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Prostaglandins (PGs), a group of key lipid mediators, are involved in numerous physiological 
and pathological processes including inflammation and cardiovascular homeostasis. Each PG 
acts on its specific and distinct cell surface G protein-coupled receptors (GPCRs) or peroxisome 
proliferator-activated receptors (PPARs). Prostaglandin F2α receptor (FP) is required for female 
reproductive function such as luteolysis and parturition. It has recently been implicated in blood 
pressure regulation, atherosclerosis and other inflammation-related disorders. The emerging 
role of FP in cardiovascular diseases is highlighted and potential therapeutic translation is 
discussed in the current review.
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through peroxidase activity (POX) of PGHS enzymes. Subsequently 
the PGH

2
 is subject to metabolize to active prostanoids through 

individual PG synthases (Figure 1). Diversity in expression of 
downstream synthases results in the generation of one or two 
dominant PGs by individual cells. In general, PGF

2α is formed by 
reduction of PGH

2
 by PG endoperoxide synthase or reductase. It 

also can be also formed from other PGs (Figure 1) such as PGE
2
 

through 9-keto reductases and PGD
2
 through 11-keto reductases 

(Watanabe et al., 1985), although relatively rare. Endogenous pri-
mary PGF

2α is rapidly degraded enzymatically, half-life is less than 
1 min in peripheral circulation, and its relatively stable metabolite 
is 15-keto-dihydro-PGF

2α (Basu et al., 1992).
PGF

2α exits in almost all the tissues (Basu, 2007) with more abun-
dant in the female reproductive system (Hao and Breyer, 2008); 
its cellular and physiological effects are mediated by a G protein-
coupled receptor-the F prostanoid receptor (the FP; Narumiya et al., 
1999). Two splice forms of FP (FP

A
 and FP

B
) exist in human. Initially, 

the FP receptor was characterized as coupling to Gq protein which 
lead to inositol triphosphate (IP3)/diacylglycerol (DAG) genera-
tion and mobilization of intracellular calcium (Abramovitz et al., 
1994; Sugimoto et al., 1994; Watanabe et al., 1994), which is linked 
to the proliferation of cells (Watanabe et al., 1994). Stimulation of 
FP also led to activation of the small G protein Rho, resulting in 
phosphorylation of the p125 focal adhesion kinase, cytoskeleton 
rearrangement and cell morphology change (Pierce et al., 1999), 
and phospholipase C-mediated phosphorylation of the epidermal 
growth factor receptor (EGFR) and mitogen-activated protein kinase 
(MAPK) signaling pathways in endometrial adenocarcinoma cells 
(Sales et al., 2004). Recently, the coupling of Gi of FP receptor has 
been reported, which is response for water reabsorption in renal 
collecting ducts in rabbit (Hebert et al., 2005).

IntroductIon
Prostanoids, including prostaglandin (PG) E

2
, PGD

2
, prostacy-

clin (PGI
2
), thromboxane A

2
 (TxA

2
), and PGF

2α,
 are generated 

through PGH synthase (PGHS) – known commonly as cyclooxy-
genase (COX), in response to a wide variety of stimuli acting as 
paracrine or autocrine manner. Non-steroidal anti-inflammatory 
drugs (NSAIDs) such as aspirin, ibuprofen, inhibit COX isforms 
to achieve antipyretic, analgesic, and anti-inflammatory actions 
through blocking PGs biosynthesis (Funk, 2001). Accumulating 
evidences demonstrate COX-derived PGs play crucial role in 
mediating an array of cellular processes such as cell proliferation, 
differentiation, and apoptosis and in regulating female reproduc-
tive function and parturition, platelet aggregation, and vascular 
homeostasis (Smith et al., 2000; Yu et al., 2006; Funk and FitzGerald, 
2007; Yu and Funk, 2007). In addition, PGs also are involved in 
pathogenesis of inflammation, cancer, and cardiovascular disorders 
(FitzGerald and Loll, 2001; Smyth et al., 2009). The biological func-
tions of PGs could be modulated at multiple levels such as COX, PG 
synthases, and downstream receptors (Narumiya and FitzGerald, 
2001). Elucidating the physiological roles of COX-derived PGs in 
cellular and whole body homeostasis and the mechanism under-
lying their action will no doubt offer opportunity for developing 
novel therapeutics for inflammatory disease, cancer, and hyperten-
sion. Here, we summarized the recent works focusing on PGF

2α/FP 
receptor response in cardiovascular system and reviewed the recent 
development of potential therapeutic target of FP receptor.

