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La-related protein 1 (LARP1) has been identified as a key
translational inhibitor of terminal oligopyrimidine (TOP)
mRNAs downstream of the nutrient sensing protein kinase
complex, mTORC1. LARP1 exerts this inhibitory effect on TOP
mRNA translation by binding to the mRNA cap and the adja-
cent 50TOP motif, resulting in the displacement of the cap-
binding protein eIF4E from TOP mRNAs. However, the
involvement of additional signaling pathway in regulating
LARP1-mediated inhibition of TOPmRNA translation is largely
unexplored. In the present study, we identify a second nutrient
sensing kinase GCN2 that converges on LARP1 to control TOP
mRNA translation. Using chromatin-immunoprecipitation fol-
lowed by massive parallel sequencing (ChIP-seq) analysis of
activating transcription factor 4 (ATF4), an effector of GCN2 in
nutrient stress conditions, in WT and GCN2 KO mouse em-
bryonic fibroblasts, we determined that LARP1 is a GCN2-
dependent transcriptional target of ATF4. Moreover, we iden-
tified GCN1, a GCN2 activator, participates in a complex with
LARP1 on stalled ribosomes, suggesting a role for GCN1 in
LARP1-mediated translation inhibition in response to ribosome
stalling. Therefore, our data suggest that the GCN2 pathway
controls LARP1 activity via two mechanisms: ATF4-dependent
transcriptional induction of LARP1 mRNA and GCN1-
mediated recruitment of LARP1 to stalled ribosomes.

It has been estimated that a single HeLa cell contains 3.3 ×
106 ribosomes, making ribosomes one of the most abundant
macromolecular complexes in mammalian cells (1). Studies in
yeast have demonstrated that about 60% of cellular energy is
devoted to ribosome biosynthesis and ribosomal proteins
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account for 50% of the cellular proteome (2). To ensure
availability of sufficient resources for ribosome biogenesis,
cells have evolved sophisticated control mechanisms to coor-
dinate the rate of ribosome production with nutrient and en-
ergy availability. mRNAs encoding ribosomal proteins (as well
as a number of RNA-binding proteins and eukaryotic trans-
lation factors) carry a 50-terminal oligopyrimidine (50TOP)
motif that is required for their translational control (3). The
50TOP motif consists of a cytosine followed by an unbroken
series of 4 to 14 pyrimidine nucleotides directly adjacent to cap
structure (4, 5). The regulation of TOP mRNA translation by
amino acid availability and other stressors has been recognized
for many years and has been widely linked to the activity of
mechanistic/mammalian target of rapamycin complex1
(mTORC1) (6, 7). However, the nature of downstream
repressor proteins that interact with 50TOP motif has been
elusive until recently. Several proteins that mediate the inhi-
bition of TOP mRNA translation have been proposed, and
they include La antigen (8), AUF1 (9), 4E-BPs (10), TIA-1, and
TIAR (11) as well as La-related protein 1 (LARP1) (4) which
has been implicated in the process more recently. LARP1 is
unique among other candidate repressors in that it physically
interacts simultaneously with m7Gppp mRNA cap and the
50TOP motif of TOP mRNAs via a specialized domain known
as the DM15 domain (12, 13). LARP1 binds the mRNA cap of
TOP mRNAs with higher affinity than a cap-binding protein
eIF4E does (13). eIF4E, together with an mRNA helicase eIF4A
and a large scaffolding protein eIF4G, forms eIF4F complex,
which is essential for the initiation of cap-dependent trans-
lation. Therefore, the strong binding of LARP1 to the cap and
TOP motif outcompetes eIF4E and consequently inhibits the
assembly of the eIF4F complex, selectively blocking the
translation initiation of TOP mRNAs (14). LARP1 was origi-
nally identified as a potential mTORC1 substrate in
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GCN2 suppresses TOP mRNA translation via LARP1
pharmacological phosphoproteomics studies (15, 16) and
subsequently validated as a bona fide mTORC1 target (4). In
response to a multitude of extracellular stimuli and intracel-
lular cues such as growth factors and nutrients, mTORC1
phosphorylates LARP1 on multiple serine and threonine res-
idues (17). Phosphorylation of LARP1 leads to the dissociation
of the DM15 domain of LARP1 from the 50UTR of TOP
mRNAs, thus allowing eIF4F complex to access the 50UTR of
TOP mRNAs (13) and engage their translation (17). In addi-
tion to translational control, the activity of LARP1 has been
linked to the sequestering of TOP mRNAs in stress granules
(SGs) and P-bodies (18), preventing ribosome stalling (19) and
regulating TOP mRNA stability (20, 21).

The serine/threonine protein kinase GCN2 (General con-
trol nonderepressible 2; also known as eIF2AK4) is an amino
acid sensor that, similarly to mTORC1, coordinates the
mRNA translation in response to amino acid availability.
GCN2 is the most conserved member of the eIF2 alpha
(eIF2α) kinases (eIF2AKs) in the integrated stress response
(ISR) pathway that, as the name indicates, controls mRNA
translation through phosphorylation of the alpha subunit of
the eukaryotic translation initiation factor eIF2 (22). Phos-
phorylation of eIF2α on serine 51 blocks the guanine nucle-
otide exchange activity of eIF2B (the guanine nucleotide
exchange factor [GEF] for eIF2), thereby hindering the eIF2/
Met-tRNAi

Met/GTP ternary complex formation. Ternary
complex formation is required for the recruitment of small
(40S) ribosomal subunit to mRNA, for translation initiation to
take place (23). Since the ternary complex is essential for
translation initiation of most cellular mRNAs, phosphoryla-
tion of eIF2α inhibits global mRNA translation. Paradoxically,
phosphorylation of eIF2α stimulates the translation of a
subset of mRNAs, which usually contain upstream ORFs in
their 50UTRs, epitomized by transcription factor activating
transcription factor 4 (ATF4) mRNA (23). In turn, ATF4 or-
chestrates a transcriptional program that dictates how cells
respond to stress (24). GCN2 contains a histidyl-tRNA syn-
thetase (HisRS)-like domain that directly binds uncharged
tRNA. Amino acid deprivation increases the level of un-
charged tRNAs, which upon binding to GCN2 promote a
conformational change within GCN2 that induces activation
and autophosphorylation in trans (25–27). GCN2 can be also
directly activated by the ribosome upon binding the ribosomal
P-stalk in vitro or in the context of ribosome stalling (28–31).
GCN1 is required for full GCN2 activation and association of
GCN2 with stalled ribosomes in vivo (32).

