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The diatom test is a forensic technique that can provide supportive evidence in

the diagnosis of drowning but requires the laborious observation and counting

of diatoms using a microscopy with too much e�ort, and therefore it is

promising to introduce artificial intelligence (AI) to make the test process

automatic. In this article, we propose an artificial intelligence solution based

on the YOLOv5 framework for the automatic detection and recognition of the

diatom genera. To evaluate the performance of this AI solution in di�erent

scenarios, we collected five lab-grown diatom genera and samples of some

organic tissues from drowning cases to investigate the potential upper/lower

limits of the capability in detecting the diatoms and recognizing their genera.

Based on the study of the article, a recall score of 0.95 together with the

corresponding precision score of 0.9 were achieved on the samples of the

five lab-grown diatom genera via cross-validation, and the accuracy of the

evaluation in the cases of kidney and liver is above 0.85 based on the precision

and recall scores, which demonstrate the e�ectiveness of the AI solution to be

used in drowning forensic routine.

KEYWORDS

forensic science, drowning, diatom test, artificial intelligence, YOLOv5 framework,

microwave digestion-vacuum filtration-automated scanning electron microscopy

Introduction

In forensic sciences, it has been widely proved that the diatom test is an effective

method for the diagnosis of drowning from other causes of death (Pollanen et al., 1997;

Ludes et al., 1999; Zhao et al., 2017). As one of the unicellular algae, the diatoms exist in

almost all water bodies, and naturally, they would go along with the inhaled water into the

Frontiers inMicrobiology 01 frontiersin.org

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.963059
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.963059&domain=pdf&date_stamp=2022-08-19
mailto:niuyong770204@163.com
mailto:liuchaogzf@163.com
mailto:zhaojian0721@163.com
https://doi.org/10.3389/fmicb.2022.963059
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmicb.2022.963059/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Yu et al. 10.3389/fmicb.2022.963059

lung of a drowning person, and these diatoms would appear

in some other organs like the liver and kidney through the

circulation of blood. However, a dead victim that was caused

by other reasons but found in a water body would notpass the

diatom test on his/her liver and kidney samples due to the end

of the blood circulation (Kaushik et al., 2017). Even in drowning

cases, there is only a small amount of diatoms in the closed

organs which makes it difficult for forensic pathologists to detect

them. In addition, there are hundreds of diatom genera living in

the world, and the number of the dominant genera in a specific

water region is countable, which allows for the construction of

a diatom database to infer the drowning site of a drowned body

(Zhang et al., 2021).

Either the diagnosis of drowning or the drowning site

inference can resort to the diatom test by detecting the diatoms

from the sediments in the tissue samples of multiple organs

and then identifying their types for statistical analysis. To

capture the diatoms varying from a few micrometers to a

submillimeter, microscopy is required to scan the images at

a magnification from a hundred to a thousand depending on

optical microscopy or scanning electron microscopy (SEM).

Traditionally, the diatom test always involves large numbers

of laborious and tedious observation and search jobs on the

scanned optical or SEM images, which have to be physically

done by forensic pathologists. This situation is not friendly for

practice and is apt to cause high false negative/positive rates due

to fatigue and decreased concentration. It is of particular interest

for academic research to explore the capability of automatically

detecting the diatoms and/or recognizing the genera of the

diatoms on optical microscope images (Bueno et al., 2018; Zhou

et al., 2019, 2020; Kloster et al., 2020; Krause et al., 2020) or the

SEM images (Deng et al., 2020; Yu et al., 2021). These studies are

inspired by the development of artificial intelligence recently and

especially the giant success of deep learning (LeCun et al., 2015)

in image processing and analysis, such as image classification,

object detection, and region-of-interest (ROI) segmentation,

which then makes it possible to build our own intelligent diatom

test solution.