PGF2α and FP recePtor
Prostanoids are formed through COXs on arachidonic acid via a 
two-step enzymatic process. First the arachidonic acid is biocon-
verted to PGG

2
 through COX catalytic activity and then PGH

2
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FP In cardIovascular dIseases
In the heart, PGF

2α derives mainly from cardiac fibroblasts and its 
formation is increased in endocardium by ischemia (Rabinowitz 
et al., 1992), where it depresses contractile recovery through a 
mechanism associated with altered cellular energy metabolism 
and increased calcium accumulation (Karmazyn et al., 1993). 
Through FP receptor, PGF

2α promotes expression of c-fos, atrial 
natriuretic factor (ANF), and alpha-skeletal actin in cardiomyo-
cytes and induces cardiac myocyte hypertrophy in vitro and car-
diac growth in rat (Lai et al., 1996), but does not affect myocyte 
proliferation in culture (Adams et al., 1996). Mechanistic studies 
showed PGF

2α inhibits expression Ca2+-ATPase (SERCA2) via 
induction of Early Growth Response Protein 1 (Egr-1) in cultured 
neonatal cardiac myocytes (Hara et al., 2008). We have recently 
found that selective deletion of cardiomyocyte COX-2 releases 
a restraint on expression of fibroblast COX-2, thereby augment-
ing PGF

2α formation. This, in turn, coincides with an increase 
in myocardial fibrosis and a predisposition to arrhythmogenesis 
(Wang et al., 2009). COX-2 derived PGF

2α can further promote 
fibroblast PGF

2α formation in a feed forward manner (Yoshida 
et al., 2002) and progressively promote fibrosis (Almirza et al., 
2008). PGF

2α promotes arrhythmias in cultured neonatal rat car-
diac myocytes (Kunapuli et al., 1997; Li et al., 1997) and FP dele-
tion protects against inflammatory tachycardia in mice in vivo 
(Takayama et al., 2005). Thus, PGF

2α/FP response is involved in 

Expression of FP receptor and its corresponding function are 
summarized in Table 1. FP is highly expressed in the genitourinary 
tract (Sugimoto et al., 1997; Saito et al., 2003). Gene manipulation 
studies showed that, parturition is disrupted in mice lacking either 
cytosolic phospholipase A

2
 (cPLA

2
; Bonventre et al., 1997), that 

mobilizes arachidonic acid release for COX metabolism, COX-2, 
the more regulated form of that enzyme (Dinchuk et al., 1995; 
Morham et al., 1995) or the FP receptor (Sugimoto et al., 1997). 
Likewise, the onset of parturition is delayed in COX-1 knock out 
(KO) mice (Langenbach et al., 1995) but not COX-1 knockdown 
(KD; Yu et al., 2005). This results in high neonatal mortality that 
can be rescued by PGF

2α replacement (Gross et al., 1998). In the eye, 
the FP is expressed in the vasculature, the iris sphincter and in the 
anterior circular muscles, all relevant to the increased uveoscleral 
outflow of aqueous humor provoked by PGF

2α (Mukhopadhyay 
et al., 2001). FP agonists are approved for local application in the 
treatment of glaucoma (Ishida et al., 2006). Recently, abundant FP 
expression has also been detected in the distal convoluted tubules 
(DCT) and cortical collecting ducts (CCD) of the kidney (Saito 
et al., 2003), implicating its role in water and electrolyte homeos-
tasis (Hebert et al., 2005). FP is observed in lung tissue and lung 
fibroblasts, which facilitates bleomycin-induced pulmonary fibrosis 
independently of transforming growth factor β (TGFβ; Oga et al., 
2009). No FP receptor seems been detected in immune system 
organs such as spleen and thymus (Tilley et al., 2001).