In addition to the effects of GCN2 on global translation
and translation of mRNAs with upstream ORFs, the activity
of GCN2 has been linked to translational control of specific
TOP mRNAs (11) by an unknown mechanism. In this study,
we demonstrate for the first time that GCN2 selectively
suppresses TOP mRNA translation via transcriptional upre-
gulation of LARP1 by ATF4. In addition, using immunopre-
cipitation in combination with mass spectrometry, we show
GCN1 binds to LARP1 and colocalize with LARP1 on stalled
ribosomes.
2 J. Biol. Chem. (2022) 298(9) 102277
Results

GCN2-dependent ATF4 binding to the promoter of LARP1

Previous studies demonstrated that GCN2 suppresses
mTORC1 upon amino acid deprivation via ATF4-dependent
or ATF4-independent pathways (33, 34). Prolonged starva-
tion of leucine (8–24 h) is required for GCN2 to sustain
mTORC1 suppression via ATF4 targets (33). To identify novel
factors that control mTORC1 pathway downstream of GCN2-
ATF4, we performed chromatin-immunoprecipitation (ChIP)
followed by massive parallel sequencing (ChIP-seq) in WT and
GCN2 KO mouse embryonic fibroblasts (MEFs) in the pres-
ence or absence of leucine for 24 h (Figs. 1, A and B and S1, A
and B). Leucine deprivation induced a significant increase and
reprogramming of ATF4-binding sites, an effect that was
abolished in GCN2 KO cells (Fig. 1, A and C). A large number
of known ATF4 targets was identified in our analysis including
Chac1 (35), Kdm6b/JMJD3 (36), Asns (37), Arl14ep (38), ATF5
(39) and Ppp1r15a/GADD34 (40), thus validating the quality of
the ChIP-seq data. Interestingly, several important genes
related to mTOR signaling (e.g., Ddit4/REDD1, Eif4ebp1, and
Sesn2), amino acid metabolism (e.g., Gars, Iars, Yars, Asns, and
Psat1), and integrated stress response (Bhlha15/MIST1,
Chac1, Ddit3/CHOP, Ppp1r15a/GADD34, and Ppp1r15b/
CReP) were prebound by ATF4 under basal conditions (Figs. 1,
D–F, 2A and S1, C–E). ATF4 binding to these targets was
largely stimulated by leucine deprivation, an effect that was
blunted by loss of GCN2 (Figs. 1, C and D, 2, A and B). Among
the novel ATF4 targets identified, we noted Larp1 (Fig. 1F), a
recently identified downstream effector of mTORC1 and a
central regulator of TOP mRNA translation.

ATF4 induces Larp1 expression in response to amino acid
deprivation

Similar to other genes related to mTOR signaling (e.g.,
Ddit4/REDD1, Eif4ebp1, and Sesn2), Larp1 promoter was
prebound by ATF4 under basal conditions in WT cells, which
overlapped with ATF4-binding locations previously identified
in response to tunicamycin (Tm) treatment (41) (Figs. 2A and
S1D). However, we did not observe a significant increase in
ATF4 recruitment to the Larp1 promoter after a 24 h leucine
deprivation in ChIP-seq analysis (Fig. 2, A and B). Interest-
ingly, ChIP-quantitative PCR (qPCR) analysis of Larp1 in-
dicates that the ATF4 binding to LARP1 promoter is induced
as early as 6 h post leucine deprivation in WT MEFs, an effect
that was largely blunted in GCN2 KO MEFs (Fig. 2C).
Concurrently, LARP1 mRNAs were induced 6 h after leucine
deprivation (Fig. 2D). Importantly, Western blot (WB) analysis
confirmed higher LARP1 expression in WT compared to
GCN2 KO MEFs at baseline and following L-leucine depri-
vation (Fig. S2A). To directly assess the central role of ATF4 in
regulation of Larp1, WT and ATF4 KO MEFs were starved in
leucine-free medium for 6 to 24 h (Fig. 2, E and F). We
observed 6 h and 24 h leucine deprivation markedly increased
ATF4 binding to the Larp1 promoter, effects that were abol-
ished in ATF4 KO MEFs (Fig. 2E). Reverse transcription



