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Abstract: To meet the application requirements of a thermal gas sensor, it is necessary to realize a
bond connection between PtW8 wire with a Au thick film. However, the physical properties, such as
the melting point and hardness, of the two materials differ greatly. In this study, the parallel-gap
resistance microwelding was introduced into the bonding connection between PtW8 wire and a Au
thick film in the thermal gas sensor. The feasibility of the method was analyzed theoretically and the
experimental system was established and studied. A scanning electron microscope (SEM) was used
to analyze the morphology of the cross-section of the welded joint. The results showed that there was
no obvious transition layer at the interface region but there were relatively dense welds. At the same
time, it was found that the melted Au wetted and climbed on the surface of the platinum-tungsten
alloy, which may have been the key to forming the joint. Elements were observed to have a spatial
distribution gradient within the cross-section of the welding line, revealing that mutual diffusion
occurred in the parallel-gap resistance microwelding, where this diffusion behavior may be the basic
condition for forming the joint. Finally, the influence of the welding voltage, time, and force on the
joint strength was also studied, where the joint strength could be up to 5 cN.

Keywords: ultrahard PtW8 wire; Au thick film; parallel-gap welding; thermal gas sensor; joint
formation

1. Introduction

In recent years, gas sensors have been widely used in industrial production and people’s daily
lives [1–3]. Due to people’s increasing awareness of their safety and environmental protection,
researchers and developers pay increasingly more attention to the development of gas sensors.
Among a wide variety of gas sensors, thermal gas sensors have the advantages of a simple structure,
high sensitivity, excellent selectivity, all solid-state, good reliability, etc., and have been a research
hotspot in the sensor field [4,5].

Electrode leads are essential components for signal transmission and the support of sensitive
bodies in thermal gas sensors [6,7]. The support of the electrode lead affects the performance of the
thermal gas sensor. Feng et al. proposed four Pt wires with a certain stiffness as the electrode leads
of the gas sensor, and the gold slurry was dropped on the Pt wire and the Au electrode, which were
then subjected to a high-temperature sintering process to form the joint [8,9]. However, the Pt wire
underwent a high-temperature sintering process (700 ◦C for 1 h), which caused the Pt wire to be fully
annealed, affecting the quality of the gas sensor. For a Pt wire diameter of less than 50 µm, low strength
was displayed and breakage occurred. Lee et al. used 12 Pt wires with a certain rigidity as the electrode
leads of the catalytic combustion gas sensor to support sensitive components, micro-hot plates, and
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other components while reducing the heat loss of the heating plate [10]. In recent years, to expand the
application of sensors, researchers have studied the interconnection of leads and pads. For example: Pt
wire/Pt thin film [11–14], Pd wire/Pt thin film [12,15], Pt wire/PtIr pad [16], etc. However, the physical
properties of the materials studied are not much different and the joint formation during the bonding
process is not clear. In research on the resistance microwelding of crossed Pt-Ir alloy wire and 316 LVM
stainless steel wires, Huang et al. showed that increasing the wetting of molten metal on the surface of
the joint can significantly improve the performance of the joint [17–19].

With the rapid development of technology, higher requirements are placed on the high-temperature
resistance and support of electrode leads; to this end, platinum-tungsten alloys have become a new
application direction. PtW8 wire has higher strength, stiffness, and high-temperature resistance than Pt
wire, and is the most promising electrode material, as shown in Table 1 [15]. To expand the application
requirements of thermal gas sensors, the PtW8 wire should be bonded onto the Au thick film. However,
the melting point, hardness, and stiffness of platinum-tungsten alloys are large, making it difficult to
bond. Meanwhile, the mechanism of the joint formation of soft and hard materials is not clear.

Table 1. Material properties of Pt and PtW8.

