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Objectives: Lung cancer (LC) is the largest single cause of death from cancer

worldwide, and the lack of effective screening methods for early detection

currently results in unsatisfactory curative treatments. We herein aimed to use

breath analysis, a noninvasive and very simple method, to identify and validate

biomarkers in breath for the screening of lung cancer.

Materials and methods: We enrolled a total of 2308 participants from two

centers for online breath analyses using proton transfer reaction time-of-flight

mass spectrometry (PTR-TOF-MS). The derivation cohort included 1007

patients with primary LC and 1036 healthy controls, and the external

validation cohort included 158 LC patients and 107 healthy controls. We used

eXtreme Gradient Boosting (XGBoost) to create a panel of predictive features

and derived a prediction model to identify LC. The optimal number of features

was determined by the greatest area under the receiver‐operating

characteristic (ROC) curve (AUC).

Results: Six features were defined as a breath-biomarkers panel for the

detection of LC. In the training dataset, the model had an AUC of 0.963 (95%

CI, 0.941–0.982), and a sensitivity of 87.1% and specificity of 93.5% at a

positivity threshold of 0.5. Our model was tested on the independent

validation dataset and achieved an AUC of 0.771 (0.718–0.823), and

sensitivity of 67.7% and specificity of 73.0%.

Conclusion: Our results suggested that breath analysis may serve as a valid

method in screening lung cancer in a borderline population prior to hospital
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visits. Although our breath-biomarker panel is noninvasive, quick, and simple to

use, it will require further calibration and validation in a prospective study within

a primary care setting.
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Introduction

Lung cancer (LC) is the largest single cause of death from

cancer worldwide (1), and the five-year net survival is in the

range of 10–20% for most countries (2). However, early-stage LC

is curable, with an overall five-year survival rate of 80% (3).

There is therefore an urgency to the development of efficient

approaches in the early detection of LC.

Low-dose computed tomography (CT) scanning for the

population at high risk is commonly used in LC screening. To

reduce cancer mortality, the United States (U.S.) Preventive

Services Task Force recommended expanding LC screening to

younger individuals and low-intensity smokers (4). However,

high false-positive rates, over-diagnosis, limits to applicable

coverage, and cumulative radiation exposure remain primary

concerns with this type of screening modality (5).

Breath analysis (BA) provides an attractive option (6–8),

because the growth of cancer cells is strongly linked to key

metabolic pathways that produce detectable amounts of volatile

organic compounds (VOCs) in exhaled breath (9). Previous

studies have shown that BA can differentiate between LC

patients and healthy controls, with an overall accuracy of

69.4% to 100% (10). However, the lack of reproducibility for

breath biomarkers among different studies restricts the further

implementation of these biomarkers in clinical practice (11).

This lack of replicability is primarily because most breath

biomarkers were recognized from small pilot studies (the

largest study had a sample size of 193), and they lacked

independent validation to evaluate their test accuracy (10, 12).

Owing to the heterogeneity and variety of physiologic and

clinical backgrounds of patients, this deficiency in large-scale

samples hinders the development , val idat ion, and

implementation of appropriate biomarkers.

Gas chromatography in combination with mass

spectrometry and electronic noses are widely used for the
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investigation of breath biomarkers in LC (10–12). Breath

VOCs comprise a very complex matrix that contains a large

variety of VOCs at trace amounts (ppbv to pptv) (13, 14). The

major flaw of electronic noses in screening the reliable

biomarkers of LC is the inferior provision of quantitative

results with respect to unknown substances (15, 16). Mass-

spectrometric techniques are particularly well suited for

biomarker investigations because they offer the possibility of

detecting a large variety of compounds of interest with high

sensitivity and high accuracy (17–19). However, the commonly

encountered issues during conventional gas chromatography in

combination with mass spectrometry-based breath-profiling

analysis in a large-scale study are the complicated sample-

preparation procedure and time-consuming test processes.

Direct mass spectrometry—such as selected ion flow tube mass

spectrometry and proton transfer reaction-mass spectrometry—

are sufficiently sensitive and rapid to allow real-time breath

analysis (20, 21). Proton transfer reaction time-of-flight mass

spectrometry (PTR-TOF-MS) combines time-of-flight mass

spectrometry with a proton transfer flow-drift tube reactor,

and provides a high mass-resolving power that enables the

separation of isobaric molecules; this allows the measurement

of a complete mass spectrum within a fraction of a second (22,

23). Compared with offline sampling such as sample collection

into bags or onto traps, online sampling is beneficial in reducing

artifacts of sample degradation during collection, storage, and

handling or the introduction of impurities. To address the

challenges inherent to a large-scale breath study, we herein

employed a real-time, sensitive, and reliable analytical

instrument, the PTR-TOF-MS, in combination with buffered

end-tidal (BET) online sampling (24).

