R clearly colocalized
with the SG marker protein TIA-1 (Figure 2D). We further performed cell fractionation
analysis to identify the localization of K205R in the cytosolic and membrane fractions. The
low-density lipoprotein receptor is a cell surface receptor that is recycled in the cytosol after
ligand binding [23]. K205R was distributed in both the cytosolic and membrane fractions,
similar to the low-density lipoprotein receptor (Figure 2E). In addition, K205R was present
in soluble and insoluble forms in the cells (Figure 2F).

3.3. ASFV K205R Activates ER Stress

Cellular stress, such as ER stress, is a strong inducer of SG formation [24]. Therefore,
we sought to determine whether K205R induces ER stress. There are three ER stress sensor
pathways, IRE1, PERK and ATF6, which are critical to maintain ER homeostasis [25]. Using
immunoblotting analysis, we detected that the expression of K205R in 3D4/21 cells stimu-
lated ER stress in a K205R dose-dependent manner, as indicated by enhanced expression
of ATF6 and phosphorylation of PERK, as well as the downstream effectors of ER stress,
such as Bip, phosphorylated eIF2α, ATF4, and XBP1 (Figure 3A). This result suggested that
K205R activated the IRE1, PERK, and ATF6 signaling pathways. We also obtained similar
results in HeLa cells (Figure 3B). To further confirm the role of K205R in triggering ER stress,
we performed qRT-PCR analysis to examine the transcript level of ER stress-responsive
genes. The mRNA levels of ERdj4, processed Xbp1 mRNA [Xbp1(s)/Xbp1(t)], Atf4, Gadd34,
and Chop were all up-regulated in response to K205R expression (Figure 3C–G). Treatment
of cells with a PERK inhibitor (GSK2606414, GSK) abolished K205R-induced phosphory-
lation of PERK and eIF2α (Figure 3H). Together, these results demonstrated that K205R
induced ER stress.
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Figure 3. ASFV K205R induces ER stress. (A,B) 3D4/21 (A) and HeLa (B) cells were transfected
with K205R-HA plasmid as indicated for 24 h. Bip, p-PERK, PERK, p-eIF2α, eIF2α, ATF4, ATF6,
XBP1, K205R-HA, and β-actin were assessed with immunoblotting analysis. (C–G) 3D4/21 cells
were transfected with K205R-HA plasmid as indicated for 24 h. The mRNA levels of ERdj4 (C),
Xbp1(s)/Xbp1(t) (D), Atf4 (E), Gadd34 (F), and Chop (G) were assessed with qRT-PCR analysis. * p < 0.05,
** p < 0.01, *** p < 0.001. (H) 3D4/21 cells were transfected with K205R-HA plasmid and treated with
GSK2606414 (GSK, 10 µM) as indicated for 24 h. p-PERK, PERK, p-eIF2α, eIF2α, K205R-HA, and
β-actin were assessed with immunoblotting analysis.
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3.4. ASFV K205R Activates Autophagy

