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Analytical evidence of enamel 
hypomineralisation on permanent 
and primary molars amongst past 
populations
Elsa Garot1,2, Christine Couture-Veschambre2, David Manton3, Cédric Beauval4 &  
Patrick Rouas1,2

Molar Incisor Hypomineralisation (MIH) and Hypomineralised Second Primary Molars (HSPM) 
involve prevalent qualitative structural developmental anomalies of tooth enamel affecting the first 
permanent molars (and often incisors) and the second primary molars, respectively. These demarcated 
hypomineralised lesions of enamel manifest as white-cream or yellow-brown opacities, with possible 
post-eruptive localised loss of enamel. Aetiological hypotheses have involved contemporary life 
factors (i.e. environmental pollutant exposure or early childhood medications) in contrast to factors 
not limited to a specific time period (i.e. hypoxia at birth or genetic predisposition). Evidence of MIH 
in ancient populations would reinforce aetiological factors present for many centuries. By means of 
microtomographic and X-ray fluorescence analyses the present study provides evidence that (i) two 
archaeological specimens: “S407” (Sains-en-Gohelle, France, 12th–16th centuries) and “B335” (Beauvais, 
France, 15th–18th centuries) were MIH-affected, and (ii) one individual “S323” was affected by HSPM and 
MIH (Sains-en-Gohelle, France, 7th–11th centuries).

Teeth contribute to human bodily functions such as mastication, phonation, appearance and maxillofacial 
development. Enamel is the most highly mineralised bodily tissue, and thus in an archaeological context is the 
best-preserved1. Teeth have been a focus of interest for physical anthropologists over many generations. Teeth 
provide much information about humans including cultural environment, locational migration, pathology, 
morphological variation, age estimation and sex differentiation2. Pathologies, such as enamel hypoplasia and 
dental caries, are informative for understanding the health and nutritional status of individuals and popula-
tions3, 4. A modified Developmental Defects of Enamel (DDE) index classifies enamel anomalies, with enamel 
demarcated opacities separated into two subgroups: white-cream and yellow-brown5. In 2001, Molar Incisor 
Hypomineralisation (MIH)6 was defined as a qualitative demarcated enamel hypomineralisation defect of tooth 
enamel affecting at least one first permanent molar (FPM), often affecting permanent incisors6. More recently, 
the term Hypomineralised Second Primary Molar (HSPM) was used to describe similar defects affecting second 
primary molars7. The presence of HSPM increases the risk of MIH, but the absence of HSPM does not exclude 
the presence of MIH8–10. The European Academy of Paediatric Dentistry agreed on MIH diagnosis criteria char-
acterised by at least one of these factors affecting one or more FPMs: demarcated enamel opacity, post-eruptive 
enamel breakdown, atypical restoration, or atypical extraction due to MIH11. Post-eruptive enamel breakdown 
is defined as a defect that indicates a decrease in the depth of enamel after eruption of the tooth. Loss of initially 
formed surface enamel after tooth eruption is often associated with a pre-existing demarcated opacity11. Today, 
the worldwide prevalence of MIH is between 2.9 and 44% (average 15%) of children based on current popula-
tion studies12. Given the difficulties involved in treating MIH (hypersensitivity, child anxiety, difficulties with 
anaesthesia, poor aesthetics, carious lesions with fast progression, failure of restorations), it is essential that the 
aetiology is determined in order to allow risk assessment and early diagnosis, and if possible, prevention of risk 
factors13, 14. Without early diagnosis, post-eruptive structural damage may occur quickly and eventually lead to 
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FPM extraction. Currently, in the absence of identified cause(s), no risk prevention actions can be implemented. 
MIH constitutes a public health problem, with consequences that are not only health-related but also economic. 
MIH may impact on the well-being of young patients in a crucial period of infant development15, 16. The pro-
posal for a single term “MIH” and the establishment of specific diagnosis criteria by consensus promoted and 
encouraged the multiplication and quality of research works, but some issues remain unresolved11. Amongst the 
aetiological hypotheses mentioned in the literature, some recently introduced factors such as pollutants (dioxin 
derivatives17 or Bisphenol18) or drugs19 (antibiotics20–22 or asthma drugs23) have been proposed. Other hypothe-
ses of putative factors that have occurred over time, such as childhood illness (in particular fever), prematurity, 
hypoxia at birth or a genetic predisposition, are also mentioned regularly24–29. Most studies are retrospective in 
nature and there is currently insufficient published evidence to identify specific aetiological factors relevant to 
MIH30, but authors agree a multifactorial aetiology is likely27. The relationship between the occurrence of HSPM 
and MIH suggests common risk factors9. The identification of MIH and HSPM amongst ancient populations 
would highlight that aetiological factors apart from the proposed contemporary factors have relevance. Except for 
a few anthropological studies31–33, demarcated enamel hypomineralisation has only been observed in individuals 
from the 20th and 21st centuries. Anthropological researchers have diagnosed MIH in historical populations based 
on clinical diagnosis31–33. To date, no author has identified an HSPM case in a past population.

