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Abstract Systemic sclerosis (SSc) is a rare autoimmune
connective tissue disease with a high mortality and
morbidity. While progress has been made in terms of
identifying high-risk patients and implementing new treat-
ment strategies, therapeutic options remain limited. In the past
few decades, various cellular therapies have emerged, which
have been studied in SSc and other conditions. Here, we pro-
vide a comprehensive review of currently available cellular
therapies and critically assess their merit as disease-
modifying treatment for SSc. Currently, hematopoietic stem
cell transplantation is the only cellular therapy that has dem-
onstrated clinical effects on the immune system,
neoangiogenesis, and fibrosis. Robust mechanistic studies as
well as clinical trials are essential to move the field forward.
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Introduction

Systemic sclerosis (SSc) is an autoimmune disease character-
ized by inflammation, skin fibrosis, and vasculopathy. Key

clinical manifestations are skin tightening and Raynaud’s phe-
nomenon. Gastro-intestinal, vascular and cardio-pulmonary
complications may develop as disease progresses; the latter
are the most common cause of death in SSc [1, 2]. Based on
the extent of skin involvement, systemic sclerosis can further
be classified as limited cutaneous systemic sclerosis (lcSSc)
and diffuse cutaneous systemic sclerosis (dcSSc) [3].

Despite considerable advances in the treatment of autoim-
mune diseases, SSc remains a disease with high mortality and
morbidity. The cumulative 5-year mortality for SSc patients
from diagnosis is 25 %, with better outcomes for patients with
lcSSc and worse outcomes for patients with dcSSc [4]. Cur-
rently available therapies are targeted to treating organ mani-
festations and while it has been shown that intravenous cyclo-
phosphamide can halt progression of pulmonary and cardiac
fibrosis, a true cure is lacking [5•, 6]. New therapeutics which
have demonstrated spectacular results in other autoimmune
diseases confer modest benefits at most in SSc, if effective at
all [7]. Therefore, continuing the search for therapeutic op-
tions for SSc patients is essential.

SSc involves dysfunctional processes on several
levels: the immune system, the vascular system, and
extracellular matrix production [8–10]. A therapy which
acts on all three levels can be considered a true disease-
modifying therapy for SSc. Cellular therapies may be
able to fulfill this potential. In this review, we provide
an overview of currently available cellular therapies and
critically review the available literature to evaluate the
potential of cellular therapies in the treatment of SSc.

Cellular Therapy: General Considerations

Cellular therapy can be defined as the administration of cells
to achieve a therapeutic effect. This was first conceived in the
late nineteenth century, starting with the implantation of
xenogenic parathyroid tissue to treat hypoparathyroidism after
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thyroidectomy. The initial successes reported led to attempts
to treat conditions ranging from Down’s syndrome to cancer
with cells or extracts of animal or fetal origin. However, its
efficacy remained uncertain and ultimately, as reports about
zoonoses and allergic reactions emerged, interest in cellular
therapy declined [11–13].

The advent of chemotherapeutics and the develop-
ment of hematopoietic stem cell therapy (HSCT)
rekindled the development of cellular therapies, as it
could be established that administration of cells led to
a demonstrable therapeutic effect. Studies focusing on
bone marrow components identified cell populations
possibly responsible for the restoration of hematopoie-
sis, leading to preclinical and clinical studies examining
the effect of transplantation of these cell types. Insights
into the role of the immune system in malignancy led to
the development of cellular strategies to harness im-
mune cells against malignant cells.

Nowadays, cellular therapies range from stem cell trans-
plantation to highly selective cellular vaccines that can target
specific immune cells. Other options include the transplanta-
tion of cells to restore tissue structure and function or to de-
liver specific cytokines and other paracrine factors to sites of
inflammation. Cellular therapies are utilized in a wide variety
of clinical settings, including autoimmune disease [14–18].
Table 1 lists the therapies currently available for autoimmune
disease.

Cellular therapies originated from different clinical needs,
reflected in a diversity of treatment protocols. Essential steps
in every therapy are selection and isolation of the desired cell
type, ex vivo manipulation of the cells, and finally adminis-
tration of the cells to the patient.