Figure 1 | Prostanoid biosynthesis and response pathway. AA, arachidonic 
acid; PLA2, phospholipase A2; PGHS1/2, prostaglandin G/H synthase 1 or 2, 
which contains both cyclooxygenases (COX) and peroxidase (POX) activities; 
PGIS, prostaglandin I2 synthase; PGES, prostaglandin E2 synthase; PGFS, 

prostaglandin F synthase; PGDS, prostaglandin D2 synthase; TxS, thromboxane 
A2 synthase; IP, prostaglandin I2 receptor; EP, prostaglandin E2 receptor; FP, 
prostaglandin F2α receptor; DP, prostaglandin D2 receptor; TP, thromboxane A2 
receptor.
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Vascular endothelial cells secrete surprisingly large amounts 
of PGF

2α in response to shear stress in vitro (Di Francesco et al., 
2009). The relevance of this phenomenon is poorly understood 

multiple aspects of ischemia heart disease (Figure 2), blockage of 
the FP may facilitate recovery from cardiac ischemia-reperfusion 
induced injury.

Figure 2 | Scheme of PgF2α/FP pathway involved in pathogenesis of 
cardiovascular disease. Cardiac fibroblasts derived PGF2α induces cardiac 
hypertrophy, fibrosis and arrhythmia through FP receptor in adjacent 
cardiomyocytes (CMs); PGF2α stimulates renin release from juxtaglomerular 
granular cells (JGCs) by FP receptor in an autocrine fashion, and activate 
renin–angiotensin–aldosterone system (RAAS) to elevate blood pressure 

through enhancing salt/water reabsorption in kidney and constricting blood 
vessels directly via Angiotensin II (Ang II); PGF2α promotes resistance artery 
constriction through FP in smooth muscle cells (SMCs), which eventually 
increases blood pressure and contributes to atherosclerosis; Activated RAAS 
also accelerates atherosclerosis. JGA, juxtaglomerular apparatus; AGT, 
angiotensinogen; ACE, angiotensin-converting enzyme; ALD, aldosterone.

Table 1 | FP expression and its physiological/pathological function.

Tissue/cell distribution Physiological/pathological process references

Ovary Luteolysis, parturition Sugimoto et al. (1997), Gross et al. (1998), Saito et al. (2003)

Myometrium Uterine contraction Brodt-Eppley and Myatt (1999), Fischer et al. (2008)

Ocular vasculature; iris sphincter; ocular 

circular muscles

Aqueous humor homeostasis Mukhopadhyay et al. (2001)

Renal distal convoluted tubule, cortical 

collecting duct

Water and electrolyte reabsorption Saito et al. (2003), Hebert et al. (2005), Hao and Breyer 

(2008)

Juxtaglomerular apparatus Renin secretion; blood pressure regulation Yu et al. (2009)

Lung fibroblast Pulmonary fibrosis Oga et al. (2009)

Cardiac fibroblast; cardiomyocyte Myocardial fibrosis; arrhythmias; myocyte 

hypertrophy

Lai et al. (1996), Kunapuli et al. (1997), Li et al. (1997), 

Yoshida et al. (2002), Takayama et al. (2005), Almirza et al. 