Material Melting Point (◦C) Elasticity Modulus (GPa)

Pt 1769 171
PtW8 1870 230

For this reason, this study introduced parallel-gap resistance microwelding into the bonding
connection between ultrahard PtW8 wire and a Au thick film in a thermal gas sensor. A typical
planar parathermal gas sensor is shown in Figure 1 [20]. The feasibility of the method was analyzed
theoretically and an experimental system was built and studied. This method not only has the
advantages of strong controllability and a simple process but can also reduce the difficulty in making
the thermal gas sensor.
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2. Process Design and Experiment

2.1. Process Design of Parallel-Gap Resistance Microwelding

Resistance microwelding is a fusion-welding process [21]. Two characteristic steps are required
for resistance microwelding: (1) apply a certain pressure to the electrode such that the workpiece is in
close contact, and (2) pass a current through the workpiece using resistance heat to melt the base metal
and form a nugget. Since it is influenced by many factors, resistance microwelding of PtW8 and Au is
a complicated problem. First, as mentioned earlier, the physical properties of PtW8 and Au have great
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differences. Second, the size effects become stronger with the decrease of the size of the PtW8 wire and
the Au thick film. All the above factors make resistance microwelding of PtW8 and Au difficult to
conduct. Therefore, a suitable method is needed to overcome the above disadvantages.

The basic concept of parallel-gap resistance microwelding of PtW8 wire and a Au thick film
is shown in Figure 2. The experimental setup mainly consists of a power supply, an electrode,
and a workpiece. The power supply is the core component of parallel-gap resistance microwelding
equipment [22]. The performance of the power supply directly affects the precision of the welding
current and time control. The capacitor-stored pulse power supply can obtain a large instantaneous
current and is less difficult to control. The electrode plays an important role in pressing the workpiece
during the welding process, generating an average heat distribution, providing a large current to the
welding site, and promoting the cooling of the welded parts [23]. The use of molybdenum electrodes
can reduce other problems, such as electrode bonding, and the bonding quality has been significantly
improved [24]. For platinum-tungsten alloys with a high melting point and high-hardness wire,
an electrode made of molybdenum can be selected. The electrode provides additional heat to soften
the wire to improve the bonding quality. Second, the gap and width of the electrode can affect the
current density and thus the quality of the bonding [24]. When reducing the electrode gap and width,
it is also necessary to consider the difficulty of the manufacturing process to better design the structure
of the electrode and improve the quality of bonding.
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A schematic diagram of a parallel-gap resistance microwelding process is shown in Figure 3.
At the beginning of the process, the electrode applies pressure through the driving mechanism, pressing
the ultrahard PtW8 wire tightly on the Au thick film, as shown in Figure 3a. During the preloading
stage, the contaminants on the surface are crushed and the materials reach intimate contact. The power
supply then releases a large current for a certain period, as shown in Figure 3b. At the beginning of
the welding stage, the current flows from the positive electrode to the negative electrode through the
PtW8 and the Au thick film. Due to the resistance heat caused by the current, partial melting takes
place between the PtW8 and the Au thick film, where a preliminary bond is formed at this time. As the
welding stage progresses, due to the difference in the physical properties of the two materials, the Au
melts but the platinum-tungsten alloy does not melt. At this time, liquid Au spreads on the surface of
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the platinum-tungsten alloy to form a joint. After the welding is completed, the electrode is separated
from the workpiece, as shown in Figure 3c.
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Figure 3. Schematic of the parallel-gap resistance microwelding process: (a) preloading stage,
(b) welding stage, and (c) after welding.

2.2. Experiment

Platinum-tungsten alloy wires and Au-plated ceramic substrates were used in this study.
The diameter of each platinum-tungsten alloy wire was 40 µm. The size of the Al2O3 substrate
was 1 × 1.5 × 0.25 mm, and the Al2O3 substrate was coated with a 10 µm thick Au film. The material
properties of PtW8 and Au are given in Table 2. The performance characteristics of PtW8 differ greatly
from those of Au in many aspects, as shown in Table 2. For example, the melting temperature of PtW8
is about 800 ◦C higher than that of Au, the electrical resistivity is about 31 times that of Au, and the
thermal conductivity of Au is about 4 times that of PtW8. Because of the differences in performance
characteristics between PtW8 wire and Au thick films, resistance microwelding (RMW) is difficult to
achieve. Before welding, all materials were ultrasonically cleaned in acetone for 10 min.