Cell Types and Isolation

Cell types used in cellular therapy can be either autologous or
allogeneic and can be harvested from various tissues (Fig. 1).
Methods to obtain source material for cellular therapy range
from venipuncture to the harvesting of specific tissues under
regional or general anesthesia. More complex regimens in-
clude the pharmacological mobilization and subsequent aphe-
resis of cells.

Ex Vivo Manipulation

The desired cell types are isolated from the source material
with specialized techniques such as magnetic bead separation,
culturing on selective media or fluorescence-assisted cell
sorting. Some approaches require further manipulation. For
instance, scarcity of a cell type in vivomay necessitate ex vivo
propagation, which can pose cell-specific challenges. Another
approach is to differentiate an abundant cell type (e.g., mono-
cytes) into the desired cell type using specific stimuli.

An important consideration is that protocols involving ad-
ministration of cells to humans should comply with Good
Manufacturing Practices (GMP) and local regulations for
quality assurance and manufacturing requirements.

Administration

Depending on the application, cells can be administered intra-
venously, intra-arterially, intramuscularly, or subcutaneously.
Some cellular therapies require the use of adjuvant medication
to induce immune suppression or immune ablation prior to
administration. Administration protocols are often based on

Table 1 Summary of cellular
therapies in autoimmune disease Effects on immune

system
Neoangiogenesis Anti-fibrotic effects Level of evidence

HSCT +++ ++ +++ Phase III clinical
trial in SSc

MSC ++ +++ + Case reports, case
series in SSc

MNC Unknown +++ ++ Phase 1 clinical
trials in SSc

ADC Unknown ++ ++ Phase 1 clinical
trials in SSc

DC ++ Unknown Unknown Phase I clinical
trial in AD

Tregs ++ In vitro studies:
possible role in
angiogenesis

In vitro studies:
inhibit secretion
of pro-fibrotic factors

Phase 1 clinical
trials in AD

The columns represent the desired qualities of a cellular therapy for SSc; the number of + depicts in what extent
the cellular therapy possesses a quality. Level of evidence refers to available clinical evidence in AD

AD autoimmune disease, HSCT hematopoietic stem cell transplantation, DC dendritic cells, Tregs regulatory T
cells, MNC mononuclear cells, MSC mesenchymal stem cells, ADC adipose tissue-derived cells
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local experience and are rarely standardized, with HSCT as a
notable exception.

Hematopoietic Stem Cell Transplantation

HSCTwas the first cellular therapy to be applied in refractory
autoimmune disease. Originally developed in hemato-oncol-
ogy, HSCT is used to reconstitute the hematopoietic niche
after chemotherapy treatment or irradiation to obliterate ma-
lignant cells. HSCTconsists of a mobilization phase to harvest
CD34+ hematopoietic stem cells followed by administration
of lympho-ablative chemo(radio)therapy to ablate the immune
system (‘conditioning’) and subsequent reinfusion of the au-
tologous graft.

Rationale

Administration of high doses of cyclophosphamide and anti-
thymocyte globulin leads to ablation of the immune system,
including self-reactive immune cells. Subsequent administra-
tion of CD34+ hematopoietic stem cells regenerates a func-
tional self-tolerant population [19]. After HSCT, less pro-
inflammatory cytokines are produced and serum levels of an-
ti-Scl-70, an antibody highly specific to SSc, gradually drop.
Not all cell populations are completely Breplaced^ [20]. This
suggests that a complete reconstitution of the immune system
is not necessary for a treatment effect.

In SSc patients, regression of skin fibrosis in skin biopsies
was seen after HSCT [21], implying that processes involved in
dermal fibrosis can be reversible. Levels of pro-fibrotic cyto-
kines were demonstrated to be lower after HSCT [20].

However, the effect on cardiac and pulmonary fibrosis seems
to be limited. Patients demonstrated an initial improvement in
ground glass aspect on high-resolution computed tomography
(HRCT), but a subsequent deterioration to pre-transplant sta-
tus was found at 24 months and then remained stable until
60 months follow-up. Improvement in modified Rodnan skin
score (mRSS) was sustained. Importantly, lung function test
results remained stable [22].

Neoangiogenesis has been observed in skin biopsies and
capillaroscopy of SSc patients treated with HSCT [23, 24].
This suggests a beneficial effect of systemic immune suppres-
sion on angiogenesis. Another contributing factor might be
the administration of CD34+ cells themselves. Administration
of bone marrow-derived CD34+ cells to patients with limb
ischemia has been reported to promote neovascularization
[25].