Figure 1. ChIP-seq analysis of ATF4 in response to GCN2 activation. A, heatmaps of ATF4 ChIP-seq read densities in a window of ± 2.5kb from peak
summits centered at 0 for WT and GCN2 KO MEFs exposed to control (+Leu) or leucine deficient (-Leu) medium for 24 h. Each row represents the ChIP-seq
read density around a peak summit for each identified peak per condition. Read densities are proportional to color intensities across groups. ChIP-seq data
represent a single sequencing experiment on a ChIP conducted using chromatin pooled from two independent experiments each performed with at least
five replicates. In WT MEFs, leucine deprivation reprogrammed ATF4 binding and augmented the number of binding sites, an effect that is lost in GCN2 KO
MEFs. B, average ATF4 ChIP-seq signal intensities from peaks identified in (A) normalized per reads for WT and GCN2 KO MEFs ± leucine (Leu) for 24 h.
C, Venn diagrams illustrating the effect of leucine (Leu) deprivation on ATF4 ChIP-seq target gene identification in WT and GCN2 KO MEFs. The analysis was
restricted to genes harboring peaks identified within ±5 kb of gene TSSs. D, enriched (adjusted p-value < 0.05) MSigDB Hallmark gene signatures in ATF4
ChIP-seq target gene sets with binding peaks found within ±5 kb of gene TSSs. E and F functional enrichment analysis of an ATF4-targeted 145-gene set
with binding peaks present within ±5 kb of gene TSSs in WT MEFs ± leucine. Using a redundancy reduction of significant terms, the top 10 significantly
enriched (Benjamin-Hochberg (BH)-corrected FDR < 0.05) GO biological processes determined by WebGestalt are shown with the associated genes. Node
size and color are proportional to the number of genes found in a biological category. An enrichment ratio >1 denotes that the number of overlapping
genes with a functional term is greater than by chance with a random set of genes. ChIP, chromatin-immunoprecipitation; FDR, false discovery rate; GO,
Gene Ontology; MEF, mouse embryonic fibroblast; TSS, transcription start site.

GCN2 suppresses TOP mRNA translation via LARP1
(RT)-qPCR also showed marked increase in expression of
Larp1, 6 h and 24 h after leucine deprivation (Fig. 2F).

GCN2 inhibits TOP mRNA translation in response to amino
acid deprivation

Global analysis of translation targets of LARP1 demon-
strated that LARP1 is a central inhibitor of TOP mRNA
translation (42). Thus, GCN2-dependent regulation of Larp1
predicts that activation of GCN2 in response to amino acid
deprivation selectively suppresses TOP mRNA translation.
Indeed, analyzing our ribosome profiling data in WT and
GCN2-deficient HEK293T cells (43) demonstrates that lack of
GCN2 selectively derepressed translation of most TOP
mRNAs in response to both arginine and leucine deprivation
(Fig. 3, A and B). GCN2-dependent translation inhibitions
were not uniform across all TOP mRNAs, but instead, dis-
played an amino acid–specific sensitivity gradient (Fig. S2B).
Consistent with MEFs, we observed GCN2-ATF4–dependent
transcriptional regulation of LARP1 in HEK293T cells
(Fig. 3C).
J. Biol. Chem. (2022) 298(9) 102277 3



Figure 2. GCN2-dependent regulation of the LARP1 via ATF4. A, UCSC Genome browser views for ATF4 ChIP-seq binding events in WT and GCN2 KO
MEFs that have been exposed to control (+Leu) or leucine-deficient (-Leu) medium for 24 h for a subset of genes associated with mTOR signaling. ATF4
ChIP-seq binding profiles in WT and ATF4 KO MEFs treated with tunicamycin (Tm) (GSE35681) (41) are also shown below each panel validating the
specificity of the ATF4 targets found. ChIP-seq data represent a single sequencing experiment on a ChIP conducted using chromatin pooled from two
independent experiments, each performed with at least five replicates. B, a heatmap shows MACS2 fold enrichment for a selected ATF4 ChIP-seq target
genes associated with mTOR signaling, the integrated stress response and amino acid metabolism with binding peaks found within ±5 kb of gene TSSs.
ChIP-seq data represent a single sequencing experiment on a ChIP conducted using chromatin pooled from two independent experiments each performed
with at least five replicates. C and E, ATF4 ChIP-qPCR analysis of Larp1 and Ddit3 promoters in WT and GCN2 KO MEFs (C) or WT and ATF4 KO MEFs (E)
exposed to control (+Leu) or leucine-deficient (-Leu) medium for 6 h and 24 h. D and F, RT-qPCR analysis of Larp1 and Ddit3 in WT and GCN2 KO MEFs (D) or
WT and ATF4 KO MEFs (F) exposed to control (+Leu) or leucine-deficient (-Leu) medium for 6 h and 24 h. Data in (C–F) are presented as means ± SD (n = 3).
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; Two-way ANOVA followed by Bonferroni post hoc test. ChIP, chromatin-immunoprecipitation; MEF,
mouse embryonic fibroblast.

GCN2 suppresses TOP mRNA translation via LARP1
To directly examine whether GCN2 suppresses translation
of TOP mRNAs, we performed a polysome profiling of WT
and GCN2 KO HEK293T cells cultured in the presence or
absence of leucine for 6 h. The absorbance profiles of the
4 J. Biol. Chem. (2022) 298(9) 102277
gradient fractions demonstrated an elevation in global trans-
lation in GCN2 KO cells compared to WT cells, both in
presence and absence of leucine as indicated by higher 80S
peak in WT cells (Fig. 3, D and E). These results were further



Figure 3. GCN2 suppresses TOP mRNA translation. A, analysis of ribosome profilings performed in a previous study (Darnell 2018) on WT and GCN2 KO
HEK293T cells after 6 h of arginine or leucine starvation or nutrient replete conditions (n = 1). Scatter plots of footprints per million (FPM) for each transcript
are plotted for WT and GCN2 KO cells ± arginine or leucine starvation. Yellow points indicate 50TOP mRNAs (the list of 50TOP mRNAs obtained from Table S2
of Yamashita et al. 2008) (66). B, violin plots of Log2 (GCN2 KO/WT) values for all transcripts in each nutrient condition described in (A). A two-sided Wilcoxon
signed-rank test was performed to assess whether the Log2 (GCN2 KO/WT) values of 50TOP mRNAs increased significantly compared to non-50TOP mRNAs.
Resulting p-values are shown for each condition. C, RT-qPCR analysis of LARP1 expression in WT and GCN2 KO HEK 293T cells or in HEK293T cells exposed to
scrambled shRNA (Scr.) or shRNA against ATF4 (shATF4) in the presence or absence of leucine (Leu). Data are presented as means ± SD (n = 3). * p < 0.05,
** p < 0.01, and *** p < 0.001; Two-way ANOVA followed by Bonferroni post hoc test. D, absorption profiles of ribosomes and RT-qPCR analysis of WT and
GCN2 KO HEK 293T cells cultured in control medium (+Leu) for 6 h. 40S and 60S denote the corresponding ribosomal subunits and 80S refers to
monosomes. E, absorption profiles of ribosomes and RT-qPCR analysis of WT and GCN2 KO HEK293T cells cultured in the absence of leucine (-Leu) for 6 h.
40S and 60S denote the corresponding ribosomal subunits and 80S refers to monosomes. RT-qPCR, reverse transcription quantitative PCR; TOP, terminal
oligopyrimidine.