Table 2. Material properties.

Material Melting
Temperature (◦C)

Electrical Resistivity
(10−8 Ω·m)

Thermal Conductivity
(W·m−1·K−1)

Elasticity
Modulus (GPa)

PtW8 1870 62 71 230
Au 1064 2.21 318 79

A self-developed parallel-gap microresistance welding machine was used in the experiment.
The adjustable voltage range was 0–2.8 V, the electrode force adjustment range was 0–4000 g, and the
output pulse time range adjustment range was 0–99.9 ms. The electrode material was molybdenum.
The cross-section size of the electrode connector was 250 µm × 250 µm. The welding parameter group
was set as follows: the voltage range was 0.8–1.1 V, the electrode force range was 100–600 g, and the
output pulse time range was 0–90 ms.

To facilitate the observation and analysis of the morphology and composition of the cross-section
of the welded joint after parallel-gap resistance microwelding, cold inlay technology was used to
prepare the sample. The cold inlay technology was utilized as follows: (1) The welded sample was
clamped and fixed using a sample holder and then placed vertically in the center of the circular mold.
The sample holder was required to ensure that the welded sample was perpendicular to the bottom of
the mold. (2) The curing agent and resin were mixed at a mass ratio of 1:3, then stirred evenly and
poured into the mold to wait for its solidification. (3) Sandpaper with grades 800#, 1000#, 2000#, 3000#,
and 5000# were used to grind the sample. During the grinding process, the sample was continuously
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observed under the microscope until it was ground to the area near the welded spot. (4) A diamond
polishing agent with a particle size of 0.5 µm was used to perform polishing on the inlay samples.
During the polishing process, the sample was observed under the microscope until the welded spot
was clearly visible. Finally, the polished surface was cleaned and dried with anhydrous ethanol and a
hair dryer to remove stains and polishing powder.

The joint quality was evaluated using a tensile test, as shown in Figure 4. During the test,
the force was continuously increased until failure occurred. The maximum force before joint failure
was used as the test result. The joint surface morphology, as well as the cross-sectional morphology
and composition, were examined using a EVO18 scanning electron microscope (SEM, Carl Zeiss AG,
Jena, Germany) with an energy-dispersive X-ray spectroscopy (EDS) is equipped.
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Figure 4. Schematic of the tensile test.

3. Results and Discussion

3.1. Welded Joint and Microstructure

The experimental results show that the system and method used successfully welded the
PtW8 wire with a diameter of 40 µm to the Au thick film. The physical figure of the parallel-gap
resistance microwelding sample and the surface morphology of the welded joint under a scanning
electron microscope are given in Figure 5a,b, respectively. The corresponding parallel-gap resistance
microwelding parameters were a welding voltage of 0.95 V, a welding time of 80 ms, and a welding
force of 200 g. As can be seen from Figure 5a, the welded sample had a good consistency. As can be seen
from Figure 5b, the PtW8 wire had fewer shape variables and the bonding interface was relatively flat.
At the same time, the significant melting of materials that had been squeezed out of the interfacial zone,
primarily the Au, was observed, as shown in Figure 5b. However, under this condition, the molten Au
could not wet the surface of the PtW8 wire well, as evidenced by the formation of large solidified balls
around the PtW8 wire (as indicated by arrows in Figure 5b). The above phenomenon can be explained
as follows: the physical parameters, such as the melting point and hardness of PtW8 and Au are quite
different, and the temperature was lower due to insufficient heat input and hence a poor wettability.
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Figure 5. (a) Welded sample of a PtW8 wire and a Au thick film. (b) Surface morphology of a
welded joint.

