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Abstract

When drawing causal inference from observed data, failure time outcomes
present additional challenges of censoring often combined with other missing
data patterns. In this article, we follow incident cases of end-stage renal disease
to examine the effect on all-cause mortality of starting treatment with transplant,
so-called pre-emptive kidney transplantation, vs starting with dialysis possibly
followed by delayed transplantation. The question is relatively simple: which
start-off treatment is expected to bring the best survival for a target popula-
tion? To address it, we emulate a target trial drawing on the long term Swedish
Renal Registry, where a growing common set of baseline covariates was mea-
sured nationwide. Several lessons are learned which pertain to long term disease
registers more generally. With characteristics of cases and versions of treatment
evolving over time, informative censoring is already introduced in unadjusted
Kaplan-Meier curves. This leads to misrepresented survival chances in observed
treatment groups. The resulting biased treatment association may be aggravated
upon implementing IPW for treatment. Aware of additional challenges, we fur-
ther recall how similar studies to date have selected patients into treatment
groups based on events occurring post treatment initiation. Our study reveals
the dramatic impact of resulting immortal time bias combined with other typi-
cal features of long-term incident disease registers, including missing covariates
during the early phases of the register. We discuss feasible ways of accommo-
dating these features when targeting relevant estimands, and demonstrate how
more than one causal question can be answered relying on the no unmeasured

baseline confounders assumption.
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1 | INTRODUCTION

For decades now, the randomized clinical trial (RCT) enjoyed the status of bringing gold standard evidence to inform
clinical decisions.! While advantages of this design are undeniable, the call for additional real world evidence sounds
ever louder. This stems in part from the restricted and somewhat artificial setting of the randomized experiments, which
challenges transportability of results to real world target populations.?? It is further the fruit of growing data resources
of various types harboring information from much broader natural target groups, which can now be mined using new
developments in causal inference and beyond.

Today’s evidence supporting clinical decisions is thus also drawn from observed exposures, both within randomized
trials, as requested in the ICH E9 appendix on estimands,* and in the absence of trials. This becomes the primary evidence
source when treatment cannot be randomized due to ethical or practical reasons as is typical for organ transplantation,
for instance. A well designed (comprehensive) cohort of diseased patients may then bring the best chance of obtaining
real world evidence. The latter should ideally be cast in clinically interpretable measures. Hence risk differences will be
preferred over hazard ratios even though the latter may be an essential vehicle to arrive at the former.

For a range of chronic diseases, population based incidence registers following patients from disease onset have been
built and maintained over years. These are now important data sources for investigations of long term outcomes. Accrual
over many calendar years also comes with additional challenges. Earlier entries are automatically subject to longer admin-
istrative censoring times. When patient profiles and/or general level of care changes (improves) over calendar time several
consequences must be addressed. First, assuming the study population is our target population, the population average
survival curve, as estimated by Kaplan-Meier (KM) will be biased. Indeed, the longer administrative censoring times may
then come with better survival chances. This informative censoring can be handled by simply adjusting for registry entry
time. That well-known fact,>® gets easily forgotten given the robust reputation of the KM curve. It is not remedied by
inverse probability of treatment weighting (IPW) adjustment which may address covariate imbalance across treatment
groups. Second, having learned how entry time impacts survival on one or either treatment, the causal question of inter-
est may shift from the full study population to what recent or even future patients can expect to benefit from their choice
of treatment. Still, careful analysis of the available cohort will lay the foundation of such insight.

When analyzing the effect of a point exposure on survival, one will obviously need to adjust for confounders associated
with treatment at the time of treatment decision. It is then a great advantage that registries at the national level with broad
coverage typically have a well worked out protocol carefully defining the set of patient characteristics to be included by
all centers at the time of patient entry into the registry. Naturally this set may get updated after a number of years on a
given date to include additional covariates, responding to progressing insight in prognostic factors or more easy access to
the (good) measurements.

What happens during later follow-up tends to be much less controlled or harmonized as it emerges over long periods of
time in a range of settings with more or less support for data measurement. Tight control would be extremely demanding at
that level. It is hence important to understand what can be estimated when relying on a common set of baseline covariates
without access to regular time-varying covariate measurements.

As with clinical trials, the target estimand can either follow the intention-to-treat (ITT), per-protocol or as-treated
principle addressing a corresponding causal question. In the randomized trial, the ITT analysis commonly estimates the
causal effect of being assigned to a particular treatment regardless of the adherence to it. In the observational setting it will
also pertain to a point exposure which could be controlled at a specified time of “treatment” onset common to the avail-
able treatment options, such as treatment assigned, prescribed or initiated. Here too ITT marginalizes over subsequent
treatment (intensity). An appreciation of exposure levels that follow in the study population will deepen our understand-
ing of exposure and influence transportability of the estimand.>”® Of course, before comparing outcomes of treatment
groups conditional on covariates in the emulated trial, explicit adjustment for baseline confounders is required. This will
ensure exchangeability before averaging over a chosen distribution of baseline covariates. This could be the covariate
distribution observed in the full study population (average treatment effect, ATE) in the treated (ATT), the non-treated
(ATNT),’ or any other relevant distribution.

A per-protocol analysis targets the effect of adhering to a treatment regimen as established by the researcher. Strategies
to deal with deviations from this regimen must then be specified. One approach restricts analysis to patients fully adhering
to the treatment protocol or censors patients as they deviate from it. The latter may introduce informative censoring as
time-varying factors likely influence both the treatment path and the outcome. Therefore, besides adjusting for baseline
confounders, the per-protocol effect also requires adjusting for time-varying confounding.
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Finally, the as-treated effect in RCTs pertains to treatment actually received (possibly for a given duration), rather
than randomized to. No longer under the protection of randomization, this approach typically involves accounting for
both baseline and time-varying confounding, even in the context of an RCT.!°

Through trial emulation, observational data can be used to mimic as closely as possible the data set-up that would
have been aimed for in a target trial designed to answer the clinical question. It helps avoid bias frequently encountered
in observational studies, for example, when allowing patient eligibility to rely on information obtained after treatment
onset.!12

In this article, we present a case study where trial emulation draws on the Swedish Renal Registry (SRR), a nation-
wide research register. The research question investigates the total effect on all-cause mortality of immediate kidney
transplantation vs starting with dialysis possibly followed by delayed transplantation. The complications encountered
and approaches taken apply quite generally to long term disease registers beyond nephrology. In Sweden and the Nordic
countries, research on long term effects of a variety of chronic diseases is conducted through linkage of incidence reg-
isters and administrative registers with individual level data, for example, the in-hospital register held by the National
Board of Health and Welfare. The resulting datasets constitute a high-quality observational data resource for researchers
used to both support and generate new hypotheses for a wide range of diseases.

In what follows we introduce our case study in more detail in Section 2, we elaborate on the targeted estimands
in Section 3 to discuss the estimation approach for ITT and an as treated analysis allowing for nonrandom treatment
switch while relying on a sufficient set of baseline covariates for noninformative censoring. Both approaches with
their respective results are described in Sections 4 and 5, respectively. The results derived from our case study, are fol-
lowed by a note on the existing software packages to aid these analyses in Section 6 and we end with a discussion
on strengths and weaknesses of the approach taken and results obtained, relative to what is currently in the literature
in Section 7.