GCN2 suppresses TOP mRNA translation via LARP1
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verified by puromycin incorporation assay (Fig. S3, A and B).
RT-qPCR analysis of mRNAs encoding the ribosomal proteins
RPS6 and RPS20 (representative of TOP mRNAs in our
analysis) showed their preferential association with heavier
polysomes in the GCN2 KO HEK293T cells in comparison to
WT cells (Figs. 3, D and E and S3C). Consistent with GCN2-
dependent translational upregulation of ATF4, amino acid
deprivation opposite to its effect on TOP mRNAs, shifted Atf4
mRNAs toward heavy polysome more prominently in WT
cells compared to GCN2 KO cells (Fig. 3, D and E). We next
examined the effect of LARP1 knockdown (KD) on polysome
distribution of TOP mRNAs (Fig. S3, D–F). Consistent with
our model, LARP1 depletion profoundly alleviated the inhi-
bition of TOP mRNAs in WT cells as judged by increased
association of RPS6 and RPS20 with heavier polysomes (H) in
LARP1 KO cells (WT-shLARP1) in comparison to control
cells (WT-shScr.) (Fig. S3E). KD of LARP1 in GCN2 KO cells
also further promoted the association of RPS6 to heavy (H)
and RPS20 to light (L) polysome, indicating the functional
significance of remaining LARP1 (Fig. S3F). Altogether, these
results suggest that GCN2 controls the translation of TOP
mRNAs through regulation of LARP1 expression.
GCN1 participates in a complex with LARP1 at stalled
ribosomes

Recent studies have shown ribosome collision during
translation triggers the GCN2 pathway (44). Based on this
model, in response to general cellular stress such as amino acid
deprivation, elongating ribosomes stall, leading to collision of
leading and trailing ribosomes. The resulting disomes are
recognized by GCN1, which in complex with GCN2 and
GCN20 activates the ISR pathway (31, 32, 45, 46). Some evi-
dence suggests that LARP1 may play a role in resolving ribo-
some stalling during elongation of TOP mRNAs (19). Since
LARP1 has been identified to colocalize with GCN1 (44, 47),
we wondered whether GCN1 in response to ribosome stalling
recruits LARP1 to block ribosome loading on TOP mRNAs.
To test this hypothesis, we generated 3xFlag GCN1 knock-in
HEK293T cells and performed immunoprecipitation (IP)–
mass spectrometry (MS) to identify potential interaction be-
tween LARP1 and GCN1 under steady state (Fig. 4A). Indeed,
LARP1 was among the most enriched prey proteins identified
in our analysis. We directly validated the interaction of LARP1
and GCN1 by immunoblot analysis following 3xFlag GCN1 IP
(using M2-agarose beads) (Fig. 4B). Removal of RNase A from
the cell lysis buffer enhanced the signal intensity, indicating
that the interaction between GCN1 and LARP1 is stabilized by
RNA (Fig. 4B). Among 66 preys in the GCN1 purification
(SAINT score of ≥0.9), several proteins have been previously
identified to colocalize with GCN1 and LARP1 in BioID
analysis (47) and have been implicated in activation of GCN2
in response to ribosome collision (44). In addition, some preys
play a critical role in regulation of ribosome stalling (e.g.,
USP9X (48) and GYGYF2 (49)). To assess the colocalization of
LARP1 and GCN1 at stalled ribosomes, we pretreated
HEK293T cells with ISRIB (to block inhibition of translation
6 J. Biol. Chem. (2022) 298(9) 102277
initiation) and exposed the cells to amino acid–deprived media
for 1 h (44). As previously reported (44), RNase-resistant
disomes appeared at a low RNase A concentration (0.5 mg/
L), which promoted comigration of GCN1 and LARP1 toward
disomes (Fig. 4, C and D). However, ribosome pausing sec-
ondary to amino acid deprivation is modest in comparison to
that seen in response to treatment with translation elongation
inhibitors such as anisomycin (ANS). Next, we treated 3xFlag
GCN1 knock-in HEK293T cells with ANS at a concentration
known to induce ribosome stalling (44) (Fig. S4A). Consistent
with LARP1 recruitment to collided ribosomes, ANS treat-
ment promotes comigration of GCN1 and LARP1 toward
heavy polysome and the interaction between GCN1 and
LARP1 (Fig. S4, B–D). Importantly, GCN1 KD dampened
LARP1 migration to heavy polysome (Fig. 4, E–G). Therefore,
we concluded that there are at least two mechanisms that
GCN2 uses to inhibit TOP mRNA translation. In response to
amino acid deprivation, GCN2 induces ATF4-dependent
transcription of Larp1, and in response to ribosome collision
(which may also be caused by amino acid deprivation), GCN1
recruits LARP1 to reduce loading of ribosomes on TOP
mRNAs (Fig. 4H).
Discussion