Deep learning is a category of machine learning (Jordan

and Mitchell, 2015) that is within the scope of artificial

intelligence, and artificial intelligence allows machines to work

efficiently and solve problems automatically based on the

technologies of machine learning and pattern recognition which

is another domain. For machine learning, there is a long

history of development and prosperity, and conventionally the

machine learning methods always contain a key step called

feature engineering to design high-dimensional hand-crafted

descriptors for downstream tasks like classification. In Safavian

and Landgrebe (1991), Fischer and Bunke (2001), Jalba et al.

(2001), and Gloria et al. (2017), a few studies were conducted

on the taxonomy of the diatoms on the microscopic images

based on machine learning. Various features were proposed

to effectively distinguish the diatoms from other objects and

these features were generally computed from statistical, textural,

and morphological information. Then, a classifier such as

a decision tree was trained on the feature data extracted

from the given training images to infer the genera of the

diatoms. However, conventional machine learning is not very

suitable for the detection of diatoms due to the difficulty

in encoding the position of diatoms to a high-dimensional

feature representation. In Paul and Jones (2001), this challenging

work was first and preliminarily evaluated with different visual

descriptors and classifiers based on the Viola-Jones object

detection framework.

In general, optical microscopy is not that powerful for

zooming in on the features of diatoms when compared to

scanning electron microscopy; however, the former with the

advantage of much lower cost is enough for the classification of

the images about if they contain the diatoms or not. In Zhou

et al. (2020), 58 sample slides were scanned by a Leica scanner at

a 40×magnification, and each slide image was split into a group

of 255 × 255 non-overlapping small patches. The deep learning

classification model Inception-v3 proposed by Google (Szegedy

et al., 2016) was learned on the given training patches for binarily

predicting if one test patch includes at least one diatom or not.

By sliding window, the location of the diatoms can be coarsely

determined. Similarly, the study of taxonomically identifying

the morphologically diverse microalgal group of diatoms was

reported on Kloster et al. (2020). The images for the study

were acquired by an optical scanner with a pixel resolution

of 0.1µm. The classical model VGG16 (Karen and Zisserman,

2014) was adapted for the evaluation and a high F1 score of 0.97

was achieved.

Object detection is not well tackled until the introduction of

deep learning on this diatom image processing task (Deng et al.,

2009). In this pioneering work, feature engineering is replaced

by a deep neural network called R-CNN to automatically

learn the representation of a high-dimensional latent space

on a large-scale image database ImageNet (Girshick et al.,

2014), including 14 million images with rich morphological and

textural features, and thus it provides the potential to build a

strong capability of generalization. Faster R-CNN (Ren et al.,

2017), as the third generation of the R-CNN, is a robust object

detection framework that has been used for the detection of

the diatoms on the SEM images (Deng et al., 2020) for the

diatom test. They compared the results achieved by the faster R-

CNN model and three conventional machine learning methods

which demonstrated the superiority of deep learning. This is

a preliminary investigation on the automatic diatom detection

issue, while some detailed information like the magnification of

image acquisition and the false negative/positive rates are not

mentioned. In Yu et al. (2021), we assessed the performance

of detecting the diatoms on an 800× image set and a 1,500×

image set with another well-known object detection model

RetinaNet (Lin et al., 2017). Both image sets were scanned by

a Phenom XL desktop scanning electron microscopy, and we set
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FIGURE 1

A fully connected network with 3 FC layers (Left); An illustration of how a convolutional layer works (Right).

the magnification to a low-medium level to substantially save the

time of scanning which is routinely quite needed. Consequently,

a 12% false negative rate and a corresponding 18% false positive

rate were achieved. In Krause et al. (2020), the evaluation was

performed on a group of two-channel (fluorescence and phase

contrast) microscopic images, and the F1 score of 0.82 was

achieved on another 600 test images.