(2008), Wang et al. (2009)

Vascular smooth muscle cell (VSMC) VSMC hypertrophy; vasoconstriction Whittle et al. (1985b), Rice et al. (2008), Yu et al. (2009)
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associated with those increased cardiovascular risk, such as smoking 
(Helmersson et al., 2005a), obese (Sinaiko et al., 2005), rheumatic 
disease (Basu et al., 2001), type I (Basu et al., 2005) and type II 
(Helmersson et al., 2004) diabetes mellitus; increased PGF

2α was 
found in urine from population with hypercholesterolemia and 
smoking – the conditions associated with oxidative stress (Yin 
et al., 2007). Moreover, plasma PGF

2α level in the elder man is posi-
tively related with common carotid artery intima-media thickness 
(CCA-IMT) (Wohlin et al., 2007) – a valid index of atherosclerosis. 
Moreover, a polymorphism in COX-1 gene (rs10306135) identi-
fied recently is associated with significantly decreased PGF

2α and 
further lower susceptibility for cardiovascular disease (Helmersson 
et al., 2009). Hence, PGF

2α maybe involved in initiation and pro-
gression of chronic cardiovascular diseases, such as atherosclerosis 
and hypertension.

PharmacoloGy oF FP modulatIon
Given the accumulating evidence pleading for the involvement of 
PGF

2α/FP receptor response pathway in regulating ocular uveo-
scleral outflow and normal parturition as well as pathogenesis of 
hypertension and atherosclerosis, the exploration of novel com-
pounds able to specifically stimulate or inhibit FP receptor will 
constitute promising therapeutic avenues.

Human FP receptors are expressed in the human ocular 
trabecular meshwork (Anthony et al., 1998) and topical exog-
enous PGF

2α and FP agonists reduce intraocular pressure (IOP) 
in monkeys and humans without causing inflammation (Weinreb 
et al., 2002). Thus, FP agonists, latanoprost, bimatoprost, and 
travoprost, are used in the treatment of glaucoma and ocular 
hypertension (Ishida et al., 2006), although the precise mechanism 
by which they work is poorly understood. More directly relevant 
has been the suggestion that FP antagonism may delay luteoly-
sis and uterine contraction during parturition (Bernal, 2001), 
with the potential to delay preterm birth (Olson, 2005). Until 
recently, AL-8810, reported 10 years ago, is the first described FP 
antagonist, albeit that it is a partial agonist (Griffin et al., 1999) 
with which there is much experience in model systems (Sharif 
et al., 2000; Hirst et al., 2005). Theratechnologies compound THG 
113 tested as FP receptor blocker, inhibits the contractile activ-
ity of smooth muscle cells from mouse (Peri et al., 2002), sheep 
(Hirst et al., 2005), and human myometrium (Friel et al., 2005) 
in response to exogenous PGF

2α in vitro probably through activat-
ing Ca2+-activated K+ channel (BKCa; Doheny et al., 2007), and 
delays lipopolysaccharide (LPS)-induced preterm birth in mice 
(Peri et al., 2002), and lowers uterine electromyographic activity 
and delays RU486 (a progesterone receptor blocker)-induced pre-
term birth in sheep (Hirst et al., 2005). More recently, AS604872, 
another patented FP antagonist, was shown to be effective to delay 
preterm parturition in rodents (Chollet et al., 2007; Cirillo et al., 
2007). Thus, FP receptor could be a potential target for the phar-
macological management of preterm labor. Given that renin is 
elevated in pregnancy-induced hypertension with decreased PGI

2
 

biosynthesis (Fitzgerald et al., 1987), FP antagonist seems more 
suitable theoretically for management of pregnancy-induced 
hypertension with broad gestational benefits. However, further 
clinical investigation is required regarding therapeutic efficacy of 
FP antagonist in clinic.

but in sufficient quantities. PGF
2α may act as an incidental ligand 

at the TxA
2
 receptor-the TP (Wong et al., 2009). Furthermore, the 

expression of FP receptors in the medial layer of resistance vessels 
was observed (Yu et al., 2009), which is involved in vasoconstric-
tion (Whittle et al., 1985a). Thus it might prove relevant to the 
regulation of systemic blood pressure (BP) as PGF

2α direct infu-
sion causes dose-dependent elevation of BP in anesthetized mice 
(Yu et al., 2009). Moreover, PGF