2 | CASE STUDY

As kidneys are vital organs, patients reaching end-stage renal disease (ESRD) need treatment to survive. The two main
alternatives are dialysis or kidney transplantation, collectively known as renal replacement therapy (RRT). Several studies
consider how the modality of RRT impacts survival. Specifically, one aims to determine whether and by how much patients
with immediate transplant, so-called pre-emptive kidney transplantation (PKT), have better survival than they would have
after a period of dialysis possibly followed by delayed transplantation.!® This setting is unique to kidney transplantation
compared to other organ transplants where there is not an alternative treatment and access to a transplant is the only
option to survive. Thus, different considerations and approaches are needed compared to those made in previous studies
focusing on lung transplant.'*13 It is worth noting that here we are considering dialysis as possibly a bridge therapy to
a delayed transplantation, where an eventual delayed transplantation is considered part of the treatment. Other studies
have compared PKT with patients who started on dialysis and censor them when they received a transplant!® or with a
transplant not being available and remaining on dialysis.'’

A systematic review of this research question'® identified published studies, most of them suffering from avoidable
biases. Those who worked with transplant registers are limited to RRT patients receiving a transplant and obtained ret-
rospective information on when they reached ESRD and started dialysis. The restriction to patients living long enough
to obtain the transplant results in immortal time bias.!>?° To account for this, some condition on the amount of time
spent previously on dialysis lacking correction for truncation. This analysis ignores the mechanism of selecting subjects
who (1) started RRT with dialysis in response to covariates then available and (2) have survived long enough to undergo
transplantation.?">* Conditioning on covariates (denoted by Z hereafter) measured at the time of transplant or beyond
(graft function or graft rejection) amounts to adjusting for events on the causal path from treatment initiation at RRT to
survival,>>2® another approach well known to introduce bias (Figure 1).%’

Analyses typically start from hazards and hazard ratios whose estimation entails limited additional modeling assump-
tions when censoring is noninformative or explainable. Semiparametric (extended) proportional hazards models are fast
and stable to implement with residual plots to help assess model assumptions. Estimation of these building blocks avoids
modeling the nuisance study-specific censoring mechanism per se. Derived summary measures, such as Z-specific or
Z-standardized survival curves, carry direct clinical interpretation. When the models are oversimplified however (some-
times when assuming time constant hazard ratios over the long haul) or the hazards are naively interpreted as causal
contrasts for populations of survivors at time ¢ since RRT, problems arise.?
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FIGURE 1 Causal diagram for the effect of immediate vs delayed transplantation on death

In what follows we overcome the problems through an alternative design, transparent analysis under clearly
stated assumptions and outcome parameters chosen for clinical interpretability. An incident RRT registry allows
us to mimic the ideal study which randomizes patients at RRT onset over either PKT or dialysis first. These
exchangeable groups in terms of measured and unmeasured baseline prognostic variables are followed until
death or administrative censoring. The nationwide SRR is such a cohort with carefully collected data since 1991
from all RRT units in Sweden, including 100% of transplanted patients and at least 95% of dialysis patients.?*-*
Today, it records the following covariates when patients enter the register: date of RRT onset, demographic vari-
ables at RRT onset, cause of kidney disease, RRT modality, comorbidities, kidney function and survival status.’!
Some covariates are introduced into the registry only years after it started: comorbidities (diabetes, hypertension,
ischemic heart disease, cerebrovascular disease, and peripheral artery disease) since 1998 and kidney function
since 2008.

A sufficient set of measured baseline confounders justifies the assumption of “no unmeasured baseline con-
founding” (NUBC).!® Allowing various estimation strategies to account for differences between observed treatment
groups in baseline characteristics, prognosis, and potential benefit from treatments. When key covariates enter
the registry late, one must either limit the analyses to the period where they are available, or consider imputa-
tion typically assuming missingness at random. With the sufficient set on board, causal effect analyses strategies
include outcome regression, stratification, matching with or without propensity score, IPW or a combination in
so-called doubly robust estimators. As we describe below, simple propensity score methods may not be valid in this
context.

A well-chosen contrast between Z-specific or Z-standardized average survival curves for the treatments consid-
ered represents the specific population average causal effect under the NUBC assumption which we formalize in
Section 4.4. An ITT analysis estimates the total effect of treatment assignment, comparing marginal survival curves
between arms. This effect measure naturally averages over subsequent treatments: some patients starting on dialy-
sis may get transplanted later, while others may die or be censored before ever getting a transplant. To interpret the
effect of starting with dialysis, and especially with an intention of transporting results to new populations, one will
wish to acknowledge the distribution of time to transplant among the dialysis starters. This is likely dependent on
country-specific organ availability and transplant policies. Also, patients on either arm who receive a transplant may
experience a graft failure requiring a new kidney or going on dialysis. The per-protocol and as-treated analyses must
allow for nonrandom switching off the original treatment modality. This typically involves relying on time-varying
covariates which we lack in the nationwide SRR. In Sections 3 and 5, we involve accelerated failure time (AFT) mod-
els which allow for such nonrandom switch while relying on the no-unmeasured baseline covariates assumption for
estimation.

Our set-up reminds of the work of Danaei et al**> who compare the effect on survival of initiating statins for
the primary prevention of coronary disease vs not (yet). As in our case, those who do not start the treatment
of interest (statins or PKT) at time ¢, may start later, and the ITT analysis averages over such changes in actual
exposure as they naturally occur in the studied population. The “treatment” comparison is then one of immedi-
ate vs delayed treatment initiation, where the latter comes as a compound treatment of dialysis possibly followed
by transplantation. This idea of a compound treatment can be seen in other settings too, like in oncology when
the interest is to compare initial chemotherapy to reduce the tumor size prior to surgery, with surgery without
delay.?3
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Mindful of the above considerations, we next define our estimands of interest in more detail before engaging in a
well-motivated protocol for analysis.

3 | CAUSAL ESTIMANDS OF INTEREST

We aim to estimate the causal effect on mortality of starting RRT treatment with PKT rather than dialysis in a popula-
tion eligible to receive either. Our outcome of interest, T, is time from RRT onset to death. Using the potential outcomes
framework,** we consider the potential survival time from RRT onwards under two alternative possible exposures: T,
when a kidney is received without previous dialysis and Ty, when RRT starts with dialysis possibly followed by trans-
plantation. For this to make sense, we constrain the population to those patients for which both exposures are possible
in principle, thus satisfying the positivity assumption.?> To determine this (sub)population both statistical and clinical
arguments enter, as discussed in Section 4.1.

In RCTs, an ITT analysis would typically estimate the total effect on time to death by comparing the sur-
vival distribution following PKT assignment, S;(t) = P(T; > t), with the survival distribution following dialysis
assignment at RRT onset, So(t) = P(Ty > t), ignoring whether a delayed transplant follows later. The target esti-
mand may then be any chosen contrast, for example, the difference between the survival curves Si(t) — So(t) =
P(Ty > t) — P(Ty > t). Often one simply focuses on the hazard ratio for treatment after adjusting for baseline
covariates.

In practice, we turn to our RRT incidence registry where the ability to receive PKT depends on the patient in
need of treatment as well as the availability of a suitable organ.*® Virtually all patients receiving PKT at RRT, would
technically have the option to start treatment with dialysis. The other way around is less obvious but deemed plausi-
ble to a degree. An alternative is to restrict the analysis to patients included on the waiting list, to ensure that they
are all transplant candidates. However, this approach may miss patients who have a living donor and are therefore
not included on the waiting list. Unfortunately, the SRR does not have this information available. Of note, Sweden
has a decentralized healthcare system and there is not a standardized organ allocation system nor common crite-
ria to define eligible recipients. Each of the four transplant centers manage their patients and waitlist differently and
independently.?’