In our previous work (Yu et al., 2021), we adapted the

deep learning object detection framework RetinaNet for a

preliminary evaluation of the SEM-based diatom detection. In

Yu et al. (2021), considering the quantity limit of the collected

SEM images, we applied a strategy of data augmentation by

randomly cropping a single 1,024 × 1,024 SEM image to a

local 512 × 512 region that contains at least one diatom for

training, and splitting one test image to four 512 × 512 image

patches for inference. In this study, it is not necessary because

we collected much more images for training and testing. We

adopt another AI-based object detection framework YOLOv5

(YOLOv5 GitHub Repository)1 which is the latest version of the

deep learning architectures YOLO (Redmon et al., 2016). One

prominent difference is that the RetinaNet-101 model has more

than 5.532× 107 parameters while a medium YOLOv5 model is

more compact with only about 2.104 × 107 parameters, which

means there is less computation and faster. In the meanwhile,

the YOLOv5 has been proved to be superior to the RetinaNet

model for accuracy.

No matter the RetinaNet or the YOLOv5 object detection

method, both have a structure of convolution neural network

(CNN) belonging to the scope of deep neural network. A

conventional neural network, that is, a fully connected (FC)

network is completely based on the connection of adjacent

neurons along the direction of propagation (Figure 1, Left).

The mathematical form of a fully connected network can

1 https://github.com/ultralytics/yolov5

be represented as y = ̥

(

∑N
i=0 ωi · xi + b

)

, where {ωi}

are the learnable weight parameters, b is either a constant

value or a learnable parameter as a bias factor, and F is an

activation function like sigmoid or softmax function to involve

nonlinearity in the network. In practice, the fully connected

network has some issues with handling the tasks like image

classification, detection, and segmentation. Particularly, when a

fully connected network is a little deep, it is prone to overfitting

due to too intensive computation. By contrast, the convolution

neural network is the combination of multiple types of neural

computing layers, including the convolutional layer, pooling

layer, and the mentioned fully connected layer. A convolutional

layer convolves an input and passes its result to the next layer.

The input is filtered by a set of convolution kernels with a limited

number of learnable parameters (Figure 1, Right) compared

to the fully connected layer. Therefore, the adaptation of the

convolutional layers allows building a deep neural network with

a better capability of the fitting. Besides, the pooling layer is used

to downsample a feature map by voting on a local, for example,

2 × 2 feature. There are some pooling methods, such as average

pooling and max pooling.

Following the previous evaluation (Yu et al., 2021),

we continue the work by investigating new deep learning

technologies to achieve better performance and developing

a practical SEM-based diatom detection technology with an

artificial intelligence engine. Moreover, we conducted a more

comprehensive study trying to approach the potential upper and

lower limits of our proposedmethod which will be introduced in

the following section.

Materials and methods

Figure 2 illustrates the workflow of our proposed SEM-

based diatom detection and recognition solution which can be

broken down into multiple modules. The workflow begins with
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FIGURE 2

The workflow of the proposed diatom detection and

recognition solution.

a hierarchical pre-processing module combining microwave

digestion and vacuum filtration (Zhao et al., 2013, 2017)

developed byGuangzhou forensic science institute, and followed

by the image acquisition using a Phenom XL desktop SEM at

a certain magnification. This workflow has been proved to be

a sensitive method for the forensic diatom test (Zhao et al.,

2013) compared to the conventional acid digestion method.

We scanned the pre-processed tissue samples using back-scatter

electron mode (BSE) as images and fed them into our developed

detection and recognition AI solution, which is composed of a

bunch of automatic functions like the AI-based diatom detection

and recognition, quantitative analysis and report generation,

and the function of training your own models for some specific

sample cases from end-users.

Data acquisition

To comprehensively evaluate the accuracy of the diatom

detection and genus recognitionmodels, we collected three types

of sample data as follows:

A. Samples of five lab-grown diatom genera with the

names of Coscinodiscus, Cymbella, Navicula, Nitzschia,

and Synedra, respectively;

B. Samples collected from lung tissues;

C. Samples collected from liver and kidney tissues.

The samples of Coscinodiscus, Cymbella, Navicula,

Nitzschia, and Synedra were provided by the Institute of

Hydrobiology, Chinese Academy of Sciences (Volume: 13–

15ml, Concentration: >106, Culture Condition: 25◦C). These

samples were processed by the Microwave Digestion-Vacuum

Filtration-Automated Scanning Electron Microscopy as a

Sensitive Method (Zhao et al., 2013).