Clinical Trials in SSc

Uncontrolled studies in SSc have demonstrated that HSCTcan
halt disease progression and reverse skin fibrosis and sug-
gested it might even reduce mortality [26–28]. The next step
to evaluate HSCT for SSc was to compare its effectiveness
and safety to intravenous cyclophosphamide pulses, the only
treatment option for progressive SSc.

The American Scleroderma StemCell versus Immune Sup-
pression Trial (ASSIST trial) was the first published, random-
ized trial to examine the possible superiority of HSCTas com-
pared to six pulses of cyclophosphamide in SSc. Nineteen
patients were included. Interim analyses were part of the trial
design. This led to the early termination of the trial: HSCT led
to a lasting remission, whereas patients treated with cyclo-
phosphamide experienced disease progression after 1 year.
No patients died during the trial [29].

The Autologous Stem cell Transplantation International
Scleroderma (ASTIS) Trial was an international randomized
multi-center phase III trial comparing HSCT to 12 successive
monthly pulses of cyclophosphamide. Patients (n=156) with
early progressive systemic sclerosis were included in 29 Eu-
ropean centers. HSCTwas shown to have a higher treatment-
related mortality in the first year (10.1 versus 0 % in the cy-
clophosphamide group) but showed a better survival overall
when compared to the cyclophosphamide group. Further-
more, mRSS, pulmonary function, and quality of life signifi-
cantly improved in the HSCT group as compared to the cy-
clophosphamide group, demonstrating that HSCT is a true
disease-modifying treatment. Notably, seven of the eight pa-
tients who died due to treatment-related causes were smokers,
indicating that such patient factors can play an important role
in the success or failure of a systemic treatment. This trial also
underlines the need to optimize HSCT protocols and patient
selection, as the eight treatment-related deaths occurred during
conditioning [30••].

Peripheral blood
CD34+ cells
MNC 
T-cells 

Adipose tissue
ADC
MSC

Bone marrow
MNC
MSC 

Ex vivo manipulation

Administration

Conditioning

Mobilization

Fig. 1 The process of cellular therapy. Cells can be isolated from various
sources. Subsequent ex vivo manipulation allows isolation of specific cell
types, differentiation of cells into the desired cell type, or prolonged
culturing to expand cell numbers. Cells can then be administered.
Preparation of the patient or donor may be necessary prior to isolation
(mobilization) or administration (conditioning)
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The Scleroderma: Cyclophosphamide or Transplantation
(SCOT) Trial, conducted in North America, included 75 sys-
temic sclerosis patients with severe involvement of skin and
internal organs to compare HSCT to cyclophosphamide
pulses, albeit with lower doses for conditioning than the
ASTIS Trial. This trial added total body irradiation to the
conditioning regimen, with lung and kidney shielding to pre-
vent radiation-induced organ complications [31]. Inclusion
has been completed, data regarding the primary endpoint is
expected in due course.

Current Status and Future Perspectives

Beneficial effects of HSCT on immunomodulation, fibrosis,
and angiogenesis have been demonstrated in SSc patients.
This suggests that the immune system plays a key role in
various processes including some that are not traditionally
associated with the immune system.

The results of the ASTIS Trial established HSCT as a true
disease-modifying treatment of SSc leading to inclusion of
HSCT into clinical protocols for SSc patients. Further studies
will have to focus on optimizing both the treatment as well as
patient selection: how can we reduce treatment-related mor-
tality while still maintaining strong SSc-related outcomes? A
recently started study (Table 2) will examine the effect of a
different, less intensive, conditioning regimen.

Mesenchymal Stem Cells

In 1974, Friedenstein et al. first discovered the presence of
non-hematopoietic stem cells in the bone marrow [32]. These
were later named mesenchymal stem or stromal cells (MSCs)
for their potential to differentiate into various mesenchymal
tissues [33]. MSCs are located on the outside of the bone
marrow sinusoids, support circulation in the bone marrow,
and play a role in hematopoiesis [34]. MSCs are isolated from
bone marrow by plastic adherence—MSCs will adhere to a
culture flask, whereas other cells can be washed away after
1 day. The low prevalence of MSCs in bone marrow necessi-
tates further ex vivo expansion prior to administration.