Our study reveals a novel link between the amino acid sensor
GCN2 and the regulation of TOP mRNA translation through
modulation of LARP1 mRNA, protein levels, and association
with stalled ribosomes. Previous studies have demonstrated
that lack of GCN2 promotes translation of specific TOP
mRNAs through a yet unidentified mechanism (50). While
Damgaard et al. proposed that GCN2 regulates translation of
TOP mRNAs via SG-associated TIA-1 and TIAR proteins (11),
other studies proposed alternative mechanisms such as a
GCN2-eIF2α-dependent (51), GCN2-dependent eIF2α-inde-
pendent (52), or indirectly through regulation of the mTORC1
pathway (34, 53). Our work demonstrates that there are at least
two independent mechanisms that GCN2 uses to inhibit TOP
mRNA translation via LARP1: (1) induction of ATF4-
dependent transcription of LARP1 and (2) recruitment of
LARP1 to stalled ribosomes through interaction with GCN1.
Regulation of LARP1 by the GCN2 pathway complements the
control of LARP1 activity by the mTORC1 pathway. The
GCN2-ATF4-LARP1 axis likely represents a more sustained
response to nutrient deprivation than the rapid but transient
mTORC1 phosphorylation-mediated regulation of LARP1.
This is reminiscent of coregulation of another cap-dependent
translational repressor 4E-BP1 by mTORC1 and the ISR
pathway, where transcriptional regulation of eIF4E-BP1
(encoding 4E-BP1) by ATF4 complements phosphorylation-
mediated regulation of 4E-BP1 by mTORC1 (54).

The present study reveals that GCN1 participates in a
complex with LARP1 that strengthened by RNA and that this
interaction is enhanced in response to ribosome pausing.
Informed by a recent structure of the GCN1-disome (32), we
built a model in which in response to amino acid deprivation
and/or ribosome collision, GCN2 suppresses TOP mRNA



Figure 4. GCN1 participates in a complex with LARP1 at stalled ribosomes. A, mass spectrometric analysis of immunoprecipitates prepared from
HEK293T cells endogenously expressing 3xFlag-tagged GCN1 (n = 1) identified LARP1 along with core components of PB (P-body) or SG (stress granule)
proteomes (Youn et al 2009) (see Table S2 for complete list of the identified proteins).* Common preys from ZAKa, GCN1, and GCN20 Bio-ID identified in44.
# EIF4G1 is exclusive to SGs. B, immunoblots of immunoprecipitates prepared from HEK293T cells endogenously expressing 3xFlag-tagged GCN1 in the
presence or absence of RNAse A. SE; Short exposure, LE; Long exposure. C and D, amino acid starvation induces ribosome collisions and comigration of
LARP1 and GCN1 toward disomes. RNase-digested polysome profiles from HEK293T cells starved for methionine (Met) (C) or leucine (Leu) (D) with ISRIB
pretreatment. Immunoblot analysis of fractions of samples treated with 0.5 mg/L of RNase A has been presented below profiles. E and F, polysome profile (E)
and immunoblot analysis (F) of WT HEK293T cells in the presence of scrambled shRNA (shScr.) or shRNA against GCN1 (shGCN1). The shScr. and shGCN1
cells were exposed to anisomycin (ANS) at 1 μg/ml for 15 min and cytosol was fractionated with sucrose density gradients. Precipitated protein from the
polysome fractions (fractions 6–12) were examined by Western blotting (WB). G, quantification of WB described in (C) in two independent experiments
(n = 2). H, a proposed model illustrating GCN2-dependent regulation of TOP mRNAs via LARP1. TOP, terminal oligopyrimidine.

GCN2 suppresses TOP mRNA translation via LARP1
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translation through transcriptional control of LARP1 and
recruitment of LARP1 protein to the site of ribosome collision
(Fig. 4H). This model is consistent with other studies that
demonstrated the recruitment of translation initiation re-
pressors GIGYF2/4EHP by ZNF598 or EDF1 (direct sensors of
ribosome collisions) to the collided ribosomes. A recent report
shows that activation of Hel2/ZNF598 by ribosome stalling is
independent of GCN2 activation and that these two pathways
display different specificity and thresholds for ribosome colli-
sions (55). These data suggest a model in which ribosome
collisions trigger the recruitment of independent protein
complexes carrying distinct translation initiation repressors
such as ZNF598/GIGYF2/4EHP, GCN2/GCN1/LARP1, and
recently identified EDF1/GIGYF2/4EHP (49, 56). This would
enable the cells to suppress translation of distinct subsets of
mRNAs independent of each other. Future studies are required
to uncover the importance of each protein complex and to
delineate how cells coordinate multiple pathways to respond to
different translational stressors.

It is important to emphasize that ourdatadidnot rule out other
possible mechanisms for GCN2-dependent TOP mRNA trans-
lational suppression. These include inhibition of mTORC1
(ATF4-dependent and ATF4-independent) or induction of SGs
andP-bodies. It is conceivable that cells use differentmechanisms
to spatiotemporally regulate the expression of TOP mRNAs.

Experimental procedures

CRISPR strategy for 3xFlag tag insertion in frame with GCN1

Alt-R CRISPR-Cas9 system (IDT) was used for endoge-
nously tagging GCN1 in HEK293T cells. N-terminal fusion of
3xFlag tag to one allele of Gcn1 was achieved by delivering
Alt-RS.p. Cas9 nuclease protein and Alt-R CRISPR-Cas9 guide
RNA (crRNA:tracrRNA duplex) in a ribonucleoprotein (RNP)
complex with a single strand DNA HDR donor template
(ssODN) according to manufacturer’s instruction. Briefly,
RNP assembly was performed by mixing equimolar crRNA
and tracrRNA in nuclease-free duplex buffer to a final con-
centration of 1 μM. The mix was heated at 95 �C for 5 min.
Then, 1.5 μl of guide RNA oligos (1 μM) were combined with
1.5 μl diluted Cas9 enzyme (1 μM) and 22 μl of Opti-MEM
media and incubated 5 min at room temperature (RT) to
produce the RNP complexes. Next, 1 to 3 μM ssODN were
added to the RNP complex. Finally, 25 μl of RNP complex
mixed with 1.2 μl of Lipofectamine 2000 and 23.8 μl Opti-
MEM and incubated for 20 min at RT before transfection of
4000 HEK293T cells. Forty-eight hours post-transfection,
single cell dilution of the cells were seeded in 96-well plates
to obtain clonal population.