2α increases reactive oxygen species 
(ROS) and induces vascular smooth muscle cells (VSMCs) hyper-
trophy through translocation of mammalian target of rapamycin 
(mTOR) from nucleus to cytoplasm and activation of phosphati-
dylinositol 3-kinase (PI3K) pathway (Rice et al., 2008). In mice, 
FP deletion reduces significantly BP in mice, both when they are 
placed on a regular chow diet and after manipulation of dietary 
fat or sodium intake. This coincides with decreased activation of 
renin–angiotensin–aldosterone system (RAAS; Yu et al., 2009). FP 
receptor expression is marked in afferent arterioles of the juxta-
glomerular apparatus (JGA) and renin-containing granular cells 
are decreased in the FP deficient mice (FP−/−). Indeed, activation 
of the FP appears to regulate juxtaglomerular (JG) cell differen-
tiation and consequent renin expression, explaining depressed 
activation of the RAAS in FP−/− mice. Although FP expression 
was not detected in the aorta or even when it was complicated 
by atherosclerotic lesions, FP deletion attenuates atherogenesis 
in hyperlipidemic mice [low-density lipoprotein (LDL) receptor 
knockout, Ldlr−/−]. Perhaps restraint of atherogenesis in Ldlr/FP 
double knockout (Ldlr−/−/FP−/−) mice merely results from dis-
ruption of renal RAAS activation with a consequent impact on 
systemic BP (Figure 2). Taken together, antagonism of the FP 
receptor may afford a strategy for the control of hypertension 
and its attendant vascular diseases such as atherosclerosis (Yu 
et al., 2009).

PGF2α In human InFlammatory dIsease
In human studies, PGF

2α is one of the more abundant PGs 
formed at sites of inflammation (Scher and Pillinger, 2009), 
and is subject to inhibition by NSAIDs such as low dose aspirin 
(Helmersson et al., 2005b). Similar to PGE

2
, PGF

2α is present in 
joint fluid collected from rheumatoid arthritis, psoriatic arthri-
tis, osteoarthritis patients (Trang et al., 1977; Basu et al., 2001), 
and the levels of these PGs could also be effectively retarded by 
NSAIDs treatment. In addition, the synovial cells from rheuma-
toid arthritis patient are able to secrete PGF

2α in vitro (Seppala, 
1987). Along with 8-Iso-PGF

2α-oxidative stress marker, PGF
2α 

was elevated during the first hour in acute myocardial infarction 
(AMI) patient treated with percutaneous coronary intervention 
(PCI; Berg et al., 2005) and 24 h after post-surgery in elective 
PCI patients probably due to aspirin treatment before operation 
(Berg et al., 2004).

Atherosclerosis is a chronic vascular inflammation diseases 
characterized by the thickening of the arterial wall (Rader and 
Daugherty, 2008). Vascular endothelial dysfunction is believed as 
initial step during atherogenesis, high plasma LDL, free oxygen 
radicals caused by cigarette smoking, hypertension, and diabetes 
mellitus, and other genetic defects could cause endothelial dysfunc-
tion leading to atherosclerosis (Ross, 1999). As the major metabo-
lite of PGF

2α, 15-keto-dihydro-PGF
2α is elevated in the conditions 
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conclusIon
In summary, PGF

2α, an early focus of prostaglandin research has 
been quite neglected outside the field of reproductive biology in 
recent decades. However, emerging evidence, particularly from 
mice lacking its FP receptor, hint at its importance in BP regu-
lation and atherosclerosis. PGI

2
 is a potent renin secretagogue, 

antagonism or deletion of its receptor (the IP) protects against 
high-renin hypertension in renoprival models of in rodents 
(Fujino et al., 2004), while accelerates atherogenesis (Kobayashi 
et al., 2004). Thus, blockade of the FP may represent a novel 
therapeutic strategy in syndromes of renin dependent hyper-
tension with a more cardioprotective profile than suppressing 
synthesis or disrupting activation of the PGI

2
 receptor (IP). 
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