MSCs are currently used therapeutically for graft-versus-
host-disease and other applications are under investigation.
MSCs have been safely administered to patients suffering
from a wide variety of diseases, including autoimmune dis-
ease [35, 36••].

Rationale

In vitro and vivo studies have demonstrated that MSCs can
home to injured tissue and secrete factors that suppress inflam-
mation and improve angiogenesis [37–39]. However, just ad-
ministering the secretions of MSCs may not be sufficient as

the MSCs’ secretome is influenced by local stimuli, e.g., in-
flammation or hypoxia [40]. Cell-to-cell interactions are also
essential to immunomodulation and regenerative effects
[41–43]. MSCs express low levels of MHC type II and can
survive in an allogeneic host through immunomodulation,
allowing allogeneic transplantation.

MSCs have demonstrated a potent immunosuppressive ef-
fect in steroid-resistant graft-versus-host disease (GVHD) [44].
Administration of allogeneic MSCs to SLE patients in an un-
controlled study was shown to be safe and effective, reportedly
inducing remission in 50 % of patients after 4 years [45].

Anti-fibrotic effects of MSsC were seen in GVHD patients
[46, 47], supporting the observation of a decrease in mRSS in
SSc patients (below). As MSCs can secrete collagen and
transforming growth factor beta (TGF-β), the anti-fibrotic ef-
fect is most likely due to the immunomodulatory effects of
MSCs which may reduce production of pro-fibrotic factors by
immune cells.

In animal models of ischemia, neovascularization after
MSC administration has been demonstrated, leading to suc-
cessful but small clinical trials that explored the use of MSCs
in critical limb ischemia or chronic ulcers [48•]. Indications of
formation of new vessels in a SSc patient were provided by
angiography and histology [49]. MSCs secrete factors that
stimulate neoangiogenesis and can activate local cells to mi-
grate to sites of injury [37, 50].

Clinical Trials in SSc

Clinical use of MSCs for SSc was described in two case re-
ports and one case series (Table 3) [49, 51, 52]. Patients were
suffering from extensive skin necrosis and/or pulmonary and
cardiac fibrosis. All three reports noted substantial healing of
ulcers and necrotic skin areas after intravenous administration
of MSCs. Decrease of mRSS was also reported. Angiography
findings indicated neovascularization. Leukocyte numbers did
not change, though Christopeit et al. reported an increase of
the relative fraction of CD137L-positive CD4+ and CD8+
cells after 14 days, suggesting that the effects of MSCs are
mediated by CD137L+ Tcells [51]. No adverse events related
toMSC administration were reported. Thus, MSC administra-
tion, even allogeneic MSC, appears to be safe in SSc patients,
but the small number and diversity of the patients treated do
not allow conclusions regarding efficacy.

Current Status and Future Perspectives

Clinicaltrials.gov lists one trial examining intravenous admin-
istration of MSCs in SSc, its status is unknown (Table 2). As
MSCs seem to have a favorable safety profile in severely
affected SSc patients and given the successes reported, it is
surprising that initial success of MSC administration has not
yet led to clinical trials in SSc. Due to their status as Badvanced
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therapy medicinal product,^ GMP-grade MSCs are readily
available in major medical centers in Europe.

Data from a recent meta-analysis on clinical studies where
MSCswere administered intravenously do not indicate a higher
risk of malignancy, ectopic transformation, or acute toxicity
[36••] but it is important to remain vigilant as MSCs continue
to be implicated in tumor transformation and metastasis. Fur-
thermore, as a majority of infusedMSCs become trapped in the
lungs after systemic infusion [53, 54], more evidence as to the
safety in SSc patients with lung involvement is required.

Local Implantation of Cells

Promising results following local implantation of bonemarrow-
derived cells and adipose tissue-derived cells in critical limb
ischemia motivated researchers to evaluate this as treatment
for non-healing ulcers and hand and skin complaints in SSc.

Bone Marrow-Derived Cells

The discovery of endothelial progenitor cells led to the thera-
peutic administration of progenitor cells to promote angiogen-
esis [55]. As endothelial progenitor cells are very rare in the
blood but abundant in bone marrow, the effect of administra-
tion of CD34+ mononuclear cells (MNC) derived from bone
marrow was investigated. Promising results following local
implantation of bone marrow-derived cells and adipose
tissue-derived cells in critical limb ischemia motivated
researchers to evaluate this as treatment for non-healing
ulcers and hand and skin complaints in SSc.