We next attempted to examine whether K205R activates autophagy, given that ER
stress is a potent trigger of autophagy [26]. We transfected K205R-GFP plasmids into the
HeLa cells and then detected LC3 with immunofluorescence analysis. In the control cells,
LC3 was spread throughout the cytosol and nucleus (Figure 4A). In the K205R-expressing
cells, LC3 formed punctate structures, a characteristic of autophagosamal membrane
formation (Figure 4A,B). We also examined K205R-induced autophagy by immunoblotting
analysis. As shown in Figure 4C, increased expression of K205R resulted in enhanced
expression levels of L3-II, ATG5, ATG12, and Beclin-1. When autophagy is activated, the
selective autophagy receptor P62 is degraded in lysosomes and serves as an indicator of
autophagic flux [21]. We observed that P62 expression decreased in response to K205R
expression (Figure 4C). Bafilomycin A1, an inhibitor of the fusion of autophagosomes and
lysosomes, can be used to analyze autophagic flux [27]. In the K205R expressing cells,
bafilomycin A1 induced more LC3 accumulation than that in the control cells, but caused
no P62 degradation (Figure 4D).
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Figure 4. ASFV K205R activates autophagy. (A) HeLa cells were transfected with empty vector or
K205R-GFP plasmid for 24 h. LC3 was monitored with immunofluorescence analysis. Scale bar:
10 µm. (B) Quantification of LC3 puncta per cell from A (n = 30). *** p < 0.001. (C) 3D4/21 cells
were transfected with K205R-HA plasmid as indicated for 24 h. LC3-I, LC3-II, ATG5, ATG12, P62,
Beclin-1, K205R-HA, and β-actin were assessed with immunoblotting analysis. (D) 3D4/21 cells
were transfected with K205R-HA plasmid and treated with bafilomycin A1 (10 µM) as indicated
for 24 h. LC3-I, LC3-II, ATG5, ATG12, P62, Beclin-1, K205R-HA, and β-actin were assessed with
immunoblotting analysis. (E) PK15 WT, ATG5−/−, and Beclin-1−/− cells were transfected with
K205R-HA plasmid as indicated for 24 h. LC3-I, LC3-II, ATG5, ATG12, P62, Beclin-1, K205R-HA,
and β-actin were assessed with immunoblotting analysis. (F) 3D4/21 cells were transfected with
K205R-HA plasmid and treated with GSK (10 µM) as indicated for 24 h. LC3-I, LC3-II, ATG5, ATG12,
Beclin-1, K205R-HA, and β-actin were assessed with immunoblotting analysis. (G) 3D4/21 cells were
transfected with K205R-HA plasmid as indicated for 24 h. AKT, p-AKT, mTOR, p-mTOR, ULK1,
p-ULK1 ser555, p-ULK1 ser757, K205R-HA, and β-actin were assessed with immunoblotting analysis.
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Given that ATG5 and Beclin-1 are essential for the formation of autophagosomes [28],
we verified the role of K205R in autophagy induction in ATG5−/− and Beclin-1−/− cells.
K205R failed to induce autophagy in the ATG5−/− and Beclin-1−/− cells, as indicated by
immunoblotting analysis of LC3-II, ATG5, ATG12, and Beclin-1 (Figure 4E). Inhibition
of PERK by GSK in the K205R-transfected cells resulted in lower expression of LC3-II,
ATG5, ATG12, and Beclin-1 than that in the K205R-transfected cells, further suggesting
that K205R activated autophagy through ER stress (Figure 4F). The AKT/mTOR path-
way negatively regulates unc-51 like autophagy activating kinase 1 (ULK1), and hence
autophagy [29]. Therefore, we attempted to determine whether the AKT/mTOR/ULK1
signaling pathway is involved in K205R-induced autophagy. We observed that phospho-
rylated AKT and mTOR decreased when cells expressed K205R (Figure 4G). This result
indicated that the AKT/mTOR pathway was inhibited by K205R. Phosphorylation of ULK1
Ser555 was enhanced, whereas phosphorylation of ULK1 Ser757 was decreased in response
to K205R expression, suggesting that K205R activated ULK1 (Figure 4G). Collectively,
these data indicated that K205R activated autophagy through the AKT/mTOR/ULK1
signaling pathway.

3.5. ASFV K205R Activates the NF-κB Signaling Pathway

It is known that ER stress can elicit proinflammation [25], therefore we sought to
determine whether K205R activates the NF-κB signaling pathway. Phosphorylation of the
IκBα and P65 subunits of nuclear factor kappa B (NF-κB) is essential for P65 translocation
into the nucleus and subsequent NF-κB activation [30]. We observed that K205R expression
resulted in the phosphorylation of IκBα and P65, as indicated by immunoblotting analysis
(Figure 5A). Immunofluorescence analysis suggested that P65 was translocated into the
nucleus in the presence of K205R expression (Figure 5B). We further analyzed NF-κB
activation by cell fractionation analysis of P65 with β-actin as a cytosolic marker and
Lamin B1 as a nuclear marker. As shown in Figure 5C, LPS (a well-known NF-κB activator)
stimulated P65’s phosphorylation and translocation into the nucleus (Figure 5C). Expression
of K205R-HA with simultaneous treatment of cells with LPS (K205R-HA + LPS) promoted
the translocation of phosphorylated P65 into the nucleus (Figure 5C).

Given that NF-κB activation triggers the expression of proinflammatory cytokines,
we next examined the transcription of Il-6, Il-18, and Tnfa by qRT-PCR analysis. K205R
increased the mRNA levels of Il-6, Il-18, and Tnfa in a K205R dose-dependent manner
(Figure 5D). K205R stimulated IL-18 secretion into the culture medium, as indicated by
ELISA analysis (Figure 5E). We further verified K205R-induced NF-κB activation in 3D4/21
P65−/− cells. Neither LPS nor K205R stimulated the transcription of Il-6 and Il-18 in the
3D4/21 P65−/− cells (Figure 5F,G). We finally determined whether inhibition of ER stress
by a PERK inhibitor might abrogate K205R-mediated activation of the NF-κB signaling
pathway. In the K205R expressing cells, GSK treatment prevented the phosphorylation of
IκBα and P65 (Figure 5H). GSK treatment also inhibited the transcription of Il-6, Il-18, and
Tnfa, as well as the secretion of IL-18 when K205R-HA was expressed in cells (Figure 5I,J).
Together, these results demonstrated that K205R activated the NF-κB signaling pathway.
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Figure 5. ASFV K205R activates the NF-κB signaling pathway. (A) 3D4/21 cells were transfected
with K205R-HA plasmid as indicated for 24 h. IκBα, p-IκBα, P65, p-P65, K205R-HA, and β-actin
were assessed with immunoblotting analysis. (B) HeLa cells were transfected with empty vector
or K205R-GFP plasmid for 24 h. The translocation of P65 into the nucleus was assessed with
immunofluorescence analysis. Scale bar: 10 µm. (C) HeLa cells were transfected with K205R-HA
and treated with LPS (1 mg/mL) as indicated for 24 h. P65 and p-P65 in the cytosol (indicated
by β-actin) and nucleus (indicated by Lamin B1) were assessed with immunofluorescence analysis.
(D) 3D4/21 cells were transfected with K205R-HA plasmid as indicated for 24 h. The mRNA levels
of Il-6, Il-18, and Tnfa were assessed with qRT-PCR analysis. ** p < 0.01, *** p < 0.001. (E) 3D4/21 cells
were transfected with K205R-HA plasmid as indicated for 24 h. IL-18 in the medium was quantified
with ELISA. *** p < 0.001. (F,G) 3D4/21 WT and P65−/− cells were transfected with K205R-HA and
treated with LPS (1 mg/mL) as indicated for 24 h. The mRNA levels of Il-6 (F) and Il-18 (G) were
assessed with qRT-PCR analysis. *** p < 0.001. (H) 3D4/21 cells were transfected with K205R-HA
plasmid and treated with GSK (10 µM) as indicated for 24 h. p-IκBα, IκBα, p-P65, P65, K205R-HA,
and β-actin were assessed with immunoblotting analysis. (I) 3D4/21 cells were transfected with
K205R-HA plasmid and treated with GSK (10 µM) as indicated for 24 h. The mRNA levels of Il-6,
Il-18, and Tnfa were assessed with qRT-PCR analysis. *** p < 0.001. (J) 3D4/21 cells were transfected
with K205R-HA plasmid and treated with GSK (10 µM) as indicated for 24 h. IL-18 in the medium
was quantified with ELISA. *** p < 0.001.
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4. Discussion