In an archaeological context, McKay and colleagues demonstrated, by means of microcomputed tomography, 
that brown enamel opacities caused by taphonomic contamination can be confused with hypomineralisation34, 
as chemical elements (e.g. Iron or Manganese) contained in the burial ground can stain teeth35, 36 (post mortem) 
and the resultant staining can be similar in appearance to discoloration caused by MIH37, 38 (ante mortem). Before 
concluding that MIH was present in past populations, it is necessary to discriminate between discolouration 
caused by pathological (ante mortem) or taphonomic (post mortem) processes37.

Here, two historic osteological series (Sains-en-Gohelle and Beauvais, France) selected owing to a significant 
number of children aged 6 to 18 years were assessed. Using a diagnostic guide37, teeth showing defects indicative 
of MIH and HSPM, including respectively, 298 and 14 individuals aged from 6 to 18 years were analysed. Three 
individuals affected by yellow-brown opacities on first permanent molars, incisors or second primary molars were 
selected for analysis: B335 (Beauvais, France, 15th–18th centuries), S323 (Sains-en-Gohelle, France, 7th–11th centu-
ries) and S407 (Sains-en-Gohelle, France, 12th–16th centuries). After distribution of shared high resolution images 
securely via the internet, clinical diagnoses of the three individuals were given by nineteen MIH specialists. This 
study aimed, by means of enamel microanalyses, to confirm or refute these clinical diagnoses of MIH and HSPM 
and discuss their implications.

Results
Collection examination. The anthropological study of the B335, S323 and S407 materials highlighted 
opacities and post-eruptive enamel breakdown appearing similar to MIH and HSPM (Figs 1–3). The maxilla 
and mandible of B335 from the Beauvais series are stored at the bone library of Pessac (PACEA Lab, UMR5199, 
University of Bordeaux, France)39. This individual was a teenager, aged 14 years 5 months (95% CI between 10 
years and 5 months to 18 years 5 months). All permanent teeth were present at death and a brown demarcated 
opacity was observed on tooth 16 (Fig. 1). The remaining maxillary dentition showed neither discoloration, car-
ious lesions, nor wear (sound). There was post mortem loss of teeth 13 and 14. Regarding the mandibular teeth, 
post-eruptive breakdown (PEB) of enamel with brown discoloration was present on tooth 46. The other mandib-
ular teeth were sound.

The individuals S323 and S407 are from the Sains-en-Gohelle series dated to the medieval period (confirmed 
by mean of radiocarbon analysis of individuals)40. The material from S323 included the first permanent incisor 
germs, the first permanent molars and the primary molars. Age was estimated at 3 years and 9 months to 6 years40 
(Fig. 2). Some teeth showed similar patterns of MIH and HSPM, such as tooth 16 with a brown discoloration in 

Figure 1. Photographs of materials from B335 (Beauvais, France). *teeth affected by discolorations.
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the occlusal third of the coronal surface, the four second primary molars exhibited brown opacities with PEB in 
the occlusal third and tooth 11 had creamy discoloration of the incisal edge (Fig. 2). A linear hypoplastic lesion of 
enamel is observed in the cervical third of tooth 11. The second primary mandibular molars show mild occlusal 
wear. The other first permanent molars (26, 36 and 46) were sound. Specimen S407 (Fig. 3) remains included the 
maxilla, the mandible and teeth including the first permanent molars and first and second primary molars. Age 
was estimated at 3 years and 4 months to 6 years40. A yellow demarcated opacity was present on the occlusal third 
of the buccal surface of tooth 26. No other discolorations were observed but some carious lesions on primary 
molars were present (teeth 54, 55, 64, 65, 84 and 85) and slight occlusal wear was observed on the primary molars.