SEM low-magnification and high-magnification cross-sectional images at the bond interface of the
joints made using 0.95 V, 80 ms, and 200 g are illustrated in Figure 6. It can be observed from Figure 6a
that the PtW8 did not deform, whereas the upper surface of the Au thick film appeared to be bent and
the bonded area between PtW8 and Au presented an arc. This phenomenon may be caused by the
difference in material properties. Compared with PtW8, Au has a low melting point and hardness;
therefore, plastic deformation or melting occurs first. Figure 6b–d shows a partial magnification of the
bonded interface. The length of the fully bonded region was around 20 µm, as shown in Figure 6b,c.
The unbonded area can be clearly seen in Figure 6d. This phenomenon may have been caused by the
uneven distribution of forces, resulting in the differential distribution of heat.
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A welding pressure of 500 g, a welding voltage of 1.1 V, and a welding time of 16 ms created the
joint conditions that made the cross-section shown in the scanning electron microscopy (SEM) diagram
in Figure 7. Figure 7a–c shows that under high heat and a high welding force, the platinum-tungsten
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alloy softened and deformed, and the liquid Au showed good wetting, spreading, and climbing
phenomena on the surface of Pt-W alloy. The increase of heat energy resulted in a higher temperature,
a decreased contact angle, the same length of time under the condition of an applied force, PtW8
softening deformation, and liquid wetting spreading and climbing of the Au. Cracks were also
observed at the intermediate bonded interface, as shown in Figure 7b,d. This phenomenon may have
been due to excessive heat energy and force, resulting in cracks at the bonded interface.
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cross-section of the bonding interface.

The element distribution within the cross-section of the bonding interface was obtained via line
analysis with EDS, as shown in Figure 7d. It can be seen that the constituent elements of Pt and Au
presented a significant concentration gradient along the longitudinal direction in the bonded region,
indicating that mutual diffusion of materials occurred in the process of the parallel-gap welding.
When the current flowed through the material, the resistance heat generated by the resistance made the
temperature of the welding area rise rapidly and the transient high-temperature environment made
the materials partially melt. At the same time, under the action of the force, the liquid Au wetted
and spread to the PtW8 surface. The instantaneous high-temperature environment promoted the
mutual diffusion of elements. We believe that such wetting spread and mutual diffusion are the basic
conditions for forming good joints in PtW8 and Au parallel-gap welding.

3.2. Preloading Analysis of Parallel-Gap Resistance Microwelding

In the process of parallel-gap resistance microwelding, the welding pressure directly affected
the initial contact area, and then the interface contact resistance. The change of interface contact
resistance affected the distribution of the temperature field in the welding process and affected the joint
quality directly [25,26]. The schematic diagram of the impact of the welding pressure on the bonding
interface is shown in Figure 8. As can be seen from Figure 8b, when the welding force was applied
to the workpiece, the contact bump increased and the contact point underwent elastic deformation.



Materials 2020, 13, 2911 8 of 16

The contact changed from the peak-to-peak point contact to surface contact and the contact area
increased. Contact resistance can be expressed as:

Rc = ρ
D

WL
, (1)

where ρ is the interface resistivity, D is the gap, W is the width of the section, and L is the axial length.
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According to Equation (1), with the increase of welding pressure, the gap decreases, the surface
roughness decreases, the contact area increases, and the contact resistance shows a decreasing trend.
When the welding pressure is too low, the contact resistance is large. According to Joule’s law, the heat
generated by the current will also increase rapidly, and the surface of the joint is prone to spatter and
defects of electrode bonding, resulting in poor quality. Because the thickness of the welding pad coating
is usually only a few microns, when the welding force is too large, it is likely to produce a stratification
phenomenon or even cause mechanical damage to the welding pad, where the stratification and
damage of the coating will become a hidden danger of the solder joint reliability such that the failure
mode from the solder joint failure causes failure of the coating.