Rationale

Intramuscular injection of bone marrow-derived cells creates
depots of cells, reducing the need to home through a compro-
mised vascular system and enabling cell–cell contact [56].
CD34+ cells were, like MSC, thought to home, engraft, and
differentiate into new vascular structures.

Clinical Trials

In four small uncontrolled trials, bone marrow or peripheral
blood-derived MNC injections were studied as treatment for
ulcers of the upper and lower extremity in SSc (Table 3).
Dosages and reported injection technique varied, utilizing 20
to 70 injections. A decrease in visual analogue scale (VAS) for
pain was noted in all studies, and some reported changes in
objective studies of vascular function, e.g., transcutaneous
oxygen pressure. Local implantation was well tolerated.
Self-limiting local swelling or hematoma occurred in some
patients but did not lead to local complications [57–60].

Adipose Tissue-Derived Cells

Adipose tissue-derived cells (ADC) can be isolated from tis-
sue obtained through liposuction. Cellular therapies based on
ADC can involve either freshly isolated cells or expanded
cells.

Rationale

Few studies have been conducted utilizing freshly isolated
autologous adipose tissue; most studies focus on ex vivo ex-
panded MSC isolated from adipose tissues, of which the an-
giogenic potential has been well characterized in both preclin-
ical and clinical studies [48•]. It can be hypothesized that
pericytes or progenitor cells present in the vascular stroma
are responsible for the clinical effect [61•]. The observed
anti-fibrotic effects suggest that unexpanded ADC also have
immunomodulatory properties.

Clinical Trials

Three uncontrolled trials regarding the use of ADC in SSc
have been performed (Table 3); two trials used unexpanded
ADC and one trial used expanded cells. ADC administration
reduced skin tightness, decreased Raynaud’s symptoms, and
promoted the healing of digital ulcers. A decrease in VAS for

Table 2 Cell therapy trials in SSc
registered on clinicaltrials.gov
(search date: 4 September 2015)

Identifier Type Stage Phase Country

NCT00622895 Allogeneic HSCT,
nonmyeloablative conditioning

Recruiting Phases 1–2 USA

NCT01895244 HSCT Recruiting Phase 2 Germany

NCT02213705 MSC iv administration Recruiting Phases 1–2 France

NCT02206672 Facial implantation of autologous
adipose tissue

Recruiting Phases 1–2 France

NCT02396238 Autologous adipose tissue Not yet started Phase 2 Not provided

NCT00962923 Intravenous MSC Unknown Phases 1–2 China

NCT01413100 HSCT Recruiting Phase 2 USA

NCT00849745 HSCT less toxic conditioning Recruiting Phase 1 USA
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pain was also seen. Del Papa et al. reported significant growth
of capillaries in the treated finger. Adverse events were limited
to local complaints after implantation, though the injection
technique in the study by Granel et al. caused paresthesia in
one patient and finger pain in another patient, which did re-
solve spontaneously [61•, 62, 63].

Current Status and Future Perspectives

To further develop local cell implantation, key questions still
need to be answered. First of all, comparative studies into cell
types used are needed. Recent results from both preclinical
and clinical studies in limb ischemia indicate that MSCs seem
more effective at neovascularization than MNC to treat limb
ischemia [64, 65]. However, results from studies with
unexpanded ADC indicate that unexpanded cells may also
be effective. Additionally, the optimal dose, administration
route, number of injections, and volume to be injected need
to be determined.

The studies summarized here provide some reassurance
that the trauma of injection does not increase fibrosis and that
injected cells do not differentiate inappropriately in a pro-
fibrotic environment. However, additional data from con-
trolled studies to establish the efficacy and safety of local cell
implantation is needed.

Tolerogenic Dendritic Cells

Dendritic cells (DCs) are key players in the immune system
because of their essential role in both immune activation as
antigen-presenting cells as well as their ability to induce tol-
erance. DCs maintain tolerance by recognizing self-reactive T
cells; DCs can subsequently deactivate them or induce differ-
entiation of regulatory T cells which in turn can suppress the
self-reactive effector T cells.