MIH experts’ diagnoses. Photographic images of the three specimens (Figs 1–3) were examined by 19 MIH 
specialists (see Methods and SI). Concerning B335, seven MIH experts did not confirm the MIH diagnosis and 
one of them refuted this diagnosis. Only eight experts confirmed the MIH diagnosis for S323. Scores were better 
correlated for S407 because 14/19 specialists gave an MIH diagnosis. The Fleiss’ kappa test performed for each 
specimen showed a poor agreement between responses (κ < 0) concerning MIH diagnosis (SI).

Microcomputed tomographic (µCT) analyses. Mineral densities of discoloured and normal enamel 
areas at the same coronal height for each tooth were measured from µCT data in 3D (Fig. 4a) and 2D (Fig. 4b; see 
Methods; SI); summarised in Table 1. Except for S323(11), all teeth with discolorations had significantly lower 
mineral densities in stained enamel (P < 0.05). Amongst the control samples including normal teeth [B335(36), 
S323(16) and S323(21)], no significant differences in mineral density were detected (P > 0.1; Table 1).

Mineral concentration line profiles from Dento-Enamel Junction (DEJ) to surface through apparently nor-
mal enamel (line AB) and through a discoloured region (line CD) in the discoloured teeth group (n = 8 with the 
exception of S323(11)) and the control group (n = 3) are illustrated in Fig. 5 (and SI). A decreasing mineral con-
centration of up to 7% in the middle enamel region along line CD compared with the apparently normal enamel 

Figure 3. Photographs of materials from S407 (Sains-en-Gohelle). *teeth affected by discolorations.

Figure 2. Photographs of materials from S323 (Sains-en-Gohelle, France). *teeth affected by discolorations.
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along line AB is apparent in Fig. 5 (and SI). Also, in hypomineralised enamel lesions there is a reverse mineral 
density gradient with highest density at the DEJ and lowest towards the surface, the opposite of normal enamel.

X-ray fluorescence analyses. Elemental chemical analyses (see Methods) provided information on tapho-
nomic contamination by one or several chemical elements (Mn, Fe, Cu and Pb). The discolorations on teeth 65 
and 75 from S323 were characterised by an increase in Mn (respectively, P = 0.01 and 0.04; Table 2). An increase 

Figure 4. Images of microcomputed tomography analyses in 3D and 2D: (a,b) location of 5 analysis cubes from 
DEJ to surface on normal (blue cubes) and discoloured (red cubes) areas. (c,d) location of profile lines from EDJ 
to surface through normal (AB) and discoloured (CD) areas.

Ind (n°tooth)

Analyse 1 (GL) Analyse 2 (GL) P 
valuemdd1 mdd2 mdd3 mdd4 mdd5 mdd1 mdd2 mdd3 mdd4 mdd5

a.

B335(46) 4082 4453 1453 740 −357 7038 4531 4323 2843 2396 0.007*

B335(16) 4071 3948 3337 2600 2300 351 1458 1363 894 2167 0.005*

S323(26) 60 2329 2639 2554 1013 1652 6173 7293 5612 3312 0.005*

S323(11) 1059 829 −243 −1380 −1628 −6879 −561 −528 −914 −784 0.1

S323(55) 2099 5799 3928 518 1575 571 5704 4161 1711 2591 0.005*

S323(65) 1357 1652 4712 5793 3665 1540 262 4219 5173 1879 0.005*

S323(75) 417 3800 3628 2468 1523 2329 3461 6010 2553 −1826 0.013*

S323(85) 1859 4557 6108 4982 2594 1723 476 1570 1799 1371 0.005*

S407(26) 5381 7887 4428 3378 2321 4395 6955 3385 3090 3131 0.005*

b.

B335(36) −731 −198 447 776 −384 172 −163 −813 −583 −492 0.2

S323(16) −1029 −723 −548 −298 134 1264 1323 1184 1319 123 0.3

S323(21) −63 218 594 655 −232 −720 −707 −176 −538 366 0.6

Table 1. Wilcoxon test for paired samples performed from 3D data between normal and discoloured enamel 
among discoloured teeth (a), and between normal areas of enamel among control sample (b). Analyse 1 was 
repeated a second time (analyse 2). Ind, individual; GL, Grey Level; mdd, mineral density difference between 
the two enamel areas. *Statistically significant (P < 0.05).
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in Fe was observed in the discoloured area of tooth 46 from B335 (P = 0.01). Other teeth did not show evidence 
of a taphonomic contamination by these elements (P > 0.05).