Machine learning-based prediction models have shown

promising and even superior predictive performance compared

with conventional statistical techniques (25), and the advantages

of machine learning in large-scale data processing and its non-

linear fitting capability make it particularly useful in resolving

medical complications. Therefore, we herein incorporated

machine-learning algorithms into the pipeline of LC screening

of an individual based on breath-component analysis.

Recent efforts have been undertaken to identify and

internally validate LC biomarkers using a relatively small
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dataset (139 patients with lung cancer and 289 healthy adults),

and the results suggested that breath testing may constitute a

reliable approach for the detection of LC (26). The goal of the

current study, then, was to define and externally validate breath

testing for LC screening using breath data from a large number

of samples from multiple centers. We therefore exploited a

breath test that combined PTR-TOF-MS and a machine-

learning algorithm to identify and validate the clinical

applicability of our novel biomarkers.
Materials and methods

This study was conducted and reported in accordance with

TRIPOD (27), the guideline for clinical-prediction model

studies; and STARD-2015 (28), the reporting guideline for

diagnostic test studies. Both checklists were completed and are

provided in e-Tables 1 and 2 in the Supplement.
Study design and data collection

The dataset comprising biomarker discovery and model

development was collected prospectively using a case-control

design. Consecutive patients suspected to have LC were prepared

for surgery or bronchoscopy in the Pulmonary Oncology

Department of the Cancer Institute and Hospital, Tianjin

Medical University, and were recruited between February of

2019 and January of 2020. Healthy subjects were enrolled after

undergoing health checkups at the Cancer Institute and Hospital,

Tianjin Medical University, from April 2019 to May 2019.

The validation dataset was also prospectively collected in a

case-control design. Suspected LC patients who were prepared for

surgery or bronchoscopy in the Department of Pulmonary

Oncological Surgery were recruited from Tianjin Medical

University General Hospital between October 2020 and June

2021, and healthy subjects (controls) were recruited from hospital

staff of the General Hospital of Tianjin Medical University in

November of 2020 and March and December of 2021.

The exclusion criteria for LC patients were those under 18

years of age; patients who showed a history of cancer or a

synchronous cancer; or had undergone chemotherapy (with

anticancer drugs), immunotherapy, hormonal therapy, or

radiotherapy. The exclusion criteria for healthy controls were

those under 18 years of age, undergoing pregnancy, individuals

with a self-reported history of pulmonary disease, and those

manifesting pulmonary nodules confirmed by CT images.

Information regarding a history of lung disease, medication

use, fasting, and tobacco smoking was obtained through self-

reporting. A history of lung disease was designated as an

affirmative response to the question “Have you ever had lung

disease?”; use of medications was defined as taking any type of

drug (including sprays, pills, capsules, and decoctions) in the
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previous half-month; an empty stomach was characterized as an

affirmative answer to the question “Have you eaten breakfast

already?”; and smoking status was delineated as never smoking,

being an ex-smoker, of currently smoking. Smoking denoted at

least one cigarette every day, which continued to or averaged

over six or more months; and an ex-smoker quit smoking four or

more months prior to sampling. We determined the amount of

smoking by counting the number of cigarettes smoked per day.
Calculation of sample size

In concert with the recommendations of TRIPOD and

PROBAST regarding sample-size calculation, we determined

the sample size needed for developing and validating the

respective models. The sample size for model development

was ascertained with the method recently proposed by Riley

et al. (29), as well as using 10 events per variable (EPV) as a rule-

of-thumb. We set Cox-Snell’s adjusted R (2) to 0.1 and the

desired shrinkage equal to 0.9 as recommended. Since machine-

learning models may require additional data relative to fitting a

statistical model, we added a conservative factor of 10%. Based

on our calculations, the desired sample size for model

development was 1868, with a conservative adjustment to 2055

(i.e., 1868*1.1). Cases and controls were collected at a ratio of

approximately 1:1, and with 22 candidate variables our EPV was

47 (i.e., 2055*0.5/22), which was far larger than that required

using rule-of-thumb.