HDR donor template (ssODN)

50GTGGGCCACGCTGTGACCCGGAAGCGTTCCGGAA
GCGGTTCCGGAGTCAGCCCCGGCAGGgccgccAccatggact
acaaagaccatgacggtgattataaagatcatgacatcgattacaaggatgacgatgac
aagGCGGCGGACACGCAGGTGAGGCGGGCGGCTGCGG
GGCCAACGCGGCCAGGGACTGGGTGCGGACGGTGG
CCGTCG-30
8 J. Biol. Chem. (2022) 298(9) 102277
Guide RNA targeting sequence

50-CGGAGTCAGCCCCGGCAGGA-30.
Polysome profiling

Cell culture

The polysome profiling protocol employed is previously
described (57). Briefly, HEK293T cells were seeded into four
15 cm2 culture dishes per condition and maintained in Dul-
becco’s modified Eagle’s medium (DMEM), 10% fetal bovine
serum (FBS), penicillin (50 μg/ml), and streptomycin (50 μg/
ml) in a 37 �C incubator until they reached 80% confluency on
the day of the experiment. DMEM without leucine (226–024;
Crystalgen) or control DMEM (226–033; Crystalgen) were
combined with 10% dialyzed FBS (A3382001; Gibco) for amino
acid deprivation experiments.
Lysate preparation and fractionation of polysome

A volume of 200 μl of 10 mg/ml of cycloheximide (CHX)
was added to each 15 cm2 culture dish and incubated for 5 min
in a 37 �C incubator. Then, the cells were gently washed twice
with 10 ml ice-cold 1x PBS containing 100 μg/ml CHX. Next,
cells were quickly scraped and collected in 5 ml ice-cold 1x
PBS (containing CHX) solution and centrifuged at 200g for
5 min at 4 �C (Legend XTR Centrifuge, Thermo Scientific).
The supernatants were discarded, and the pellets were resus-
pended in 425 μl of hypotonic buffer (5 mM Tris–HCl [pH
7.5], 1.5 mM KCl, 2.5 mM MgCl2, 1x protease inhibitor so-
lution), 5 μl of 10 mg/ml CHX, 100 units of RNase inhibitor,
and 1 μl of 1M DTT. Then, the tubes were vortexed (Vortex
-Genie 2, Scientific Industries) for 5 s, and the following re-
agents were added to the buffer: 25 μl of 10% Triton X-100
(0.5% as the final concentration) and 25 μl of sodium deoxy-
cholate (0.5% as the final concentration) and then vortexed for
5 s. The tubes were then centrifuged at 16,000g for 7 min at
4 �C (Eppendorf Centrifuge 5424 R). Next, the supernatants
were transferred to 1.5 ml prechilled microtubes. The absor-
bance was measured at 260 nm (BioDrop) for each sample.
About 10% of each lysate was kept at −80 �C to further
determine total mRNA. Then, 500 μl of the supernatants were
added on the top of sucrose gradient tubes (prepared by
Gradient Master, Model 108, BioComp). We established
400 μg as the ideal amount of lysate for our polysome machine
to obtain polysome fractions. Samples were centrifuged
through the sucrose gradients by ultracentrifugation at
222,228×g (36,000 rpm) for 2 h at 4 �C using a SW40Ti rotor
(Beckman Coulter, Optima L-90k Ultracentrifuge). Polysome
fractionation was performed by the Brandel Gradient Frac-
tionation System (BR-188 Density Gradient Fractionation
System). We used the PeakChart data acquisition software
(Brandel) for monitoring the polysomes and data acquisition.
Trizol (1 ml) was added to each fraction and fractions were
frozen immediately in liquid nitrogen and stored in a −80 �C
freezer for future RNA extraction.

For ribosome pausing and comigration experiments, cells
were treated with ANS (Sigma–Aldrich, A9789) at 1 μg/ml for
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15 min in the absence of CHX at 37 �C. Following fraction-
ation, 10% trichloroacetic acid (Fisher bioreagents, catalog no.:
#BP555-500) was used to precipitate the proteins from 300 μl
of each fraction. After 2 h incubation at 4 �C, the precipitated
proteins were centrifuged at 15,000 rpm for 15 min at 4 �C.
The pellets were air dried for 15 min and resuspended in 40 μl
of 2X SDS-PAGE Laemmli sample buffer (Bio-Rad, catalog no.:
# 1610737) and loaded on 8% gels. For amino acid starvation,
cells were pretreated with 1 μM ISRIB for 30 min, then washed
with PBS two times, and cultured in the amino acid deficient
media (DMEM without leucine [226-024; Crystalgen] or
methionine [226-025; Crystalgen] combined with 10% dialyzed
FBS [A3382001; Gibco]) with 1 μM ISRIB for 1 h. Lysates
containing 400 μg of total RNA were treated with RNase A at
0, 0.5, and 5 mg/l for 15 min at RT followed by addition of 200
U of SUPERaseIn. Digested lysates were subjected to centri-
fugation through 10% to 35% sucrose gradients.

RT-qPCR

RevertAid RT Reverse Transcription Kit (Thermo Fisher
Scientific, catalog no.: #K1691) was used for generation of
complementary DNA. iTaq Universal SYBR Green Supermix
(Bio-Rad; catalog no.: #1725121) were used for qPCR. The
relative expression of genes was normalized to the expression
of house-keeping genes including Gapdh, β-Actin, or 18S
rRNA. All (n)s are considered technical replicates unless
indicated otherwise.

Primers used for mouse and human RT-qPCR are sum-
marized in Table S1.