DCs with a tolerogenic effect (tolDCs) can be generated ex
vivo and then administered to induce tolerance. DCs are phys-
iologically present in low numbers; therefore, for therapeutic
purposes, monocytes differentiated to DCs are often used [66].
After differentiation, the generated DCs are exposed to specif-
ic compounds or genetically manipulated to induce tolerance.
Tolerance to a specific antigen can also be achieved, but stim-
ulation with self-antigens is not required to achieve a
tolerogenic effect [67].

Rationale

In SSc, a multitude of immune cells is involved. Harnessing
the tolerogenic functions of DCs may allow manipulation of
an out-of-control immune response, as is present in autoim-
mune disease [68]. A major advantage of this approach is that

only self-reactive T cells are disabled, preventing general
immunosuppression.

There is no direct evidence that the antigen presenting/
tolerogenic functions of DCs are disturbed in SSc. Current
thought suggests a pro-inflammatory phenotype of DCs of
SSc patients. Monocyte-derived and myeloid dendritic cells
in patients with SSc produce more cytokines in response to
TLR stimulation [69]. As patients with SSc have an interferon
1 signature and DCs are implicated in interferon-1 production,
it is suggested that this signature can be partly explained by
aberrant secretion of interferon 1 by plasmacytoid DCs [70].
In SSc patients, levels of CXCL4, a chemokine secreted by
plasmacytoid DCs, strongly correlate with disease activity and
progression. In vitro and in vivo studies by Van Bon et al.
strengthen the evidence for a possible role of DCs in the path-
ogenesis of SSC [71•]. DCs have been shown to be involved
in angiogenesis [72]; it is unknown whether administration of
tolDCs influences this aspect.

Clinical Trials

Therapeutic DCs are widely studied in oncology, though their
application is intended to achieve immunity against specific
antigens, not tolerance; therefore, data from oncology trials
might not be applicable to autoimmune disease [73].

The first clinical trial reporting the use of tolDCs for an
autoimmune condition examined their effects in DM type 1.
Ten patients received autologous DCs in four doses, doses
were administered intradermally biweekly. Three patients re-
ceived Bcontrol DCs^ which had not been manipulated, and
seven patients received tolDCs which had been manipulated
ex vivo with antisense nucleotides to block expression of co-
stimulatory molecules. No adverse events were detected. In
the verum arm, a transient increase in B220+ CD11c- B cells
was found, possibly caused by administration of the DCs.
However, this study was designed to determine safety, not
efficacy [74].

Another phase 1 study studied the safety and possible effi-
cacy of administration of BRheumavax^ in patients with rheu-
matoid arthritis. Rheumavax consists of autologous
monocyte-derived DCs which were exposed to a tolerance-
inducing compound and subsequently exposed to four
citrullinated peptide antigens. Adverse events were self-limit-
ing, and distinct effects on regulatory T cell populations could
be detected. Disease activity scores decreased in treated pa-
tients in comparison with historical controls [75].

Current Status and Future Perspectives

tolDCs are not yet under development for SSc. Clinical trials
in oncology have demonstrated that modified DCs can have
off-target effects, contributing to auto-immunity. While there
are several (auto)antibodies associated with SSc, it remains a
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question to what extent the blocking of antibody-specific cells
will benefit SSc patients.

DCs have been implicated in fibrosis of various organs. In
experimentally induced lung fibrosis, DCs were shown to ac-
cumulate with pathogenic T cells, whereas blocking of DC
surface molecules was associated with less fibrosis, suggest-
ing that antigen presentation by DCs to T cells plays a role in
the pathogenesis of fibrosis [76]. Additionally, a paracrine role
for DCs has not been excluded. If dendritic cells in SSc are
pro-fibrotic, infusing them may exacerbate disease, similar to
concerns regarding DC use in SLE [77].

Regulatory T Cells

Regulatory T cells (Tregs) modulate the immune response by
regulating effector T cells and maintain tolerance by recogniz-
ing self-reactive T cells and inhibiting them. Tregs can be
identified by their surface expression of CD25, CD4, and
FOXP3. As a therapy, Tregs can be infused to achieve general
immune suppression, and they can also be modified or primed
ex vivo to act on T cells specific to an antigen [78, 79]. Tregs
have to be expanded prior to use.