We computed the sample size for model validation according

to a requirement of at least 100 patients in both groups, with and

without the outcome of interest (i.e., primary LC).
Outcome and reference standards

We obtained samples of lung-tissue lesions from LC patients

by bronchoscopy or surgery for pathologic examination, and

clinical status (including stage and type of LC) was confirmed by

pathologic diagnosis within one month after sampling. The

disease status of healthy controls was determined by physical

examination; i.e., individuals younger than 45 years of age

underwent lung X-rays while individuals older than 45

underwent either lung X-rays or lung CT scans.
PTR–TOF-MS analysis

PTR-TOF-MS (PTR-TOF-MS 1000, Ionicon Analytik

GmbH, Innsbruck, Austria) offers quantitative analysis of the

entire mass range (1–10,000 amu) within split-seconds and with

an ultra-low detection limit (LoD<10 pptv) and high resolution

(>2000 m/△m). The BET-sampling system (Ionicon Analytik

GmbH, Innsbruck, Austria) also affords the two distinct
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advantages of collecting the end-tidal fraction of exhaled breath

gas and maintaining a normal breathing pattern for test subject

after one exhalation. This system allows the measurement of

endogenous compounds originating from the alveolar blood-gas

exchange, and reduces the risk of hyperventilation.

Our procedure was as follows. The test subject exhaled

directly into the buffer tube of the BET-sampling system

equipped with a disposable and sterile mouthpiece

(Polypropylene; Art. Nr. 31-30-0022, Germany) and the

procedure was repeated three times. The buffer tube was

maintained at 80°C by a heating system so as to eliminate the

effect of condensation of humidified breath gas, and the collected

gas was introduced into the ionization section by the inlet line of

the instrument. The ionized molecules were then separated by

their mass-to-charge ratio (m/z) and subsequently detected. The

pressure and temperature in the drift tube were 2.3 mbar and 70°

C, respectively, with an electric drift field of 600 V. A total of 318

features (m/z) were thus extracted from the acquired spectrum

of each exhaled breath sample.
Data analysis

Candidate predictors
Raw PTR-MS spectra were acquired using the data

acquisition software loniTOF30. Data were preprocessed to

extract all features that were organic compounds and

expiratory concentrations that were higher than the respective

inspiratory concentrations. Twenty-two features of endogenous

VOCs that were ultimately determined for all test subjects in the

discovery dataset were chosen as candidate features.

Feature selection
Before feature selection we first standardized our dataset

with an estimated mean and variance from the training set

(standardization of external validation set was also based on

mean and variance from the training set), and to further reduce

the candidate-feature set, we calculated the Spearman

correlation between each pair of features. We then randomly

removed one of the features from a pair with a correlation

greater than 0.99, and this resulted in a final candidate set of 14

features. Finally, we ran an eXtreme Gradient Boosting

(XGBoost) classifier (30) and ranked the remaining 14 features

using the inherent feature importance from the classifier.
Model selection
The XGBoost models were iteratively trained with the

feature subset ranked at the top, starting with the most

important feature and with one feature added each time. At

completion, we respectively compared 14 models with 1 to 14

features; and model performance was evaluated via a 10-fold

cross validation. The area under the receiver‐operating
Frontiers in Oncology 04
characteristic (ROC) curve (AUC) averaged over 10 validation

results was used as our criterion for model selection. To achieve

a balance between model performance and simplicity, we set the

performance-reduction tolerance at 1%, indicating that the

minimal model performance requirement was 99% of the

highest AUC among the 14 models. We then chose the final

model that met both the minimal performance requirement and

that possessed the fewest features.

Statistical analysis of model performance
Continuous variables are expressed as median and inter-

quartile ranges (IQRs), and categorical variables are expressed as

counts and percentages. The discrimination of the predictive

model was assessed using ROC curves and AUCs, while

calibration was assessed with the calibration curve.

We also calculated diagnostic performance measures—

including sensitivity, specificity, precision, recall, and accuracy—

based upon confusion matrix with a pre-specified positivity

threshold of 0.5.