Discussion and Conclusion
Mineral density analyses suggest that the three studied specimens showed evidence of demarcated enamel hypo-
mineralisation on first permanent molars. Moreover, for one specimen (S323), demarcated enamel hypomineral-
isation on second primary molars is present. A mean mineral density decrease of 7% was calculated at the midway 
between the DEJ and the surface. Studies highlighted decreased mineral density in hypomineralised areas from 5 
to 28% in contemporary hypomineralised teeth41–47, with the lower difference possibly due to mineral gain from 
soil-based minerals incorporated in porous enamel. However, mineral densities of normal enamel discoloured 
by addition of soils elements were comparable to the mineral densities of unaffected teeth34. Similarly to previ-
ous studies on contemporary MIH teeth43–47, the present results show a constant increase of mineral density in 
normal enamel from DEJ to surface contrary to a reverse gradient in hypomineralised enamel43, 45–47. This MIH 
feature excludes a possible taphonomic process such as enamel dissolution in acidic burial soil inducing dem-
ineralisation starting at the enamel surface38. In addition, in the present study, X-ray fluorescence highlighted 

Figure 5. Mineral densities of normal (blue line) and hypomineralised (red line) enamel from 99 equidistant 
measurements taken on line from DEJ to surface including the discoloured sample (n = 8 with the exception of 
S323(11)) and the control sample (n = 3).

Sample
Chemical 
elements

Mn Fe Cu Pb P 
valueDC NO DC NO DC NO DC NO

B335(46)
Mean 0.072 0.030 0.189 0.026 0.011 0.011 0.104 0.048 0.01*

SD 0.088 0.029 0.232 0.019 0.004 0.011 0.087 0.036

B335(16)
Mean 0.048 0.090 0.051 0.025 0.024 0.016 0.100 0.101 0.18

SD 0.039 0.132 0.064 0.022 0.015 0.012 0.086 0.132

S323(26)
Mean 0.034 0.024 0.018 0.013 0.007 0.005 0.044 0.009 0.21

SD 0.018 0.016 0.020 0.013 0.008 0.001 0.053 0.006

S323(11)
Mean 0.055 0.051 0.045 0.052 0.006 0.007 0.012 0.015 0.40

SD 0.039 0.037 0.055 0.065 0.002 0.000 0.007 0.007

S323(55)
Mean 0.771 0.071 0.093 0.012 0.008 0.011 0.155 0.032 0.05

SD 0.824 0.035 0.117 0.009 0.001 0.009 0.205 0.035

S323(65)
Mean 0.567 0.047 0.234 0.056 0.020 0.004 0.169 0.038 0.01*

SD 0.408 0.036 0.317 0.046 0.015 0.001 0.179 0.049

S323(75)
Mean 0.384 0.062 0.762 0.038 0.007 0.005 0.041 0.013 0.04*

SD 0.331 0.054 1.020 0.031 0.001 0.000 0.024 0.013

S323(85)
Mean 0.134 0.023 0.147 0.052 0.005 0.004 0.029 0.038 0.07

SD 0.091 0.001 0.156 0.051 0.000 0.001 0.010 0.049

S407(26)a
Mean 0.063 0.023 0.092 0.049 0.004 0.004 0.005 0.008 0.12

SD 0.031 0.001 0.019 0.002 0.001 0.001 0.0002 0.001

Table 2. Relative concentrations of Mn, Fe, Cu and Pb and Wilcoxon test for paired sample performed between 
discoloured (DC) and normal (NO) enamel among discoloured teeth. SD, Standard deviation; adata from an 
unpublished study. *Statistically significant (P < 0.05).
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post mortem incorporation of burial components (i.e. Fe or Mn) in some samples (B335 and S323), putatively 
explained by increased porosity of hypomineralised enamel41, 44.