Rationale

In animal models of autoimmune disease, the administration
of ex vivo expanded autologous Tregs has been shown to
ameliorate disease. In clinical trials, variations in levels of
immune cells before and after treatment have been noted,
though its significance remains unknown as these trials were
mainly designed to assess safety [80]. T cell activation in
response to a yet unknown self-antigen plays an important
role in SSc pathogenesis.

T cell infiltrates can be found in the skin of SSc patients,
and a shift to the Th2-phenotype has been reported [81]. Ex-
perimentally induced SSc in animal models could be treated
by blocking T cell cytokines like IL-6. The administration of
Tregs may therefore reduce self-reactive T cell activity.

Abnormalities have been found in Tregs of SSc patients
as well. SSc patients have more circulating Tregs and less
skin Tregs than healthy controls [82]. Circulating SSc
Tregs were found to display fewer CD62L, and CD69
surface receptors SSc Tregs also secrete less Treg specific
cytokines. The levels of CD69 and TGF-β were found to
correlate with the suppressive action on CD4+ T cells.
Radstake et al. further show that the suppression of Treg
function in SSc patients is mediated by a yet unknown
plasma factor: upon addition of serum of SSc patients to
healthy Tregs, suppression of CD4+ cells was reduced
[83]. There are indications that only skin Tregs, not
circulating Tregs, secrete effector T cell cytokines [84].

Tregs may play a role in fibrogenesis by controlling other
immune cells involved. In an animal model of lung fibrosis,
early depletion of Tregs led to favorable outcomes whereas
late depletion of Tregs led to increased fibrosis [85]. A recent
animal study in liver injury showed that Tregs reduce fibrosis
in fibrogenic settings by inhibiting CD8+ and Th17+ cells
[86].

FOXP3+ Tregs appear to be essential for angiogenesis in
the lung. Induction of lung ischemia in mice led to an increase
in FOXP3+ Tregs in the lung. Depletion of Tregs severely
impaired angiogenesis. Further analysis showed that Treg-
deficient mice had less macrophages in their ischemic lungs,
suggesting that they are required for the attraction of macro-
phages which aid angiogenesis [87]. As Treg numbers in SSc
skin are low, administration of Tregs can possibly aid
angiogenesis.

Clinical Trials

Treg administration was first studied in GVHD, as a low num-
ber of Tregs correlates with a higher risk of GVHD after allo-
geneic SCT. Trzonkowski et al. intravenously administered
autologous Tregs to two patients with refractory GVHD.
One patient (chronic GVHD) responded well, immunosup-
pressives could be stopped, and lung function improved.
The second patient had rapidly progressing acute GVHD
and, although Treg infusion alleviated symptoms (comparable
with immunosuppressives), the patient eventually died, possi-
bly due to the fact that Tregs were infused in a relatively late
stage of the disease [88]. Brunstein et al. administered umbil-
ical cord-derived allogeneic Tregs prior to umbilical cord
blood transplantation in 23 GVHD patients. Infusion was well
tolerated and no opportunistic infections occurred. As the pri-
mary goal of the study was to demonstrate safety, no definitive
evidence for efficacy was gathered, but comparisons with his-
torical controls were favorable [80]. Use of allogeneic Tregs
hence appears to be safe.

Based on the promising results after Treg administration in
GVHD patients, pilot studies in autoimmune disease were
initiated. Marek et al. administered Tregs to 10 children diag-
nosed with diabetes mellitus type 1. No adverse events related
to the treatment were observed. Compared to 10 matched
controls, at 4 months posttreatment, treated patients required
significantly less insulin per kilogram body weight, though
glucose levels and HbA1c levels did not differ. Two doses
were tested but no differences between patients were seen.
Interestingly, the administered dose was dependent on the
amount of cultured Tregs, which suggests a possible relation-
ship between circulating Tregs and the effect of transfusion.
Desreumaux et al. treated 20 patients with refractory Crohn’s
disease with ovalbumin specific Tregs. Three treatment-
related reactions were observed and sensitivity to drosophila
proteins in two patients, which emphasizes the importance of
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animal-free culturing conditions. Eight patients responded
with an improvement in Crohn’s disease activity index
(CDAI), though only three patients met the criteria for
Bdisease in remission^ (CDAI <150) [89].