The implementations of our feature engineering process,

predictive model development, and validation were based on

Python Scikit-learn 0.22.1 (31).
Ethics approval

The study was conducted according to the guidelines of the

Declaration of Helsinki and approved by the Ethics Committees

of the Cancer Institute and Hospital, Tianjin Medical University;

and Tianjin Medical University General Hospital. The present

trial was registered with the Institutional Review Board of the

Chinese Clinical Trial Registry (registration number:

chiCTR1900023659), and all methods were conducted in

accordance with relevant guidelines and regulations. Informed

consent was obtained from all participants.
Results

Description of the derivation and
validation datasets

The flow chart for patient recruitment is shown in Figure 1.

For model derivation, we recruited a total of 2043 participants,

including 1007 patients with primary LC and 1036 healthy

controls from the Cancer Institute and Hospital, Tianjin

Medical University. Mean age of the 1007 patients with

primary LC (559 males, 55.51%) was 61 years (age range, 21–

81 years), and the most-common smoking status of the patients

was non-smoker—accounting for 45.08%. The principal

tumor cell types were adenocarcinoma (62.36%), squamous

cell carcinoma (15.89%), and small-cell carcinoma (9.04%). At
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the time of LC diagnosis, we noted 273 patients with stage I

disease (27.11%), 121 with stage II (12.02%), 128 patients with

stage IIIIV (12.71%), and 170 patients with stage IV (16.88%). Of

the enrolled patients, 387 (38.43%) reported that they were

fasting at the time of breath sampling. The mean age of the

1036 healthy controls (536 males, 51.74%) was 45 years (age

range, 22–90 years), 776 of the subjects were non-smokers

(74.91%), and 857 (82.72%) were fasting at the time of

breath sampling.

The independent-validation cohort comprised 265 subjects

(including 158 patients with primary LC and 107 healthy

controls) who came from the General Hospital of Tianjin

Medical University. Mean age of the 158 patients with primary

LC (63 males, 39.87%) was 63 years (age range, 33–78 years),

and the most-common smoking status was smoker—accounting

for 49.37%. At the time of LC diagnosis, we noted 133 patients

with adenocarcinoma (84.18%), 15 with squamous cell

carcinoma (9.49%), and four with small-cell lung cancer

(2.53%). Of the enrolled patients, 17 (10.76%) reported that

they were fasting at the time of breath sampling. The mean age of

the 107 healthy controls (40 males, 37.38%) was 30 years (age

range, 19–74 years), 94 of the subjects were non-smokers

(87.85%), and nine (8.41%) were fasting at the time of breath

sampling (the baseline characteristics of these individuals are

shown in Table 1).
Development and validation of the
prediction model

Feature selection and importance ranking
Candidate features were first selected by their pairwise

correlations, and 14 features were retained for subsequent data

analysis. The features selected and their distributions are depicted

in Figure 2 (ranked by their importance), where green represents

LC patients and red represents healthy subjects.
Frontiers in Oncology 05
The model achieving the greatest AUC included the top 12

features, and it yielded an AUC (averaged across 10-fold cross-

validation) of 0.970. Thus, the minimal performance

requirement was 0.961 (i.e., 99%*0.970). The model with the

fewest features that met this requirement was selected as the final

model, and it included the top six features, with an AUC of

0.963. (Figure 3) The features included in the ultimate model

were ‘m77.0597 ([C3H8O2] H+)’, ‘m95.0491 ([C6H6O] H+)’,

‘m33.0335 ([CH4O] H+)’ , ‘m59.0491 ([C3H6O] H+) ’ ,

‘m137.0709 ([C7H8N2O] H+)’, and ‘m68.0495 ([C4H5N] H+)’.

The final model was internally validated with 10-fold

validation and externally validated with the independent-

validation dataset, and the AUCs were 0.963 and 0.771 for

internal and external validations, respectively (Figure 4). The

calibration curves showed acceptable alignment for both the

derivation and validation datasets (Figure 5).

With a predefined positivity threshold of 0.5, the sensitivity

and specificity of the final model were 87.1% and 93.5% for the

derivation data, respectively; and 67.7% and 73.0% for the

validation data, respectively. The confusion matrix (Table 2)

and diagnostic-accuracy measures for both the derivation and

validation datasets are provided in Table 3.

Sensitivity and subgroup analyses on internal
and external validation

In the sensitivity analyses, we evaluated the performance of

the developed model in distinguish different histological

subtypes from healthy controls, and also evaluated the model

performance in cancer staging. In the subgroup analyses, we

evaluated the model performance in gender groups (male and

female), age groups (<45 and 45 years old), fasting groups, and

smoking groups (evaluating the model performance in ever-

smoking and non-smoking groups separately). The model

performance is consistent with the overall results in the

sensitivity and subgroup analysis. All these results are

provided in e-Tables 3, 4 and 5 in the Supplementary.
FIGURE 1

Flow chart for patient recruitment in model development and validation cohorts.
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TABLE 1 Baseline characteristics of the individuals included in the study.