ChIP-qPCR

WT and ATF4 KO MEFs or WT (DR-WT) and GCN2 KO
(GCN2-KO-DR) MEFs (ATCC) (�1X107) were grown to 90%
confluence and crosslinked with 1% formaldehyde (methanol-
free) at RT for 10 min with gentle agitation. Crosslinking was
quenched by the addition of quenching buffer (1M glycine
buffer, 125 mM as a final concentration) and incubated at RT
for 5 min with gentle agitation. Crosslinked cells were resus-
pended with lysis buffer, and their nuclei were pelleted and
lysed with shearing buffer. All buffers were provided from the
truChIP Chromatin shearing kit (520154, Covaris). Chromatin
was sonicated with a ultrasonicator to produce fragments from
150 to 1000 bp with enriched fragments between 200 and
500 bp. Fragmented chromatin from approximately 1X107 cell
equivalents was incubated overnight at 4 �C with antibody
coupled to protein A beads with salmon sperm DNA (16-157,
Milipore). Chromatin equivalent to 10% volume used for ChIP
was used for input control. Immunoprecipitated complexes
were washed sequentially with a low salt wash buffer X 2 (0.1%
SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris–HCl pH 8.0,
150 mM NaCl), high salt wash buffer X 2 (0.1% SDS, 1% Triton
X-100, 2 mM EDTA, 20 mM Tris–HCl pH 8.0, 500 mM NaCl),
LiCl wash buffer X 1 (10 mMTris–HCl pH 8.0, 0.25 M LiCl, 1%
NP-40, 1% sodium deoxycholate, 1 mM EDTA), and finally
with TE buffer X 2 (pH 8.0). Bead-bound DNA was eluted by
addition of 100 μl of elution buffer (1% SDS, 100 mMNaHCO3)
to the complexes and vortexed slowly for 30 min at RT. Sam-
ples were centrifuged for 3 min at 1000g and the supernatants
were transferred to new tubes. To the tubes, 2 μl of RNase A
(10 mg/ml) and 2 μl of proteinase K (20 mg/ml) were added and
the tubes were incubated at 65 �C overnight. The next day, the
DNA was purified using a commercial kit (D5201, Zymo
research, ChIP DNA clean and concentrator). ChIP fold en-
richments were normalized to the binding to two nonbound
control regions. All (n)s are considered technical replicates
unless indicated otherwise.

Primers used for ChIP-qPCR are found in Table S1.
ChIP-seq

ATF4 ChIP-seq experiments were performed on primary
WT and GCN2 KO MEFs ± leucine deprivation for 24 h. For
each ChIP, 5 μg of anti-ATF4 (sc-200, Santa-Cruz) was
immobilized overnight at 4 �C on 50 μl protein G Dynabeads
(catalog no.: #10004D, ThermoFisher) diluted in 500 μl of
PBS + 0.5% bovine serum albumin (BSA). The next day, the
antibody-conjugated beads were washed twice with PBS + 0.5
% BSA. Sonicated chromatin (75 μg) was diluted in 2.5X ChIP
dilution buffer (Tris 20 mM, ph 8, NaCl 100 nM, EDTA 2 mM,
pH 8, Triton-X-100 0.5%) + 100 μl of PBS + 0.5% BSA and
added to the antibody-bound beads and left to rotate O/N at
4 �C. Then, the beads were washed 3X with 1 ml LiCl wash
buffer (Tris 100 nm, LiCl 500 nM, Na-deoxycholate 1%, NP-40
1%), transferred to new tubes, then washed 2X more with LiCl
wash buffer followed by a quick wash with TE buffer. DNA was
eluted with 300 μl decrosslinking buffer (NaHCO3 0.1 M, SDS
1%) overnight at 65 �C. RNase A (0.2ug/ul final) was added to
the samples and left at 37 �C for 1 h following by addition of
proteinase K (0.2 μg/μl final) and incubation at 55 �C for
30 min. ChIP DNA was purified using a QIAquick PCR pu-
rification kit (Qiagen). Chromatin from two independent ex-
periments each performed with at least five replicates was
pooled together prior to library preparation and sequencing.

DNA libraries and sequencing were performed at the
Génome Québec Innovation Centre. DNA library preparation
was performed using the TruSeq DNA sample preparation kit
according to Illumina recommendations. The ChIP DNA li-
braries were sequenced as single 50 bp reads (tags) using an
Ilumina Hiseq 2500 sequencer (Illumina). Raw reads were
trimmed for length (n ≥ 50), quality (phred score ≥ 30), and
adapter sequence using fastx v0.0.13.2. Trimmed reads were
then aligned to the mouse reference genome mm10 using
BWA v0.7.12 (58). Peaks were called using MACS v2.1.0
software and default parameters (mfold = [5,50]; false discov-
ery rate [FDR] cutoff = 0.05, –nomodel) using sequenced li-
braries of either WT or GCN2 KO input DNA as control (59).
The regions defined by the peak summit ±150 bp were used for
downstream analysis. Peak annotations, tag directory, bed files,
and de novo motif discovery were performed using HOMER
v4.7 (60). For peak intersections, peak list intersections were
done using the R package GenomicRanges v1.26.4 (61).
Binding peaks were considered overlapping if their peak
summits were found within 300 bp or less apart. Binding
J. Biol. Chem. (2022) 298(9) 102277 9
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intensity heatmaps and tag density plots were generated using
the R package Genomation v1.9.3 (62) with an estimated
fragment length of 200 bp.

Antibodies

Antibodies used were ATF4 (sc-200) (for ChIP-seq), ATF-4
antibody (D4B8) from Cell Signaling (For ChIP-qPCR), ATF4/
CREB-2 (sc-390063, Santa Cruz) (for WB analysis presented in
Fig. S3D), ATF5 (Santa Cruz, sc-377168), LARP1 (sc-515873,
Santa Cruz or ab86359, Abcam), p-eIF2α (ab32157, Abcam),
Actin (ab179467, Abcam), GCN1 (ab8613, Abcam), GCN2
(3302S, Cell Signaling), anti-FLAG (F3165, Sigma), antimouse
IgG, horeseradish peroxidase conjugated (W402B, Promega),
anti-rabbit IgG, horeseradish peroxidase conjugated (W401B,
Promega), and G3BP (catalog no.: #611126, BD Transduction
Laboratories).