Given all of these considerations, the average effect of PKT among the PKT-receivers (ATT) has a more straightforward
interpretation than the corresponding ATNT. Without knowing how to find a kidney for transplant at present, we may
still aim to evaluate what would happen if the PKT treatment became available. This follows the philosophy on causal
effects from Vandenbroucke?® and Hill.** The ATE within the full cohort considered capable of receiving either treatment
will be a weighted average of the ATT and ATNT.

A different estimand of interest may indicate the survival time lost while being treated with dialysis when wait-
ing for a later transplant, relative to T;. Instead of ignoring any delayed transplant as in the ITT, it considers observed
time T (= Ty) in the delayed transplantation group as a sum of two observable variables: T = T, + T,, where T, is
the survival time spent without initial transplant and T, the residual survival time following the delayed transplant
(if any).

The estimand may then focus specifically on the amount of time spent without transplant and estimates its effect.
This would resemble the as-treated analysis described by Danaei et al*? by focusing on the “total duration of treatment.”

In our case, we model the potential survival under PKT, T; as a function of T}, and T, as: T i Ty exp(—y) + T,. Every
day on initial dialysis then counts as the potential exp(—y) days on PKT (eg, for exp(—y) = 2, the median survival time
while on initial dialysis would have been doubled under PKT treatment). This model leaves the residual survival time
unaffected by an initial trajectory with or without transplant.

An alternative as-treated model, transforms both parts of the sum to reflect an additional impact of the delayed trans-

plant, for example, T; 4 Ty exp(—yy) + Ty exp(—y;), where generally, the y-parameters could depend on other baseline
factors, and the timing of the transplant.

For completeness, we point to the effect of choosing to transplant at a given delay time ¢, post RRT, vs further delaying
the transplant or even staying on dialysis throughout. To answer questions on the effect of transplant timing one needs,
however, measures on time-varying confounders of the timing of transplant in the dataset. Without such data, we set out
to estimate the first two estimands described here, relying on the assumption of no unmeasured baseline confounders as
explained in the following two sections.
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4 | TARGETING THE INTENTION-TO-TREAT ESTIMAND

In the real world, the comparison between T; and T, relies on estimating the survival of two groups of different patients
with similar baseline covariates but who experienced different treatments. To allow a causal effect estimate, we will rely
on the following assumptions, where Z refers to baseline covariates:

Al. Positivity: Patients in the study population have a non-zero, non-one probability of receiving either treatment, given
their covariate values Z: 0 < P(PKT =1|Z) < 1and 0 < P(PKT =0|2) < 1.

A2. Noninformative censoring for estimation of the conditional survival function P(T > t|PKT = p, Z) : censoring time,
C, is independent of survival time T, given covariates {PKT,Z} : CLT|{PKT, Z}.

A3. Missing at random: The missing values of the covariates are missing at random conditional on the observed
covariates Z. If R denotes the missingness indicator, then P(T > t|PKT = p,Z,R =1) = P(T > t|PKT = p,Z,R = 0).

A4. No unmeasured baseline confounders (NUBC): The vector of potential survival times {Ty, T1} is independent of
observed PKT given baseline covariates Z, { Ty, T1 } LPKT|Z. A causal effect can then be represented by contrasting
S1(t; Z) = P(T; > t|Z) = P(T > t|PKT = 1, Z) with So(t; Z) = P(Ty > t|Z) = P(T > t|PKT = 0, Z).

4.1 | Assessing positivity

To satisfy the positivity assumption (A1), the propensity score distributions of the observed treatment groups must over-
lap.3 For (sub)populations that are open to starting either treatment a meaningful population treatment effect can
be estimated. Subgroups with treatment propensity (close to) zero or one obviously violate the positivity assumption
as they represent groups with little chance of receiving one of the treatments. To check for this, a propensity score
(PS) model was built using logistic regression for the probability of receiving PKT from baseline covariates age,
sex, region, primary kidney disease and calendar year of RRT onset. Interactions between age and sex with pri-
mary kidney disease and calendar year of RRT onset were included. Notwithstanding generally good overlap of PS
in both groups (Figure 3), we found that patients with a history of cancer or older than 75 years appeared to rarely
receive PKT yielding a PS close to 0. We excluded them from the target population thus adjusting the scope of this
analysis.

4.2 | Informative censoring

We estimated survival from the date of RRT onset onwards censoring patients still alive by December 31, 2017, as
confirmed by the cause of death registry. KM curves per treatment group present robust survival chances in selected
observed treatment groups, provided noninformative censoring holds (A2). This assumption fails when conditioning
on covariates Z is required to render censoring time C independent of the survival time: CLT|Z. This can easily hap-
pen in long term disease registers, if cohorts entering later differ in baseline prognostic factors and/or enjoy a better
survival time (conditional on these baseline factors). In the early years of the registry, transplants were more risky
and immunosuppression less well developed. PKT was therefore offered only to highly selected groups eg younger
and healthier patients. Over time, this treatment option was extended to a broader group of patients. This structure
introduces informative censoring for the unadjusted KM curves as later cohorts are censored sooner but can antici-
pate longer survival than similar patients who entered earlier and have longer censoring times. Aware of this problem,
we start by presenting “the usual” KM curves for two observed groups: PKT and dialysis first and see already a
much higher curve for PKT = 1 patients, impacted however by baseline confounding and informative censoring as we
explain later.

4.3 | Selection and immortal time bias
Another source of bias enters when we consider the subset of PKT = 0 patients who received delayed transplantation

before study end. Figure 4 shows the overestimation of survival in the dialysis arm when studying this selective subgroup
and it also suggests the extent of the immortal time bias explained in Section 2.
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Further insight into the dialysis first group is supported by showing the cumulative incidence of transplant and
of death without transplant. Since the vast majority of patients experienced either competing event in this arm, any
remaining informative censoring becomes negligible here.

4.4 | Handling missing covariates

Not all the envisaged confounders (age, sex, region, primary kidney disease, calendar year of RRT onset, diabetes,
hypertension, ischemic heart disease, cerebrovascular disease, and peripheral artery disease) were always measured.
Comorbidities were available only from 1998 onwards. Removing patients who entered before 1998 would result in los-
ing 36% of events, a substantial information loss. Instead, we imputed the missing values for the earlier cohort assuming
missingness at random (A3), effectively extrapolating their conditional distribution from 1998 (allowing for a trend in
calendar time) toward the early years. Similar patterns are found in long term chronic disease registers that introduce
additional covariates when the registers are already established. We decided not to impute kidney function because it was
introduced later (only in 2008) and the reported measure was not standardized, that is, it is not a mandatory variable, cen-
ters can provide different measurements to report and different follow-up time points. Instead, we assessed the impact of
kidney function as part of the sensitivity analyses described in Section 4.6.

Following Clark and Altman,* we included the mortality indicator and log(survival time) in the imputation model
as covariates, besides age, sex, region, primary kidney disease, calendar year of RRT onset and PKT. For computational
efficiency, we first created 10 imputation datasets using the R package mice*' and then we bootstrapped each imputed
dataset to construct 95% CI using the R package boot*? following previous recommendations.*?