To better understand the contact behavior in the preloading stage, and because the preloading
process is difficult to be measured experimentally, this study used software ANSYS15.0 to analyze
the preloading process. To improve the simulation efficiency, only the electrode, PtW8, and Au were
modeled, as shown in Figure 9.Materials 2020, 13, x FOR PEER REVIEW 9 of 16 
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The stress distribution diagram in the preloading stage is shown in Figure 10. Figure 10a shows
the stress distribution diagram between the workpiece and between the workpiece and the electrode
under the welding pressure F = 0.2 N. It can be clearly seen from the figure that the stress distribution
presented a symmetrical distribution along the centerline of the Y-axis. The maximum stress occurred
below the central position of the Au thick film, and the contact center between the PtW8 and Mo
electrode was inclined to the PtW8, with a value of about 187.215 Mpa; both of which failed to reach the
yield strength of the material. Figure 10b shows the stress distribution diagram between the workpiece
and between the workpiece and the electrode under the condition of welding pressure F = 0.5 N.
It can be observed from the figure that the Au layer produced plastic deformation and part of the
platinum-tungsten alloy was pressed into the Au thick film. The contact form between the Au and the
PtW8 changed from point contact to line contact, and the stress distribution changes. For the PtW8 and
the Mo electrode, the maximum stress still occurred below the contact point of the PtW8, where the
maximum stress was about 340.596 MPa.
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3.3. The Temperature Field of the Parallel-Gap Resistance Microwelding

In the process of the PtW8 and Au parallel-gap resistance microwelding, the heat was mainly
provided by resistance heat. The equation for resistance heat is as follows:

Q = I2Rt, (2)

where I represents the welding current, t represents the welding time, and R represents the total
resistance. The total resistance R was mainly composed of the intrinsic resistance of the Mo electrode,
PtW8, and Au film, as well as the contact resistance of the contact site. The self-resistance of the Mo
electrode, PtW8, and Au film was mainly related to the inherent properties of the conductor, such as
the structure and resistivity. In the process of RMW, the contact resistance plays a decisive role in the
whole process [27,28]. The contact resistance can be expressed by Equation (1).

Based on the results of the preload analysis, we reconfigured the model at the power-on stage
to improve the accuracy of the analysis. To provide temperature field analysis of the Au thick film
and the bonding mechanism of the joint, the finite element method was used to simulate the welding
process between the PtW8 wire and Au thick film. To improve the simulation efficiency and consider
the accuracy of the temperature distribution, the direct coupling method was used to conduct the
three-dimensional modeling of the Mo electrode, Au thick film, and PtW8 wire, and the model was
simplified appropriately. The finite element model of the welding stage is shown in Figure 11.
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Figure 11. Finite element model of the welding process.

The temperature field distribution of the Au thick film and the time variation of the maximum
temperature of the Au thick film under different current conditions are shown in Figure 12. Figure 12a
shows the temperature distribution of the Au thick film when the welding current was 180 A and
the welding time was 16 ms. It can be clearly seen that the maximum temperature distribution was
elliptical and the maximum temperature was about 940 ◦C, which is close to the melting point of
Au. Since the contact area is not an ideal plane, local melting will occur under this condition. At this
temperature, the diffusion between atoms can be accelerated. It can be seen from Figure 12b that both
the current and time influenced the temperature, where the current had the greatest influence.
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3.4. Wetting Behavior of Liquid Au on the Surface of the Platinum-Tungsten Alloy Wire

The wetting behavior of liquid Au on the platinum-tungsten alloy is one of the important factors
affecting the formation of the joint. The wettability of solid platinum-tungsten alloy by liquid Au can
be qualitatively determined using Young’s equation [29]. For spreading wetting, the size of the indirect
antenna between liquid Au and a solid platinum-tungsten alloy directly reflects the wetting situation,
while the size of the contact angle depends on the balance of interfacial tension at the tri-junction point
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at the spreading front [30]. According to Young’s equation (Equation (3)), the contact angle of the
beam, which measures the degree of wettability, can be calculated as follows:

cosα =
σsg − σsl

σlg
, (3)

where cosα is the wetting coefficient, σsg is the solid–gas surface tension, σsl is the solid–liquid surface
tension, and σlg is liquid–gas surface tension.