Derivation Validation

Lung cancer (n = 1007) Healthy control (n = 1036) Lung cancer (n = 158) Healthy control (n = 107)

Male (%) 559 (55.51%) 536 (51.74%) 63 (39.87%) 40 (37.38%)

Age (IQR) [Range] 61 (54, 66) [21-81] 45 (35, 58) [22-90] 63 (58, 69) [33-78] 30 (24, 43)[19-74]

Smoking (%)

Smokers 382 (37.94%) 209 (20.17%) 78 (49.37%) 12 (11.22%)

Ex-smokers 171 (16.98%) 51 (4.92%) 24 (15.19%) 1 (0.93%)

Non-smokers 454 (45.08%) 776 (74.91%) 56 (35.44%) 94 (87.85%)

BMI(IQR) 24.03 (22.04, 26.30) 24.06 (21.97, 26.30) 23.96 (21.64, 25.92) 22.48 (20.28, 25.45)

Fasting (%) 387 (38.43%) 857 (82.72%) 17 (10.76%) 9 (8.41%)

Adenocarcinoma (%) 628 (62.36%) NA 133 (84.18%) NA

Squamous cell carcinoma (%) 160 (15.89%) NA 15 (9.49%) NA

Small-cell lung cancer (%) 91 (9.04%) NA 4 (2.53%) NA

Missing 128 (12.71%) 6 (3.80%)

Stage (%)

0 31 (3.08%) NA – NA

I 273 (27.11%) NA – NA

II 121 (12.02%) NA – NA

III 128 (12.71%) NA – NA

IV 170 (16.88%) NA – NA

Missing 284 (28.20%)
Frontiers in Oncology
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NA, Not applicable for healthy control group.
Derivation ValidationA B

FIGURE 2

Feature distributions on the derivation dataset (A) and validation dataset (B), ranked by their importance (the first feature from left on the first
row is the most important). For each feature, both distributions from LC patients (green) and healthy subjects (red) are shown.
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Discussion

In the nearly 50 years since Linus Pauling first demonstrated

the presence of VOCs in human breath, investigators have

published over 50 reports showing a strong biologic rationale

for using breath biomarkers in the detection of LC. Nevertheless,

prior to reaching the clinical setting, this promising approach

still faces the challenges of the inconsistent biomarkers exhibited
Frontiers in Oncology 07
in previous studies: these include limited study cohorts, single

study sites, and a lack of validation.

In the current large-scale, multi-center biomarker study,

efforts were made to define more reliable breath biomarkers.

We first recruited a large cohort of 2043 subjects and analyzed

their breaths to develop a predictive panel using machine

learning so as to reduce the influence of patient-related

individual differences. We thus designed a real-time, sensitive,
FIGURE 3

Relation between number of features selected in the model and model performance. Green bars correspond to feature importance. Black solid
line corresponds to AUC calculated with top 1-14 features. Black dotted lines demonstrate the number of features selected when achieving 99%
of maximum AUC.
  Internal Validation (10-fold)   External ValidationA B

FIGURE 4

The ROC curves for (A) internal 10-fold cross-validation and (B) external validation. In (A), darker line represents the averaged results.
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and reliable instrument coupled with BET sampling for the

online collection of alveolar air to reduce the influence of

sampling and environmental confounders. Through the

exploitation of the machine-learning algorithm XGboost, a

panel of six features was defined that revealed an AUC of
Frontiers in Oncology 08
0.963, a sensitivity of 87.1%, and a specificity of 93.5%.

Second, our panel was validated from a dataset measured at a

different hospital, and which achieved an AUC of 0.771. These

data of large-scale breath testing and machine learning exhibited

the potential to overcome the methodologic challenges of breath

tests in the detection of LC, and showed that our metabolic

breath panel generated a strong potential for application as a

screening tool in clinical practice for the detection of LC.