4.5 | Adjusting for confounders

To adjust for baseline confounders in survival analysis, one has in principle four options: regression adjustment,
matching, inverse probability weighting, and/or a combination in a double robust method. We have opted for the
regression adjustment because it allows us to automatically adjust for covariates known or suspected to affect cen-
soring. For instance, by adjusting for calendar time of entry into the register we remove some informative censoring
from the analysis. In contrast, inverse probability weighting would balance covariates between the treatment groups,
but observed unadjusted hazards in each group would still be subject to censoring that is influenced by baseline
covariates (including calendar time of entry). To correct for this we would need additional time-varying inverse weight-
ing for censoring. Thus, our choice here aims at simplicity and robustness for the setting. Below we describe our
modeling approach which is then compared with the IPW alternative to illustrate these considerations. Even though
recent work describes matching for adjustment of KM curves* we have not moved forward with this option. Since
the PKT group is considerably smaller than the dialysis first group, there might be difficulties in making inference
for the dialysis first population using this estimator. Here, finding good matches to the dialysis first group among
the PKT individuals may mean that some PKT individuals are used as matches many times, thereby inflating the
variance.*>4

We built Cox models for mortality separately in the PKT group and dialysis first group in each imputed dataset. The
separate models give more flexibility, allowing for different baseline hazards and covariate effects for each treatment in
a setting where there is potential for a different evolution over time. To avoid smoothing bias, we use a common set
of confounders that are adjusted for in both models. We included the listed covariates as main effects and also inter-
actions between age and sex, age and comorbidities, and sex and comorbidities. As shown by the sensitivity analyses
performed, the impact of the confounder adjustment on individual survival diminishes, once the curves are averaged over
the population of interest.

We then derived covariate-specific potential survival curves under each possible treatment (§1[t|Zl~] and §0[t|Z,~]). The
average of these two curves over the whole study population was contrasted next to estimate the average treatment effect
as S1(t) — So(t), with S, (t) = % Y. Si[t|Z;] and So(t) = % 3. Solt|Zi.¥

We similarly averaged over the covariate distribution observed in the PKT (and dialysis first) group to estimate the
average treatment effect among the treated (and non-treated). If the model has adjusted for a sufficient set of baseline
confounders, these results can be interpreted as causal effects under the potential outcomes framework for the targeted
populations. We further assess residual confounding with the sensitivity analysis described below. Without relying on
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the no unmeasured confounding assumption (A4), we are still contrasting well defined standardized survival curves. As
secondary analysis, we repeated the analyses avoiding imputation by excluding comorbidities from the set of confounders.

To compare different adjusting approaches, we use the package ipw*? to build inverse probability of treatment survival
curves, using the same baseline confounders as described above. For each of the 10 imputed datasets, we compute the
weight for each patient and then averaged over the 10 sets to get the individual weight that was finally used in the curves.

4.6 | Sensitivity analyses

Our approach naturally involves three types of “untestable” assumptions, namely: noninformative censoring (A2), non-
informative missingness (A3), and no unmeasured confounding (A4). We consider the plausibility of each of these
assumptions in turn and perform sensitivity analyses when questions arise, as described below.

4.6.1 | Noninformative censoring

Noninformative censoring (A2), TLC|{PKT, Z} is required for the hazard based survival analysis (causal or not) and
defined in function of the (baseline) covariates conditioned upon. We argue that the PKT cohorts who entered the
registry in more recent calendar years may have better survival because the transplant treatment conditions (eg,
immunosuppression) generally improved over the years. In response the risk profiles of PKT patients entering the
cohort also changed over time. Older patients were allowed to enter the PKT arm in later decades, and still sur-
vival overall improved substantially in that arm. Hence any analysis which fails to adjust for calendar time (or a
sufficient proxy) may suffer from bias due to informative censoring. To illustrate the impact here, we compared
the “nonparametric” KM curve, ignoring baseline covariates, with a standardized curve (averaging over covariate
adjusted survival). We anticipate that the latter curve will demonstrate better survival as it is less dominated by the
early cohort entries which have the longer follow-up time and add more events to our study. We note that a KM
curve on the ipw weighted data, where the weights which may involve predictors of survival time, does not rem-
edy for this as we will explain in Section 4.7 and could make things even worse (as we found out). The IPW version
may benefit from using time-varying weights but, as already stated, time-varying confounders are not available in
the registry.

4.6.2 | Covariates missing at random

Our analyses rely on missingness at random (A3) for the multiple imputation approach to be valid. An alternative
approach is to limit the assessment to the full cases. Thus, we considered the initial set of potential confounders on the
complete cases dataset: patients who started RRT in 1998 or later whose comorbidities are registered and derive their stan-
dardized survival curves. We then examined how the standardized estimates for this subgroup change when comorbidities
are dropped from the covariate list.

4.6.3 | Nounmeasured confounding

Regarding the no unmeasured confounding assumption (A4), we are limited to what is registered and since when. Prog-
nostic factors identified in previous studies, as comorbidities and kidney function are not available for the full cohort but
only introduced in 1998 and 2008, respectively.?l>> We have chosen to check the impact on the targeted marginalized
survival curves of adding these or not—using the data in the respective calendar windows where they are available. This
resulted in involving comorbidities in our analyses, after imputing them for the 1991 to 1998 period, but ignoring the GFR
for our full cohort analyses.

To consider unmeasured confounders, we looked at the strength that one additional unmeasured confounder would
need to have in order to qualitatively change the current conclusion. First, we repeated the estimation procedure on a
subsample for which we have access to registered baseline kidney function. These new models included the covariates
listed before plus kidney function as main effect and as interaction with age and sex. We then compared the survival
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estimated effect, with the effect derived from models that drop age as a covariate, given that age is a well-known prognostic
factor.

4.7 | Results

By December 2017, the SRR included 29 526 adult patients of whom 1214 started with PKT. After excluding patients older
than 75 years, non-Swedish residents, those who received RRT abroad, and those who died on the day of RRT onset or
had a history of cancer, the study population included 1097 PKT and 18 434 dialysis first patients (Table 1). The median
time on initial dialysis, prior to transplant, death or censoring, was 2 years (Figure 2). There were more deaths observed
in the dialysis first compared to the PKT group. Table 2 summarizes the survival outcomes.

Table 3 describes covariate distribution in the overall RRT cohort and the PKT and dialysis first groups. PKT patients
were younger and had less comorbidities than dialysis first patients. The distribution of primary kidney disease also
differed between the groups. Hence, the need to adjust for confounding.

To assess the positivity assumption (A1), we built a PS score model for PKT. Figure 3 shows overlap in the PS for PKT
between patients who effectively receive PKT and those who started on dialysis.

In Figure 4A, unadjusted KM curves from RRT onwards for the PKT and dialysis first group show better survival in
the observed PKT group over dialysis first (log-rank test P < .001). Since calendar time of study entry predicts mortality
as described in Section 4.2, these unadjusted curves suffer from informative censoring however. In addition, the curve
for the subset of dialysis first patients who were seen to receive a later transplant suffers from immortal time bias. It is
dramatically shifted upwards leaving no apparent difference with the PKT-curve for the first 5 years. Estimating survival
on this selective subset clearly leads to overestimation of survival in the dialysis arm.