All of these signs clearly point to the most ancient case of MIH with HSPM in an osteological collection dated 
to the 7th–11th centuries. This is the first study investigating the structure of discoloured enamel structure to con-
firm MIH and HSPM diagnoses. No reports of HSPM in past populations have been published; however, authors 
have reported “probable” MIH in historical populations. A collection of a London cemetery (Broadgate), includ-
ing individuals suffering from rickets, dated from the 17th–18th centuries was previously studied31, 48. Scrutiny of 
the results highlighted a number of points to be clarified. In 2007, these authors reported prevalence for hypo-
plasia of 93.2% amongst 41 sub-adults, confirmed in some cases by scanning electron microscope. The hypoplas-
tic enamel included 63.6% of molars with severe or moderate lesions31. One year later, in another publication, 
the authors reattributed all the molar teeth with hypoplastic enamel to MIH, and claimed MIH prevalence of 
93.2% with 63.6% of molars “showing moderate or severe lesions” amongst the samples48. The MIH prevalence 
of the studied population (93.2%) appears to be very high in comparison to current data (2.9–44%)12. Enamel 
microanalysis for mineral density and elemental profile as well as µCT analysis to allow the determination of 
enamel thickness would allow the enamel hypoplasia to be distinguished from “probable” MIH. Another case of 
‘probable’ MIH was reported in teeth from a skull dating from the mid-15th century32. As a result of unusual local-
ization of brown discolorations (i.e. first and second premolars, second and third molars) and molar wear, further 
investigations are required to confirm whether this is MIH or taphonomic stain. A substantial study involving 
the clinical examination of three archaeological series (dated from 12th to 20th centuries) reported prevalence of 
3.1% for MIH and 30.3% for linear enamel hypoplasia33. As mentioned by the authors, ‘mix-ups’ between wear 
(attrition, erosion and abrasion), nutrition, pre and post mortem discolouration, MIH and other enamel defects 
in archaeological series are more than probable33; the reason why confirmation of diagnosis by microanalyses 
is important. The present results regarding the uncertainty of visual diagnosis by MIH experts showed that no 
clinical diagnosis of MIH in past populations is reliable. In fact, authors should confirm their results by means of 
non-destructive microanalyses37.

The discovery of the oldest specimen (dated to the 7th–11th centuries) reported to be affected by MIH and 
HSPM confirmed by microanalyses raises questions about the importance of modern aetiological hypotheses 
such as medications or environmental pollutants. Several authors have raised the possibility of a link between 
taking antibiotics during the first years of life and the occurrence of MIH21, 22, 49–51. However, the subsequent dis-
covery of the first antibiotic (penicillin) in 1928 and its commercialisation in France in 194552 negates a possible 
link with MIH and HSPM amongst our sample. This is consistent with Ghanim’s study showing no link between 
MIH and antibiotics20. Noting that in these retrospective studies, it is not possible to identify the real causative 
factors such as childhood illness (putatively high fever) or the associated medication or both. The hypothesis of 
environmental dioxins has also been raised in the literature53, 54. In fact, authors proposed that dioxins delivered 
via maternal breastfeeding could be a causative factor of MIH53. However, these compounds have only been 
present in the environment since 187455. The majority of international studies have not established links between 
MIH and dioxins17, 49, 50, 56, 57. More recently, another modern aetiological factor hypothesis has arisen, the bisphe-
nols18; used as base compounds in the manufacturing of polycarbonates and epoxy resins. Bisphenol A (BPA) was 
used worldwide in plastic containers (such as baby bottles and food containers) and since prohibition in France 
(2015), BPAs were replaced by bisphenol analogues (BPS and BPF)58. The commercialisation of BPA took place 
in 195059, which is not compatible with a possible link with the cases of MIH and HSPM living in the medieval 
period. None of these modern aetiological hypotheses can explain the enamel defects on the three investigated 
individuals. If the possible aetiological factors which may have occurred during the 7th–18th centuries are studied, 
childhood illness and peripartum events seem to be most plausible. Diseases such as otitis media50, pneumonia49, 