According to Equation (3), the smaller the contact angle, the better the spreading effect. According
to Young’s equation, increasing σsg or decreasing σsl and/or σlg can promote wetting. From the
perspective of thermodynamics, the interfacial tension is related to the specific surface enthalpy,
which is related to the physical properties, composition, and temperature of each phase; therefore,
the wetting angle must be affected by these factors.

Surface tension affects the wetting behavior of liquid Au. The relationship between the liquid Au
surface tension (mN·m−1) and temperature (◦C) is expressed in Equation (4) [31]:

σAu = 1162− 0.18(T − 1065) (T > 1065 °C). (4)

The surface tension of liquid Au decreases with the increase of temperature within a certain
temperature range. PtW8 is an inert metal, and the temperature coefficient of its solid–gas surface
tension is very small, which does not change with the temperature. The temperature coefficient of the
liquid–solid interface is between these two. Therefore, according to Equation (3), the contact angle
tends to decrease. Temperature affects not only the contact angle but also the climbing height of liquid
Au on the surface of the platinum-tungsten alloy. The wetting height H can be expressed as:

H =
2σlg(1− sinα)

ρg
, (5)

where σlg is the surface tension of liquid Au, ρ is the density of liquid Au, and g is gravity.
According to Equation (5), the wetting height is mainly related to the contact angle of liquid Au

on the surface of the platinum-tungsten alloy. When the temperature rises, the contact angle becomes
smaller, and Equation (5) shows that the wetting height increases.

The wetting spread of liquid Au on the surface of platinum-tungsten alloy is a prerequisite for
forming a smooth surface and good performance joints. To analyze the wetting spread of liquid Au on
the surface of platinum-tungsten alloy, a COMSOL Multiphysic two-phase flow level set was used in
this study. To improve the simulation’s efficiency, a two-dimensional model was adopted. Its finite
element model is shown in Figure 13.
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The spreading process of liquid Au on the surface of the platinum-tungsten alloy is shown
in Figure 14. The blue area represents the area that is air, the red area represents the area that is
liquid Au, the bottom is the platinum-tungsten alloy surface. As can be clearly seen from Figure 14,
under the effect of gravity and surface tension, liquid Au rapidly spread out on the surface of the
platinum-tungsten alloy in a very short time, and then reached the equilibrium state. In a time of
t = 4–24 µs, liquid Au spread symmetrically outward at the three-phase interface as time went by,
and its height decreased in the process of spreading. It can also be seen from Figure 14 that liquid Au
had a better spreading effect on the surface of the platinum-tungsten alloy, which may be attributed to
the material properties of platinum-tungsten alloy, which was conducive to the wetting and spreading
of liquid Au on the surface of the platinum-tungsten alloy.
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3.5. Bonding Mechanism

According to the surface morphology, cross-sectional morphology, and theoretical analysis of the
joint, we can summarize the formation process of the joint, as shown in Figure 15. Before welding,
the wire and board were stacked together. Due to the surface roughness of the material, the contact
between the materials was not an ideal smooth plane but the point-to-point contact was made of
countless peaks and peaks or peaks and valleys, as shown in Figure 15a. At the beginning of the
experiment, the electrode applied a welding pressure through the driving mechanism to press the
ultrahard PtW8 wire tightly on the Au thick film. Under the welding pressure, the contaminants on
the surface of the material were crushed, and due to the difference in the physical properties of the two
materials, the metal with a low strength began to deform. The number of contact points increased,
and elastic deformation occurred at the contact points. The contact changed from point contact to
surface contact, as shown in Figure 15b. The current was then applied for a certain period. The change
of bonding interface under the power-on condition is shown in Figure 15c,d. When current flowed
through the contact area of the PtW8 wire and Au thick film, the actual contact area between the PtW8
wire and the Au thick film was much smaller than the contact area due to the roughness of the contact
area. Therefore, the current density at the contact region was very high and the contact volume was
quite small compared with the material itself. These gave rise to a local increase in temperature at
the contact region and the contact point was welded, provided that the temperature at the contact
exceeded the melting point of the material, as shown in Figure 15c. As the current increased, due to
the difference in the physical properties of the two materials, molten Au appeared. When the current
continued to increase, increasingly more molten Au was created and the liquid Au began to wet, spread,
and climb rapidly on the surface of the platinum-tungsten alloy, as shown in Figure 15d. Finally,
a joint was formed. Through the above analysis, it can be concluded that the bonding mechanism of
the parallel-gap resistance microwelding of PtW8 and Au was solid-state bonding. Under the action of
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a mechanical force, the oxides and pollutants were broken, and then under the action of thermal–force
coupling, the oxides and pollutants were decomposed by heat, creating a relatively clean surface, wjere
the mutual diffusion of atoms between the interface and the molten Au on the platinum-tungsten alloy
allowed for surface wetting spread and climbing, thus forming the solid-state joint.
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3.6. Factors Affecting Welded Quality