TABLE 1 Study population selection and number of individuals related to exclusion criteria

PKT Dialysis first Dialysis and transplant
Number of adult patients from SRR 1991 to 2017 1214 (100.0) 28312 (100.0) 6399 (100.0)
Number of patients older than 75 years 4(0.3) 7108 (25.1) 9(0.1)
Number of patients from foreign or unknown region 18 (1.5) 170 (0.6) 43(0.7)
Number of patients who receive RRT abroad 57 (4.7) 79 (0.3) 79 (1.2)
Number of patients who died or got censored on same day of RRT onset 1(0.1) 20(0.1) 0(0.0)
Number of patients with a history of cancer or unknown 37 (3.0) 2501 (8.8) 234 (3.7)
Total sample 1097 (90.4) 18434 (65.1) 6034 (94.3)
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FIGURE 2 Cumulative incidence of transplantation and death without transplantation in the dialysis first group
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TABLE 2 Survival summary

(Sub)population Patients, n (%) Deaths, n (%) % deaths per row Median person-years at risk Hazard rate

RRT cohort 19531 (100) 12073 (100) 61.8 4.1 0.10
PKT group 1097 (5.6) 196 (1.6) 17.9 7.6 0.02
Dialysis first group 18434 (94.4) 11877 (98.4) 64.4 3.9 0.11

TABLE 3 Covariate distributions over the observed treatment groups

RRT 1. PKT 2. Dialysis first Difference between
Covariate (n=19531) (n = 1097) (n =18434) 1 and 2 (95% CI)
Age, median (IQR) 60 (20) 47 (22) 61 (19) -12(-13,-12)
Sex (female), n (%) 6867 (35.2) 411 (37.5) 6456 (35.0) 2.44 (—0.6, 5.4)
Region (Stockholm, reference), n (%) 3649 (18.7) 193 (17.6) 3456 (18.7) -1.15(-3.5,1.2)
Region (Uppsala/Orebro), n (%) 4504 (23.1) 249 (22.7) 4255(23.1) —0.38 (-3.0,2.2)
Region (Northern), n (%) 2017 (10.3) 95 (8.7) 1922 (10.4) -1.77 (-3.5, 0.0)
Region (Southern), n (%) 3466 (17.7) 179 (16.3) 3287 (17.8) —1.51(-3.8,0.8)
Region (Southeastern), n (%) 2376 (12.2) 127 (11.6) 2249 (12.2) —0.62 (-2.6,1.4)
Region (Western), n (%) 3519 (18.0) 254 (23.2) 3265 (17.7) 5.44 (2.8, 8.0)
Kidney disease (Diabetic nephropathy, reference), n (%) 5656 (29.0) 183 (16.7) 5473 (29.7) —13.01 (-15.4, -10.7)
Kidney disease (Glomerulonephritis), n (%) 3508 (18.0) 328 (29.9) 3180 (17.3) 12.65 (9.8, 15.5)
Kidney disease (Uremia of unknown cause), n (%) 2063 (10.6) 116 (10.6) 1947 (10.6) 0.01(-1.9,1.9)
Kidney disease (Polycystic kidney disease), n (%) 1538 (7.9) 165 (15.0) 1373 (7.4) 7.59 (5.4,9.8)
Kidney disease (Pyelonephritis), n (%) 640 (3.3) 41 (3.7) 599 (3.2) 0.49 (-0.7,1.7)
Kidney disease (Other), n (%) 6126 (31.4) 264 (24.1) 5862 (31.8) —7.73 (-10.4, —=5.1)
Hypertension,* n (%) 15520 (79.5) 832 (75.8) 14688 (79.7) —3.8(-4.7,-3.0)
Diabetes,? n (%) 7405 (37.9) 202 (18.4) 7203 (39.1) —20.7 (-21.5, —19.9)
Ischemic heart disease,* n (%) 5196 (26.6) 49 (4.4) 5147 (27.9) —23.5(-23.9, -23.0)
Peripheral artery disease,* n (%) 2582 (13.2) 33(3.0) 2550 (13.8) —10.8 (—11.2, —-10.5)
Cerebrovascular disease,* n (%) 2072 (10.6) 22(2.0) 2050 (11.1) —9.1(-9.4, -8.8)
Outcome: Deaths, n (%) 12073 (61.8) 196 (17.9) 11877 (64.4) —46.5 (49, —44.1)

2Imputed covariates. The mean over the 10 imputed datasets is presented.

To account for baseline confounders, standardized survival curves were built. Figure 4 shows patient survival after
RRT onset, derived from the corresponding models as described in Section 4.4: once averaged over the covariates of the
whole RRT cohort and then over the PKT and the dialysis first groups separately. The PKT survival advantage over the
dialysis first strategy, appears only partially explained by differences in baseline variables, for example, being younger
and healthier.

Table 4 summarizes patient survival in each (sub)population at different time points. The population specific
risk differences reveal dramatical treatment impact over the PKT subpopulation, the dialysis first subpopulation
and the full RRT population. For the RRT and the dialysis first populations, the biggest estimated difference
in survival occurs between 5 and 10 years after RRT onset. For the PKT group this difference continues to
increase over follow-up time. PKT patients form a highly selective group that enjoys better survival under either
treatment.

Table 5 summarizes the patient survival in each (sub)population at different time points when estimated
from the models built as secondary analysis, that is, they did not include comorbidities as confounders. Com-
pared to the estimates from the full original model, the estimated survival under dialysis first for the different
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based survival curves under each potential treatment given the full RRT population covariates. (C) Model based survival curves under each
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dialysis first subpopulation covariates
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TABLE 4 Survival probabilities for the different (sub)groups of interest under the two potential treatments: Pre-emptive kidney
transplantation (PKT) and dialysis first derived from the model with imputed covariates

Year(s) after RRT Survival under Survival under dialysis Difference in survival
onset PKT (95% CI) first (95% CI) (95% CI)

RRT population

1 0.88 (0.81, 0.94) 0.85 (0.84, 0.85) 0.03 (—0.04, 0.09)
5 0.78 (0.72, 0.86) 0.55 (0.54, 0.56) 0.23(0.17, 0.31)
10 0.63(0.58, 0.73) 0.38 (0.38, 0.39) 0.25(0.20, 0.35)
15 0.50 (0.45, 0.60) 0.28 (0.28, 0.29) 0.22(0.17,0.32)
20 0.40 (0.35, 0.51) 0.21 (0.20, 0.22) 0.19 (0.14, 0.30)
25 0.33(0.28, 0.45) 0.15(0.14, 0.16) 0.18 (0.12, 0.30)
PKT subpopulation

1 0.98 (0.97, 0.99) 0.94 (0.94, 0.95) 0.03 (0.03, 0.04)
5 0.95 (0.94, 0.96) 0.79 (0.79, 0.80) 0.16 (0.14, 0.17)
10 0.88 (0.86, 0.90) 0.66 (0.65, 0.67) 0.22(0.19, 0.24)
15 0.79 (0.74, 0.82) 0.56 (0.55, 0.57) 0.23 (0.18, 0.27)
20 0.70 (0.63, 0.75) 0.46 (0.45, 0.48) 0.23(0.17,0.29)
25 0.62 (0.53, 0.69) 0.37 (0.35, 0.39) 0.25 (0.16, 0.33)

Dialysis first subpopulation

1 0.88 (0.80, 0.94) 0.84 (0.84, 0.85) 0.03 (—0.04, 0.09)
5 0.77 (0.71, 0.85) 0.54 (0.53, 0.54) 0.24(0.17,0.32)
10 0.62 (0.57, 0.72) 0.36 (0.36, 0.37) 0.25 (0.20, 0.35)
15 0.48 (0.44, 0.59) 0.27 (0.26, 0.27) 0.21(0.17,0.32)
20 0.38 (0.34, 0.50) 0.20 (0.19, 0.20) 0.19 (0.14, 0.30)
25 0.31 (0.26, 0.44) 0.14 (0.13,0.15) 0.17 (0.12, 0.30)

(sub)populations is essentially the same. However, the estimated potential survival under PKT for the dialysis first
and RRT groups is slightly higher from these models compared to the estimates derived from the models including
comorbidities.