The PTR-TOF-MS is one of the most powerful techniques

for online monitoring of trace VOCs, it can detect mass

spectrum peaks with m/z less than 500 and simultaneously

achieved accurate concentration of these features, while the

peak intensity as a substitute indicator for concentration was

used in most mass spectrum techniques. In addition, it has a low

detection limit of 10 ppt and a wide detection linear range of 5

orders of magnitude. These characteristics make PTR-TOF-MS

hold potentially great value for model development of cancer
  Internal Validation (10-fold)    External Validation  

 

A B

FIGURE 5

Probability calibration plots for (A) internal 10-fold cross-validation and (B) external validation.
TABLE 2 Confusion matrix of the derivation and validation datasets.

Derivation data Lung cancer diagnosed by the current gold standard Total

Present Absent

Model prediction Positive True positive = 877 False positive = 67 944

Negative False negative= 130 True negative = 969 1099

Total 1007 1036 2043

Validation data Lung cancer diagnosed by the current gold standard Total

Present Absent

Model prediction Positive True positive = 107 False positive = 29 136

Negative False negative= 51 True negative = 78 129

Total 158 107 265
frontier
TABLE 3 Model performance of diagnostic accuracy in the
derivation and validation datasets.

Training (95% CI) Validation (95% CI)

AUC 0.963 (0.941–0.982) 0.771 (0.718–0.823)

Accuracy 0.904 (0.888–0.925) 0.704 (0.654–0.753)

Sensitivity/Recall 0.871 (0.822–0.926) 0.677 (0.598–0.750)

Specificity 0.935 (0.884–0.967) 0.730 (0.660–0.798)

PPV/Precision 0.930 (0.883–0.961) 0.706 (0.631–0.779)

F-score 0.899 (0.880–0.924) 0.690 (0.625–0.750)
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identification. In this study, we developed the model based on

the features extracted from PTR-TOFMS data. The identified

VOCs based on m/z was 1,3-Propanediol, phenol, methanol,

acetone, m-aminobenzamide and butene nitrile according to the

library established based on PTR-TOF-MS. Alcohols and

ketones are most commonly detected compounds as

biomarkers as lung cancer (32). The formation of some

alcohols has been repeatedly reported in the literature to be

associated with the growth and metastasis of cancer, suggesting

the existence of significance of alcohols in indicating lung cancer

(33). Acetone can be produced from the spontaneous

decarboxylation of acetoacetate, and it has been used as a

biomarker for activation of ketone metabolism, which

suggesting that metabolism of ketone bodies might be

important for lung cancer cells. It has been confirmed that

when there is cancer cell activity in the body, abnormal cell

proliferation triggers a stress response that causes increased

secretion of adrenocorticotropic hormones (monohydroxy

phenolics) in the body (34), suggesting that phenolic

metabolites may have an indicator role for lung cancer. In

addition, m-aminobenzamide and butene nitrile have not been

reported in the literature.

There were, however, some limitations to our study. First, we

employed a population-based, case-control design for recruiting

participants, individuals with pulmonary nodules confirmed by

CT images were excluded from healthy controls, which may lead

to overestimate of the predictor–outcome association as well as

the model performance. Although a phase-3 analysis (such as

model development) was executed, our study can only be viewed

as a phase-2 study for biomarker exploration according to the

definition provided by Pepe et al. (35). We thus plan a follow-up

phase-3 study with nested case-controls within a population

cohort to confirm the performance of the proposed markers, and

to validate the model in a real-world setting. Second, only 304

cases (30.19% of all LC cases) were diagnosed with early-stage

LC in the derivation dataset (stage 0 + stage I), which can differ

from the screening setting. Third, the two centers involved in

this study were from the same city, which may have limited the

robustness of the panel in general clinical practice. Finally,

whether the breath panel established in this study excluded the

interference of other lung diseases in otherwise healthy

individuals requires further verification in the future.

Alternatively, a new expiratory database that includes other

lung diseases could be implemented. Since the breath panel

was selected based upon machine learning, we also propose that

our analysis will emerge as more robust when additional

participating centers and individuals are recruited to the study.

In summary, we identified a breath-biomarker panel

consisting of six features that was defined and validated as an

effective tool for the detection of LC in a multi-center phase-2
Frontiers in Oncology 09
study. The biomarker panel was applied to discriminate patients

with LC from a healthy population (without LC), and whose

screening performance was externally validated. This breath panel

showed a robust potential for LC screening in clinical practice.

However, additional prospective data are needed within a cohort-

study design in a primary care setting where the prevalence of LC

would be far lower, so as to confirm the validity of our findings

and to establish the optimal predictive model.
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