IP

We generated HEK293T cells that expressed endogenously
3xFlag-tagged GCN1. Chaps cell extract buffer (Cell Signaling
Technology #9852) in presence or absence of RNase A (Sigma)
was used to lyse the cells. Immunoprecipitation was performed
using anti-Flag-M2 affinity gel (Sigma, A2220).

Functional enrichment analysis

ATF4 ChIP-seq target genes with binding peaks found ± 5
kb of gene transcription start sites in WT and GCN2 KO
MEFs ± leucine were used as input for functional enrichment
analysis by Ingenuity Pathway Analysis (IPA, www.ingenuity.
com), WebGestalt (www.webgestalt.org), and Enrichr
(https://maayanlab.cloud/Enrichr/). For IPA analysis, Fisher’s
exact test was used to calculate p-values determining the
probability that the association between genes in the dataset
and the canonical pathway is explained by chance alone.
Fisher’s exact test p-values were corrected for multiple testing
(adjusted p-value, Padj) using the Benjamini–Hochberg
method. KEGG pathway enrichment analysis was performed
using WebGestalt. Enrichment of Hallmark signatures (2020)
from the Molecular Signatures Database (MSigDB) were
determined using Enrichr.

Over-representation of Gene Ontology biological processes
from an ATF4-targeted 145 gene subset found bound by ATF4
in MEFs ± leucine within 5 kb of gene transcription start sites
was evaluated using WebGestalt. The top 10 significant terms
with FDR < 0.05 were determined following a weighted set
cover redundancy reduction of functional gene sets comprising
a minimum of three genes.

Lentivirus preparation

About 8 × 106 293T cells in a 10 cm dish were transfected
with 10 μg of Lentivector, 6.5 μg of psPAX2, 3.5 μg of
pMD2.G, in presence of 50 μl of Lipofectamine 2000 and 1 ml
of Opti-MEM. Twenty-four hours post-transfection, the me-
dium was collected everyday for 48 h and was subjected to
centrifugation at 76,000g for 1.5 h. The viral pellet was then
resuspended in DMEM and 10% heat-inactivated FBS and then
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rotated overnight at 4 �C. The resulting concentrated virus
solution was used to infect cells directly in presence of 8 μg/ml
polybrene or was flash frozen in aliquots on dry ice for long
term storage at −80 �C.

Lentivirus plasmids

shRNA against human ATF4 (Sigma; TRCN0000013573)
shRNA against human LARP1 (Sigma; TRCN0000150984)
shRNA against human GCN1 (Sigma; TRCN0000154822)
nontargeting shRNA SHC002 (Sigma)

Proteomics and data analysis

Samples were run on SDS-PAGE gel and a gel band was
subject for in-gel digestion. Gel band was washed in 100 mM
ammonium bicarbonate/acetonitrile (ACN) and reduced with
10 mM DTT at 50 �C for 30 min. Cysteines were alkylated
with 100 mM iodoacetamide in the dark for 30 min in RT. Gel
band was washed in 100 mM ammonium bicarbonate/ACN
prior to adding 600 ng trypsin for overnight incubation at
37 �C. Supernatant containing peptides was saved into a new
tube. Gel was washed at RT for 10 minutes with gentle shaking
in 50% ACN/5% formic acid (FA), and supernatant was saved
to peptide solution. Wash step was repeated each by 80%
ACN/5% FA and 100% ACN, and all supernatant was saved,
then subject to the speedvac dry. After lyophilization, peptides
were reconstituted with 5% ACN/0.1% FA in water and
injected onto a trap column (150 μm ID X 3 cm in-house
packed with ReproSil C18, 3 μm) coupled with an analytical
column (75 μm ID X 10.5 cm, PicoChip column packed with
ReproSil C18, 3 μm) (New Objectives, Inc). Samples were
separated using a linear gradient of solvent A (0.1% FA in
water) and solvent B (0.1% FA in ACN) over 120 min using a
Dionex UltiMate 3000 Rapid Separation nanoLC (Thermo-
Fisher Scientific). MS data were obtained on a Orbitrap Elite
Mass Spectrometer (Thermo Fisher Scientific Inc). Data were
searched using Mascot (Matrix Science) v.2.5.1 against the
Swiss-Prot Human database (2019), and results were reported
at 1% FDR in Scaffold v.4.8.4 (Proteome Software).

The GCN1 AP-MS data was analyzed by SAINT (63) using
REPRINT (64) with default parameters. A purification done
from HEK293T cells not expressing 3xFlag-tagged GCN1 was
used as a negative control for the SAINT analysis. The dot plot
displaying the GCN1 interactors with a SAINT score ≥0.9 was
generated using the ProHits-viz suite (65). For the dot plot
generator, SAINT scores were used for filtering, and total
spectral counts were used for displaying abundance with the
following parameters: Primary filter = SAINT score of 1;
Secondary filter = SAINT score of 0.9; Minimum abundance
value = 0; Maximum abundance value = 40.

Ribosome profiling analysis

Trimming and alignment were performed as described in
GSE113751. The R package DESeq2 was used to calculate
footprints per million reads for each Gencode v24 gene and
normalize across each sample, for the six HEK293T samples in
GSE113751 (GSM3118956-61).

http://www.ingenuity.com
http://www.ingenuity.com
http://www.webgestalt.org
https://maayanlab.cloud/Enrichr/
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Data availability

ChIP-seq data are available in the Gene Expression Omnibus
(GEO) database under the accession number GSE166590.
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