Figure 5 shows unadjusted and adjusted survival curves for the PKT and dialysis population using standard-
ization and IPW. For the dialysis group, the curves overlap. For the PKT group, standardization yields better sur-
vival than the unadjusted KM curves, which in turns exceeds the estimated survival with IPW. This is explained
as follows.

« The Cox models revealed how survival chances on the PKT group improved over calendar time of entry (one knows
that better immunosuppression is one of the contributors of improved post transplant survival over the decades).
As a result: (1) patients entering later with PKT enjoy better survival (given similar covariates) and (2) one allowed
more frail (older and sicker) patients into the PKT treatment group in later decades. The unadjusted K-M curves
are unbiased only when censoring is uninformative without conditioning on covariates Z. In our setting, however,
the unobserved future of the later entries with shorter administrative censoring in the PKT arm gets effectively
(but erroneously) informed by the observed future of historical entries where subjects are followed longer and
have worse survival under PKT. As a result, the K-M curves show lower survival than they should for their study
population.

« When IPW is applied to balance baseline covariates between treatment arms, it will upweight older ages in the PKT
group since old age was more rare in that group. These older patients in the PKT arm appear however more in recent
decades, hence with the shorter censoring times. The problem of informing their unknown future with survival chances
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TABLE 5 Survival probabilities for the different (sub)groups of interest under the two potential treatments: Pre-emptive kidney

transplantation (PKT) and dialysis first derived from the model without comorbidities

Year(s) after RRT onset Survival under PKT (95% CI) Survival under dialysis first (95% CI) Difference in survival (95% CI)

RRT population
1
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25

PKT subpopulation

1
5
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Dialysis first subpopulation

1
5
10
15
20
25

FIGURE 5
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that are too low (as explained in the previous paragraph) thus gets aggravated (as it happens for more (up-weighted)
patients).

« The survival chances in the dialysis first arms have not changed that much over the decades. In addition, the covari-
ate distribution of entering patients is quite stable in the dialysis first arm. For both these reasons the administrative
censoring in this group stays fairly noninformative and the differently constructed marginal survival curves almost
coincide.

Figure A3A,B, in Appendix A, shows the standardized survival curves when omitting age from the original models for
both the PKT and dialysis first groups as a sensitivity analyses. The curves are quite different particularly when estimating
the counterfactual outcome, that is, the treatment that was not observed. However when this was repeated for the subset
of patients that had additional covariates, first for those with comorbidities reported (Figure A3C,D) and then for those
with baseline kidney function (Figure A3E,F) there was quite an overlap with the estimated survival curves without these
additional confounders suggesting little impact of omitting such variables (Appendix A).

5 | TARGETING THE AS-TREATED ESTIMAND

Patients starting on dialysis continue with it for different lengths of time before possibly switching to transplant. In this
section, we outline how to estimate the impact on survival of the time spent on initial dialysis. Here we make the same
assumption of positivity (A1) and no unmeasured confounders at baseline (A4) as in Section 4.

5.1 | Time lost while on dialysis

To estimate the impact on survival of the time spent on initial dialysis we invoke the structural AFT model illustrated in
Figure 6.

For patients starting on dialysis, we write survival time T as the sum of T,,, the initial time spent without transplant,
and a residual time T, post a possible delayed transplant at T,. Our one parameter AFT model transforms the initial time
Ty, to what it might have been under PKT, and leaves the residual time that followed a delayed transplant unchanged.
Specifically, T, is multiplied by a factor exp(—y) and then adds the observed time post transplant T, to arrive at T;(y),
the potential survival time from RRT onset to death under PKT:

d
Ti(y) = Tyyexp(—y) + T,

The model expresses that a day on initial dialysis would have amounted to exp(—y) days had the patient received PKT
instead. A longer survival time under the PKT scenario corresponds to a negative value of y.
More generally

a [T
TIh(y) = / exp[—yD(w)]du,
0

where D(u) indicates whether at time u the patient is still on initial dialysis (1) or not (0).*° Clearly, for patients observed
on PKT, Ty(y) = T, no transformation is necessary.

For patients starting with dialysis this model assumes that the “transplant effect” is the same whether it occurs before
or after dialysis. To relax this assumption, we can introduce a second parameter to the model. This is still a simple but
more flexible model that allows for an altered “transplant effect” when it is delayed after a period on dialysis rather than
an immediate PKT:

d
Ti(y) =Ty eXp(_Ww) + T, eXp(_Wr)»

where the factor exp(—y,) now backtransforms residual time after transplant, T}, in addition to the factor for “immediate
transplant effect” of PKT, exp(—y.,), that multiplies the time without dialysis T\, as in Figure 6.

Parameters in this model can be obtained through G-estimation relying on the NUBC assumption (A4).>° Upon
transforming the observed initial time on dialysis T, (and possibly also T,) using possible values of y to what it would
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1-parameter AFT model

f ! !

Dialysis Transplantation Death
emmmmm e > T: Observed survival time under dialysis first
T T
P e - Ty (v): Backtransformed survival time when exp(—1) = 2
T exp(—1)) T
g g - >| 1 (¥*): Potential survival under PKT given the covariates
Ty exp(—¢") T

2-parameter AFT model
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FIGURE 6 Structural accelerated failure model that relates survival time on dialysis to what it might have been following PKT. y
represents different parameter values used to transform the survival time under dialysis to what it might have been under PKT, where y* is
the true parameter

have been under PKT we obtain potential survival times T;(y). For the true parameter y* the transformed potential

time T d T1(y™*) no longer depends on the observed treatment PKT, once the necessary baseline confounders have
been accounted for. To estimate this true parameter y*, we tested different values of y over a fine grid. For each possi-
ble y value we fitted a Cox PH model, regressing T(y) on Z with an additional effect of PKT on the log hazard scale:
A1, ) (t|PKT, Z) = Ag exp fz(y)Z + Pexr(y)PKT. The value i for which the derived coefficient 3PKT(1’[}) is zero is our point
estimate.

A Wald test for Hy : Bpgr(yw) = 0 was used to identify the value of the parameter vector y with 95% confidence
intervals. For the 2 parameter case, the estimation model involved an interaction between PKT and sex: Ar, ({|PKT, Z) =

Ao €Xp fzZ + Prxr1 PKT + Pexr2PKT x Sex. Here we used a Wald test statistic for the 2 estimated parameters § = ‘qPKTJ)
PKT,2

as (Bw) - O)T [I(Bw))| (Bw) - 0), where I() corresponds to the information matrix.

Note that in practice, we observe D = min(T,C) and hence calculate backtransformed observation time
D(y) = min(T(y), C(w)), with C(y) = C, exp(—y) + C, defined in parallel with T(y) = T, exp(—w) + T,. Even when
CLlT|Z, C(y) may depend on T(y) given Z. This is so, because C(y) depends on the time to transplant. Indeed,
Ty, = Cy, and this time of switching to transplant may be predictive of future survival, hence informative conditional
onZ.

When the survival times are thus backtransformed, informative censoring is introduced because the backtransformed
censoring times depend on the switch times which themselves may be prognostic for survival.