The heat energy can be calculated as follows (Equation (6)):

Q =

∫ t

0

U0e−
t

RC

R
dt, (6)

where R is the total resistance, C is capacitance, U0 is the initial voltage, and t is the welding time.
According to Equation (6), it can be known that voltage and time are proportional to the heat energy,
and the welding voltage and time largely determine the amount of welding heat. Figure 16a shows the
breaking force test results of the welded samples under different welding voltages when the welding
time was 80 ms and the welding force was 200 g. As can be seen from Figure 16a, the breaking force
gradually increased with the increase of the welding voltage in the range of 0.75–0.95 V, and the
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maximum value was about 4 g. When in the range of 0.95 V to 1.0 V, the fracture force decreased. If the
voltage continues to increase, serious damage to Au and cracks in the ceramic substrate may occur.
Therefore, the appropriate voltage setting should be selected to improve the breaking force and reduce
the damage of the welded joints and Au thick film.
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welding force.

Figure 16 shows the breaking force test results of the welded samples for different welding times
under the conditions of a welding voltage of 0.95 V and a welding force of 200 g. As can be seen from
Figure 16b, in the welding time range of 30–80 ms, the welding quality improved with the increase of
the welding time. This was due to the increase of the welding interface energy, which increased the
contact area of the bonding interface and reduced the connection gap and voids. When the holding
time was greater 80–90 ms, the connection quality was basically unchanged, and the breaking force
was about 4 g at this time. A reasonable explanation for this behavior may be that the weld formation
occurred in a relatively short period. In other words, in an optimal welding parameter setting, a peak
temperature is reached quickly. The long holding time makes the welding heat concentrate too much
on the electrode and less on the welding interface. It can be concluded that the welding time need not
be maintained for a long time to reduce the influence of excess heat on the joint morphology and the
worn electrode head.

Figure 16c shows the breaking force test results of the welded sample under different welding
pressures at a welding voltage of 0.95 V and a welding time of 80 ms. Under the condition of a higher
welding pressure, the deformation of the wire and the contact area of the weld was increased, resulting
in greater bonding strength. However, the overall breaking force was small, mainly due to the higher
melting point and hardness of PtW8; the overall deformation was small; the welding interface area
was small; and low joint strength was displayed.

4. Conclusions

The purpose of this study was to investigate the PtW8 wire and Au thick-film weldability using
parallel-gap resistance microwelding. Based on the experimental and theoretical analysis results,
the major conclusions can be summarized as follows:

1. The ultrahard PtW8 wire was successfully bonded with the Au thick film using parallel-gap
resistance microwelding under appropriate welding parameters. The joint strength could be up
to 5 cN.

2. It was found that the parallel-gap resistance microwelding of PtW8 wire and Au thick film
included the following stages: (1) deformation after pressing, (2) partial melting, (3) molten metal
wetting and spreading, and (4) solid-state bonding.

3. Sufficient local heat generation was the key to high-quality welds because first, it generated
sufficient molten metal, and second, it created plastic deformation, and third, it facilitated the
wetting and spreading of the molten metal to expand the bonded area.
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4. Optimizing only the welding voltage, time, and force was insufficient to achieve acceptable
joint strength.
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