ASFV causes an acute and fatal disease affecting domestic pigs. Its genome encodes
more than 160 proteins. Better understanding of the roles of ASFV proteins would be
valuable in supporting vaccine development, given that no vaccine is available for the
prevention and control of ASFV. In the present study, we examined the roles of ASFV K205R
in ER stress, autophagy, and inflammation. K205R induced ER stress, thereby activating the
UPR via the ATF6, IRE1, and PERK signaling pathways. Subsequently, K205R stimulated
autophagy and NF-κB activation, which were prevented by inhibition of ER stress. Our
results suggested that K205R induced ER stress and consequently activated autophagy and
the NF-κB signaling pathway.

K205R has been shown to have high antigenicity and can be used for the detection of
ASFV-specific antibodies [18]. Adenovirus-vectored K205R has been found to elicit robust
immune responses in swine, suggesting that K205R may be an effective component of a
prototype vaccine [17]. K205R is diffusely distributed throughout cells, and is found in viral
factories [31]. We observed that K205R formed SG in cells. Moreover, K205R was localized
in the cytosolic and membrane fractions. Although K205R contained four main α-helices,
it might not be a transmembrane protein. SG are membraneless ribonucleoprotein-based
cellular compartments associated with the ER [32,33]. Therefore, we speculated that K205R
might form SG tethered to the ER, thereby resulting in the observed membrane distribution
of K205R.

Several lines of evidence indicate that ASFV modulated ER stress. Xia and colleagues
have shown that ASFV P17 inhibited cell proliferation through ER stress and ROS-mediated
cell cycle arrest [10]. Our data demonstrated that K205R decreased cell viability; therefore,
K205 might promote either cell death or cell cycle arrest. Whether K205R induces ROS
requires further investigation. ASFV induces the ATF6 branch of the UPR, but not the
PERK pathways, which promote ASFV infection [11]. In contrast, ASFV does not activate
ATF6-regulated CHOP and instead inhibits the induction of CHOP/GADD153 via several
exogenous stimuli [13]. Our data indicated that K205R activates the IRE1, PERK, and ATF6
signaling pathways. Other ASFV proteins might possibly modulate ER stress. The role of
ASFV in modulating ER stress depends on the synergistic effects of ASFV proteins that
participate in ER stress. We acknowledge that more data is needed to confirm that K205R
induces ER stress under physiological conditions.

Innate immunity is the front-line defense against viral infections [34]. Cyclic guano-
sine monophosphate/adenosine monophosphate synthase (cGAS) and STING are crucial
innate immune proteins involved in cytosolic DNA sensing [35]. Although ASFV con-
trols interferon beta production through the cGAS-STING pathway, this virus exploits
autophagy to interfere with this pathway [36]. ASFV MGF-505-7R negatively regulates
the cGAS-STING-mediated signaling pathway through autophagy-mediated degradation
of STING [6]. Moreover, ASFV MGF505-11R promotes STING degradation by autophagy
for negative regulation of the cGAS-STING signaling pathway [7]. ASFV E199L promotes
cell autophagy through the interaction of PYCR2 [15]. We found that K205R activated
autophagy through ER stress. The roles of ASFV E199L-induced and K205R-induced au-
tophagy in STING degradation and innate immune evasion are worthy of further study.
Notably, we found that K205R activated the NF-κB signaling pathway, thereby protecting
the host against ASFV infection. This understanding of the complicated roles of K205R in
cellular responses provides new insight into virus–host interactions.
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