To remove this link with the switch times, we repeated this estimation process using artificial censoring on the back-
transformed time scale after a common duration observable for all (the minimum transformed censoring time over all
patients who started on dialysis to avoid informative censoring).>!
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FIGURE 7 Estimated backtransformation factors for survival time under initial dialysis based on different cohorts and different
windows of follow-up time

To look into the possible impact of length of follow-up time (considering the time-constant hazard ratio model used
within treatment groups) and the impact of calendar time of entry (or cohort), we derived Figure 7. It shows what is
expected to happen in the first 5, 10, or 15 years post RRT by artificially recensoring the potential outcome data under PKT
(ie, back transformed data) at those times before running the analysis. We also limit ourselves there to several calendar
cohorts starting in 1991 or 2001. The figure thus illustrates the finding that the estimated treatment effect becomes larger
in more recent years when the PKT treatment becomes more effective. Similarly, the wider the cohort that starts from
1991, the more the treatment effect shifts toward higher hazard ratios.

5.2 | Results

A structural accelerated failure model with one parameter was built to account for time under dialysis. The corresponding
acceleration parameter was exp(—) = 4.8 (95% CI 3.9, 5.8). Therefore assuming no unmeasured confounding (A4), the
survival time after PKT was almost 5-fold the survival time while on dialysis.

Figure 7 shows the impact on the estimated AFT effect, exp(—), of different windows of follow-up time for the
potential PKT survival time (ie, backtransformed survival time) and different calendar time periods of entry (cohorts).
The data were limited to those periods for this purpose. First, it is clear that the estimated exp(—) for the different cohorts
and chosen time windows of follow-up consistently suggest a survival advantage of PKT. Next, the figure is consistent
with the finding that the treatment effect becomes larger in more recent years (of entry): later cohorts show more effect,
that happens when they start later and also when the cohort that starts in 1991 covers a broader calendar time period.
There is little indication that the longer internal follow-up time (post RRT) comes with a shifted treatment effect as long
as the years of entry remain constant. In terms of precision, the shorter the follow-up period, the wider the CI in line with
fewer observed events.

Note that since our AFT effect prolonged the observed times, the backtransformed censoring times always exceeded
the original ones and none of the observed events were recensored for this reason.
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A second structural accelerated failure model with two parameters was built to account both for time under dialysis
and beyond delayed transplantation. The corresponding acceleration parameters were exp(—y,,) = 5.6 (95% CI 5.1, 6.6)
and exp(—y,) = 0.7 (95% C1 0.5, 0.9). It is estimated that the initial time under dialysis would have been 5.6 times longer
under PKT, while the additional time beyond this point would have been 30% shorter. The idea is that the transplant that
happens later for people who started on dialysis may be more effective for them at that point, than the continued effect
on the hazard after already a longer term post transplant.

6 | USING AVAILABLE SOFTWARE

Existing software facilitates the application of both standardization and IPW but may not fit one’s set up. The R package
“stdReg” implements standardization using Cox models.>> The population that it standardizes the estimates to, should
be a subset of the one used to fit the regression model, which is not our case. Even if we were willing to fit a single model
and include treatment as a covariate and “lose” the flexibility of having different covariate effects, the package does not
allow for strata which means that we would also have to assume the same baseline hazard under each treatment.

As already stated, we use the R package ipw to fit the IPW curves.*® However when deriving the weights, the model
can have at most 20 covariates. This was exceeded with the number of covariates and interactions we adjusted for. There-
fore, we evaluated the use of different subsets of the covariates included in the main model, keeping the main effects and
including different interactions each time to complete the maximum of 20 covariates adjusted for. The different com-
binations yielded similar results as the ones already described (data not shown). We decided to present these curves as
they were useful to illustrate that IPW curves may not be valid in this context due to informative censoring and lack of
measured time-varying confounders.

7 | DISCUSSION

This case study showed potential and limitations of exploiting a nationwide incident disease register with baseline covari-
ates measured across centers to produce real world evidence on PKT and its effect on mortality of ESRD patients. It
demonstrated how such registers more generally enable estimation of the total effect of a well-defined point exposure
on survival time, provided a sufficient set of baseline confounders for the point exposure has been measured across the
registry. Under additional semiparametric modeling assumptions, we further estimated the effect of observed time spent
off-initial-treatment allowing the “on switch” to be affected by unmeasured time-varying covariates. We saw that careful
consideration of the target estimand has major importance as results differed vastly over the relevant options. We finally
presented estimation approaches that are well adapted to the setting and discussed their assumptions in context.

Specifically, this case study has quantified to what extent PKT comes with higher standardized survival over the period
1991 to 2017 for the Swedish AT(N)T (sub)populations considered. Assuming no unmeasured confounding at baseline
(A4), this represents a causal difference in survival chances. Prognostic factors differed greatly over the observed treatment
groups (PKT vs dialysis first at ESRD). With all available confounders in a relatively simple Cox model, standardized
marginal survival revealed a large potential survival benefit in both the observed PKT and dialysis first populations. A
more complex model could have been fitted, but we saw little impact of this for our outcome.

In our analyses, we use hazard functions of the observed survival times, following either PKT or dialysis first, to
model associated survival chances under either treatment conditional on measured baseline confounders (for treatment
and censoring). We derive standardized survival curves from this, which represent the potential survival chance under
either treatment in a well-defined (common) population. These standardized population distributions of the potential
survival times are then compared between treatments to give us a causal effect measure. A popular overall summary
statistic for the contrast between these (standardized) survival curves is the ratio of their hazard functions characterizing,
for which typically, a time-averaged summary is reported. It is a causal contrast in this sense. This does NOT mean that
at a given time point ¢ past the point exposure the surviving subpopulations under PKT and under dialysis first are still
exchangeable (conditional on their baseline covariates, measured at time ¢ = 0). Since different survivor selections may
have taken place by then on the two treatments and switching treatments at that time would not correspond to switching
between the established hazards for the distribution of the potential survival times.

In the PKT group (Figure 5), a striking difference emerged between the adjusted survival curve obtained through Cox
regression and through the corresponding IPW weighted KM curve. This was explained (in part) by a calendar time trend
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in baseline risk as well as measured risk profiles, a common phenomenon in long term disease registries with complex
treatments. Later cohort entry (RRT onset) translates into shorter administrative censoring time, while later cohorts show
more older patients with additional comorbidities receiving PKT. IPW weighted KM curves work with covariate balance
between treatment groups, but still rely on the hazard beyond censoring being well represented by that of uncensored
patients. Since noninformative censoring does not hold, we must expect underestimated survival. The bias is greater even
than with unweighted KM-curves as IPW upweights patients with older age who entered later into the registry and were
therefore censored sooner. The IPW approach could work when a sufficient set of time-varying covariates were measured
regularly to model the hazard of censoring and additional inverse time-varying probability of censoring were applied. It
would then of course involve a second model besides the propensity of treatment model. It is also extremely demanding
and costly to measure regular time-varying covariates across the nation, and hence unrealistic in this case.

Not only risk profiles of patients entering over time, but also treatment strategies are evolving. In our context surgical
techniques were refined and newer and better immunosuppression therapy was introduced. When it comes to predicting
benefits for future patients, extrapolation should incorporate these trends.

In the AFT analysis, we assessed the impact of immediate transplant vs delayed transplant on patient survival by esti-
mating the time lost under initial dialysis. This provides further evidence that survival under PKT is better, regardless of
the time under initial dialysis. Interestingly, for the AFT with two parameters, each parameter shows an estimated effectin
opposite directions. But in any case, survival time gained beyond “delayed transplant” does not outweigh the disadvantage
posed by initial dialysis, where the order of magnitude of time lost under initial dialysis is 5-fold. In the absence of mea-
sured time-varying confounders, usually required for deriving as-treated effects, the approach here developed provides
empirical evidence for decision making applicable to other settings.