50, infections of the urinary tract60, or chicken pox21 have been positively associated with MIH. A systematic 
review investigating 25 studies on MIH aetiological factors determined a probable link with childhood disease27. 
It has also been suggested that the causative factor of MIH could have been a lack of oxygen occurring during 
deliveries29, 61–63. Hypoxia can be associated with medical problems at birth, such as prematurity, caesarean sec-
tions29, respiratory difficulties and prolonged duration of labour61. Other studies have also implicated prematurity 
in MIH occurrence23, 50, 61, 64. More recently a genetic predisposition in conjunction with one or several others fac-
tors has also been proposed24, 26. Prospective studies should provide more complete temporal results but they are 
long and complex to carry out. It would take at least six years and the eruption of the FPM in order to collect the 
initial results, and the initial sample must be large enough to meet the challenges of frequent medical monitoring 
over a long period (from the third trimester of pregnancy until the age of six to seven years). The first publication 
using this methodology provides limited information confirming aetiological hypotheses54. Pending the results 
of prospective studies, the increase of MIH prevalence study numbers on ancient populations, including well 
documented archaeological series, will improve understanding of the MIH pathophysiology.

Thus, the discovery of the oldest specimens with MIH and the first archaeological specimen with HSPM in 
an immature individual from archaeological series dated from 7th–18th centuries indicates similar aetiological 
factors existing now and in the medieval period such as hypoxia during deliveries, prematurity or childhood dis-
eases, without excluding genetic predisposition. But it should be borne in mind that the aetiology of MIH may be 
multifactorial. The repeat of observations of a significant prevalence of MIH in older populations would confirm 
our observations, downplaying somewhat the role of uniquely modern aetiological factors (derivatives of dioxin, 
bisphenols, antibiotics). The present study highlights the potential contribution of bio-archaeological studies on 
a current public health problem.

Methods
Collection assessment. Individuals with estimated ages from 6 to 18 years old were studied from two 
archaeological series (Beauvais and Sains-en-Gohelle, France). Only young individuals were chosen owing to 
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the potential for early breakdown of enamel caused by dental caries or wear in archaeological materials in older 
individuals. The diagnosis of MIH requires erupted FPM in individuals 6 years and older65. Some precautionary 
principles were applied; individuals with taphonomic discoloration of the mandible or maxilla and individuals 
showing discoloration on all teeth were excluded. Three individuals presenting the most complete dental remains 
and showing enamel defects indicative of MIH and/or HSPM were selected for analyses: B335, S323 and S407. 
The first individual (B335) was retrieved from the cemetery of the convent “Les soeurs Grises”, located in Beauvais 
(France, 15th–18th, SI). The convent was occupied by the religious community between 1480 and the late 18th 
century39, 66. The age at death of B335 was estimated using the Liversidge and Marsden method67. The other spec-
imens (S323 and S407) are from the Sains-en-Gohelle cemetery (France, 7th–17th centuries, SI)40. The age at death 
of these two specimens was estimated by means of the Moorrees method68.

Clinical diagnosis. The individuals’ teeth were examined by means of a hand magnifying lens with artificial 
lighting. Standardised photographs of the three specimens showing brown discolorations similar to MIH and 
HSPM were taken with a Nikon® (Tokyo, Japan) SLR camera D90, a Metz® (NJ, USA) macro ring flash and a 
Tamron® (Saitama, Japan) lens SP AF 90 mm f/2.8. Each maxilla, mandible and teeth were photographed on a 
black matt paper: occlusal view for bones and five views (labial, mesial, lingual, distal and occlusal) for each tooth.

A questionnaire asking for each specimen (B335, S323 and S407) “is it typical of MIH lesions?” and “How did 
you make your decision?” including photographs of the three specimens was created. It was sent on 23 February 
2016 to 76 MIH specialists by means of ‘Google forms’ (Google®, CA, USA). The reliability of MIH and HSPM 
diagnosis by means of photographs were previously validated69. Participants selected were authors who had pub-
lished on MIH in either first or last position in an international journal with an impact factor or in the journal 
of the EAPD (European Academy of Paediatric Dentistry). A search was performed on 15 February 2016 on 
Medline/Pubmed with the words “enamel AND hypomineralisation” and 76 authors were identified. From this 
group, 19 participants answered. The Fleiss’ kappa test was performed between the three possible responses (yes, 
no and unsure) for each specimen. In a recent published diagnostic guide it was advised that enamel microa-
nalyses should be undertaken to avoid taphonomic bias and MIH misdiagnosis37. Therefore, the authors rec-
ommended using X-ray fluorescence analyses aiming to highlight a post mortem contamination by Fe or Mn in 
addition to microtomographic analyses to confirm enamel hypomineralisation37.