Current Status and Future Perspectives

Though there is a wealth of animal studies and a few clinical
studies available to support the possible beneficial effect of
Treg administration in autoimmune disease, it remains un-
known if Treg administration can be truly useful in SSc. The
suppressive effect of serum factors on Treg effector function
of even healthy cells may negate the effect of administering
extra Treg.

Furthermore, the question remains whether administration
of Tregs can also ameliorate fibrosis in SSc patients. The re-
sults in the chronic GVHD patient reported by Trzonkowski
are somewhat reassuring in this aspect; even long-lasting
symptoms were alleviated.

Conclusions

The past decade saw the establishment of HSCT as an effec-
tive treatment option for patients with rapidly progressive SSc
without irreversible organ damage, leading to inclusion in
clinical guidelines and treatment protocols. HSCT remains
the only cellular therapy of which efficacy in SSc is indisput-
able, though at a price of considerable treatment-related
mortality.

Systemic administration of MSC may be an attractive
option for SSc patients ineligible for HSCT given the
promising results reported in patients with extensive dis-
ease; however, safety and efficacy have yet to be
established as clinical evidence consists of case reports,
not formal clinical trials. Equally, patients suffering
from digital ulcers and local skin complaints may ben-
efit from local cell implantation, but, here too, solid
clinical evidence is lacking.

tolDC and Treg administration hold the promise of
modulating the immune system without immune-
ablative therapy. The safety profile of DCs as deter-
mined from the pilot studies in AD is encouraging.
However, further preclinical studies are needed to deter-
mine if this therapy can be translated to SSc, given the
possible pro-fibrotic phenotype of DCs in SSc. Similar-
ly, Treg administration appears to be safe but the dis-
covery of a serum factor that negates the immunosup-
pressive functions of Tregs may mean that Treg-
mediated immunosuppression cannot be achieved in
SSc. This issue has to be addressed before clinical trials
can be initiated.

Future Directions

Even though cellular therapies are already being clinically
evaluated in SSc and other conditions, questions regarding
critical issues remain: cell type, dosage, optimal routes of ad-
ministration, and long-term safety. These questions can only
be addressed through additional preclinical and phase I
studies.

Large scale, blinded, and controlled trials are then
essential to validate earlier results, not only because of
the heterogeneous course of disease and tendency of
spontaneous improvement in SSc [90] but the nature
of stem cell treatment carries a risk of a significant
placebo effect. In the field of cardiology, where the
effect of bone marrow administration on left ventricle
function was studied in patients with a myocardial in-
farction, none of the large randomized placebo con-
trolled trials (2009–2015) met their primary endpoint,
whereas 63 % of the earlier less rigorously designed,
uncontrolled trials (2002–2008) had demonstrated bene-
ficial effects [91••]. Similarly, administration of bone
marrow MNC was a promising treatment strategy in
critical limb ischemia, but recently, a large, placebo-
controlled trial failed to demonstrate a difference in out-
comes between placebo and cell treatment [92]. This
underlines the need for well-designed trials to provide
the necessary evidence of safety and efficacy. Given the
low prevalence of SSc and the complexity of cellular
therapies including the regulations, (inter)national col-
laboration is essential to move the field forward.

A next step toward incorporation in clinical protocols
is to determine the place of cellular therapy in the treat-
ment regimen. Currently, cellular therapy is often
viewed as a last resort, but ideally, treatment starts be-
fore irreversible damage has occurred. Levels of circu-
lating cytokines and immune cells may provide a clue
as to the optimal timing of cellular therapy. Treatment
strategy trials are vital to help support treatment deci-
sions. Identification of prognostic factors and determi-
nants of successful treatment through careful analysis
of clinical trial data will enable selection of patients
most likely to benefit from the treatment.

Finally, as trials move from phase 1 to phase 3, gaining
knowledge about synergistic or antagonistic interactions with
current therapy becomes more important. Other options to be
explored are combinations of cellular therapies, for instance,
co-administration of multiple cell types.

It remains essential to critically assess each potential
therapy strategy for its possible merit in SSc patients to
avoid blindly following the latest hype in the cellular
therapy. The continuing unmet clinical need of many
SSc patients justifies ongoing fundamental and clinical
research of candidate therapies.
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