Looking at the applied literature, we found it largely ignores many fundamental statistical lessons learned. This
greatly hampers interpretability in our setting and a fortiori transportability to new settings or the relevance of
meta-analyses.>> We hope the case study here developed will help support a change in statistical practice and inspire
further research on challenges encountered. Below, we respond to some arguments often raised to justify subopti-
mal analysis and critically reflect on remaining challenges when targeting more explicit causal effect estimation as
we did.

Researchers (and editors) see no need to “refine” the approach since the large positive outcome difference for PKT
leaves ample room for error before qualitative conclusions change. We found, however, that restriction to the subset of
dialysis starters selected upon delayed transplantation, virtually annuls the large survival difference for the full population
of dialysis starters (Figure 4). Moreover, with higher risk profiles for kidney transplantation over calendar time, we must
anticipate future study populations with smaller magnitudes of effect.

Another argument against careful “causal” analysis is its complexity which might deprive clinicians from a critical
understanding of the opportunities and risks involved. We agree that several assumptions play a key role and must be
discussed with clinicians. We found the tool of trial emulation, to enhance both insight in the data structure and inter-
pretability of results for a broader scientific audience. Understanding association is clearly more simple but suffers when
one jumps all too easily to causal conclusions. As the critical assumption of NUCB is fundamentally untestable, derived
causal effect estimates should be complemented with an analysis of their sensitivity to various plausible violations. To
this end, the helpful concept of an e-value deserves further development in the survival setting.>* We may indeed have
missed relevant confounders that account for part of the observed difference in survival between treatment groups as we
discuss next.

For our study, comorbidities and kidney function were only available from 1998 and 2008 onward, respectively.
Notwithstanding their significant effect on the patient specific hazards (Appendix A), in these cohorts the population
average survival remained essentially unchanged with or without adjustment for the newly available variables.

We lacked socio-economic factors, while patients with higher socio-economic status could have better access to health
care and timely treatment with higher chances of receiving PKT. If so, our estimated PKT advantage remains confounded
by socio-economic factors and may be overestimated. Additional unmeasured confounders may include: unmeasured
transient comorbidities such as current infections possibly delaying transplantation, patient preferences or availability
of a live donor.3%>> The advantage of the Swedish system of registries with a unique patient identifier is that additional
variables can be obtained in the future from further linkage.

Focusing on the ITT effect of PKT vs dialysis first, we averaged over observed follow-up strategies as currently imple-
mented. The PKT group then covers the “natural” mix of cadaveric and living donor kidneys. To evaluate the impact
on survival of donor type (and other treatment refinements) one could treat “PKT from a living donor” as the specific
treatment of interest and study its benefit along the lines established in this article.®
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Potential survival under dialysis first as estimated from the original models barely changed when using models ignor-
ing covariates needing imputation. Potential survival under PKT however did change, particularly in the observed dialysis
first and full RRT group. By including comorbidities, we accounted for worse baseline prognosis in the dialysis first group
and reduced the estimated benefit under PKT. Even so, PKT predicted better survival in both the PKT and dialysis first
treated. With long term registers that gather periodic information across different centers, there is an unavoidable risk of
missing data that may have influenced the estimated effect. It is good practice to enter new patient characteristics in an
established registry when their role becomes apparent, or when new diagnostic tools or treatment options are introduced.
Considering the importance of incident disease registries as a resource for research providing real world evidence, we feel
collaborative efforts should aim to define a minimum set of confounders to be reported. This will enhance transportability
of results derived from single registry-based studies and improve evidence synthesis in meta-analytic approaches.

For our case study, we included all available confounders considered clinically relevant. Notwithstanding significant
contributions to the Cox model, the impact of some covariates on the standardized curves was limited, as shown by the
sensitivity analyses. In settings where variable selection is considered, additional steps are needed to derive causal effect
estimates. Model building may then entail machine learning and cross-validation.>®

In this article, we have dissected opportunities and pitfalls arising when drawing real world evidence on the effect of
point exposures on survival from incident disease registers. The nature of these registers enables avoidance of immortal
time bias through trial emulation. They can be rich in baseline covariate information, especially when linked with addi-
tional registers, but typically lack regular time-varying covariates. Long term follow-up of the end point may be needed
to inform on relevant patient horizons following treatment decisions. This often comes, however, with a moving target
of patient cohorts entering over calendar time. It qualifies attainable estimands which must describe their study popu-
lation well to allow for transportability with and without extrapolation into the future. It also impacts on assumptions
and hence on the choice of causal inference for (asymptotically) unbiased estimates of well-chosen estimands. We found
IP-weighted KM curves producing biased comparisons due to informative censoring. Standardization through outcome
regression avoided this and revealed calendar time trends contributing to the informative nature of administrative cen-
soring. The large differences seen in the case study on PKT vs dialysis first at ESRD, comes with a plea to be specific about
study and target population(s) when reporting results and conclusions. This is no less important in subject matter jour-
nals which all too often remain fuzzy on such critical points. The relevance is not restricted to long term disease registers,
but equally enters when analyzing shorter term survival from cohorts with fast changing populations as in an emerging
pandemic.
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APPENDIX A. ADDITIONAL FIGURES

Below we analyze the subcohort of patients starting RRT from 1998 onwards to illustrate how control for comorbidity
indicators affects covariate-specific survival while it leaves the population average survival virtually unchanged. Figure A1l
plots individual prognostic scores in the PKT group based on model B (with indicators for diabetes, hypertension and
cardiovascular disease in addition to the original covariates age, sex, kidney disease, and calendar year), vs model A with
just the original covariate set. Figure A2 shows (Cox model) derived survival curves at observed percentiles p5, p25, p50,
P75, p95, and the maximum. For low risk profiles p5 and p25, reduced model A overestimates survival compared to model
B. The opposite happens for higher risk profiles p50 and beyond, where the original model underestimates survival.
Ignoring comorbidities thus shows substantial impact on estimated covariate specific survival curves, with negligible
effect on the population average survival in the PKT population (Figure A3).
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Comparison of individual estimated survival curves
derived from different models
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FIGURE A2 Estimated survival curves derived from the original model A (solid line) compared to model B that adds comorbidities
(dashed line) for risk profiles at p5, p25, p50, p75, p95, and the maximum prognostic score for each model for the cohort 1998 to 2017



PARRA ET AL.

Statistics

Full population:
1991-2017

Age impact

—— PKT: with age
Dialysis first:
with age
- PKT: no age
Dialysis first:
no age

Cohort:
1991-2017

Comorbidities
impact

—— PKT: with comorbidities
Dialysis first:
with comorbidities
+ PKT: no comorbidities
Dialysis first:
no comorbidities

Subgroup with
kidney function

Kidney function
impact

— PKT:no GFR
___ Dialysis first:
no GFR
PKT: with GFR
Dialysis first:
with GFR

(A) Survival Curves — PKT population

1.0

0.8
1

0.6

0.4

Survivorship Function

0.2

0.0
L

T T T T T 1
0 5 10 15 20 25

Follow—up time from RRT onset (years)

(C) Survival Curves — PKT population

0.4 0.6 0.8 1.0
1

Survivorship Function

0.2

0.0

T T T T T 1
0 2 4 6 8 10

Follow-up time from RRT onset (years)

(E) Survival Curves — PKT population

1.0

0.8
1

0.6

Survivorship Function
0.4

0.2

0.0
L

T T T T T 1
0 2 4 6 8 10

Follow-up time from RRT onset (years)

“WILEY—*2

(B) Survival Curves - Dialysis first/only population
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FIGURE A3 Visualizing the impact on standardized survival of including additional covariates
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