Microtomographic analyses. The samples including nine discoloured teeth (B335(46), B335(16), 
S323(26), S323(11), S323(55), S323(65), S323(75), S323(85) and S407(26)) and three control teeth (B335(36), 
S323(16) and S323(21)), were imaged using high resolution microtomography at the laboratory PLACAMAT 
(UMS 3626) in Bordeaux, France (Microtomograph X GE™ V/TOME/X S equipment, NY, USA). The scanning 
parameters were 120 kV, 147 µA for the X-ray tube, exposure time 500 ms with four integrations per projection, 
2550 projections/360° and 0.1 mm copper filter placed on the source to reduce beam hardening artefacts. The 
voxel size was 7 × 7 × 7 μm3. The final volume was reconstructed in 16-bit. The microCT images were compiled 
with the 7.0.1. software Avizo® (Visualization Sciences Group, FEI® Company, OR, USA). In order to take meas-
urements at the same coronal height, images were reconstructed according to the plane of section through two 
points located at the buccal cervical surface and one point on the lingual cervical surface.

From a selected tooth area, five cubes (≈49 × 49 × 49 µm3) were located by means of the square brush segmen-
tation tool from the enamel surface to the DEJ (Fig. 4a and SI):

•	 at the enamel surface (cube n°1);
•	 at the DEJ (cube n°5).

Then, three equidistant cubes were located:

•	 cube n°3 at the midway between cubes 1 and 5;
•	 cube n°2 at the midway between cubes 1 and 3;

•	 cube n°4 at the midway between cubes 3 and 5.

This process was performed in normal and discoloured enamel. A second round of measures from another 
selected tooth area was undertaken by the same operator. The mean of the mineral density in each cube was calcu-
lated by the function Measure and Analyse with Avizo® software. The mineral density difference (mdd) provided 
in Table 1 corresponds to the formula: normal enamel mineral density - discoloured enamel mineral density. To 
achieve a 3D representation of the MIH defect (Fig. 4a), normal and hypomineralised enamel were segmented by 
means of the segmentation tool magic wand from the Avizo® software. Mineral density profiles (2D; Figs 4b and 
5) were analysed using function Plot Profile from ImageJ® 1.45 software (NIH, MD, USA). From a slice through 
affected enamel, the average of grey levels represented by the line from the DEJ to the surface was calculated 
(Fig. 4b). Along this line for each 7 µm a grey level was recorded. By means of the R statistical software (A lan-
guage and environment for statistical computing available at https://www.r-project.org/), this line was segmented 
in 99 equidistant points starting at the DEJ and finishing at the surface (SI). Then, the mean values of these 99 
measurements for hypomineralised and normal areas were compared (Fig. 5). Normal enamel measurements 
from the control group (n = 3) and normal enamel of the discoloured group were determined (n = 8 with the 
exception of S323(11)). Discoloured enamel measurements were from discoloured enamel from the discoloured 
group (n = 8 with exception of 321(11)).

https://www.r-project.org/
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X-ray fluorescence analyses. The samples including nine discoloured teeth (B335(46), B335(16), S323(26), 
S323(11), S323(55), S323(65), S323(75), S323(85) and S407(26)) were analysed by means of X-Ray fluorescence 
(Seiko SEA 6000VX, Seiko Corp., Tokyo, Japan) with the following parameters: collimator (0.5 × 0.5 mm), time 
measurement of 300 s and Rhodium anticathode. Two experimental conditions were used: condition 1 (without 
filter and tube voltage: 15 kV) to determine relative concentrations of P and Ca, and condition 2 (filter for lead 
and tube voltage: 50 kV) to determine relative concentrations of Sn, Mn, Cu, Zn, Fe, Pb and Sr. A spot in nor-
mal enamel was located at the same coronal height of its homologous spot in stained enamel. This process was 
repeated a second time. Thus, two measures by area in two distinct zones were performed in stained and normal 
enamel on the tooth surface. Only chemical elements (in oxide form) that may stain enamel were selected: Mn, 
Cu, Pb and Fe70–72.

Statistical tests. Non-parametric statistical tests (Wilcoxon test for paired samples) were carried out using 
Statistica® software Package Version 7.1 (Statsoft Dell, OK, USA) to compare data from normal and discoloured 
enamel. A Fleiss’s kappa test was performed with R software to test the inter-examiner agreement (n = 19).
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