The SEM membrane samples of lung, liver, and kidney

tissues from nine cases that have been involved here are

confirmed drowning by the eyewitness and autopsy findings

of drowning signs and the exclusion of other injuries, drug,

intoxication, alcohol, and medication-related. In this study,

we assess the performance of the trained AI models on

the given liver and kidney samples via cross-validation and

demonstrate the efficiency of the solution in the general cases of

drowning forensic diatom test. On the other hand, the samples

extracted from lung tissue contain various impurities. Although

the pre-processing steps of microwave digestion followed by

vacuum filtration are applied in our workflow to remove those

impurities, there are still many remaining impurities. Therefore,

it is a real challenge to well detect and recognize the diatoms

located in the SEM images of the lung samples, and herewith,

we test the lung samples collected from those drowning cases

for the evaluation on some extreme conditions with numerous

different sediments which make the background of the images

very complicated.

In addition, the samples of the five lab-grown diatom genera

were collected from a laboratory environment, and an apparent

difference between these samples and the samples collected from

the lung, liver, and kidney tissues of drowning corpses is that

the acquired SEM images from the lab-grown diatoms suffer less

from the interference of impurities. Thus, the given samples are

quite appropriate for the quantitative analysis of the potential

upper limit performance on both the diatom detection and the

genus classification.
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The diatom test method that combines microwave digestion

(MD) and vacuum filtration (VF) was proposed to replace the

conventional pre-processing method based on acid digestion

and centrifugation, and the former has a higher time efficiency

and a better filtration quality (Zhao et al., 2013). We acquired

the SEM images on these processed samples using a Phenom

XL desktop SEM at the magnification of 1,500× with a pixel

resolution of 0.33µm and a field of view (FOV) of 336µm. Each

scanned image has a unified size of 1,024× 1,024 pixels, and the

positions and genera labeling of the diatoms were done by two

senior forensic pathologists experienced in diatom tests.

For the samples of each lab-grown diatom genera, there are

around 2,000 images scanned, and not all of them contain the

diatoms (about 46%). Table 1 is the summary of the scanned

SEM images of the standard samples evaluated in our study.

For the lung tissue samples, we mixed all the scanned images

for training a robust diatom detection AI model based on a

large dataset. In detail, there are totally 2,343 images while 1,783

images contain at least one diatom, and the total number of all

the diatoms is 5,899. In addition, there are totally 11 samples

collected from the liver and kidney tissues which are described

in Table 2. Note that we inherited two sets of images from our

TABLE 1 Summary of the SEM images scanned from the standard

samples.

Genera Scanned

images

Images with

diatoms

Diatom count

Coscinodiscus 2,018 630 812

Cymbella 2,084 672 921

Navicula 1,966 930 1,356

Nitzschia 1,999 1,476 6,515

Synedra 1,875 1,622 5,741

Total 9,942 5,330 15,345

TABLE 2 Summary of the SEM images scanned from the liver and

kidney samples.

Image set Images with diatoms Diatom count

#01 904 2,789

#02 938 1,168

#03 8 8

#04 509 597

#05 108 113

#06 3 3

#07 1,687 2,125

#08 54 56

#09 69 72

#10 58 60

#11 35 39

Total 4,373 7,030

previous work (Yu et al., 2021). The first set was scanned at the

magnification of 800× (#01) and the second one was acquired

under the setting of 1,500× magnification (#02). Besides, there

are images from liver samples (#03→ #05) and kidney samples

(#06→ #11) randomly selected from the nine drowning cases.

In comparison to the standard samples, the samples of

the lung, liver, and kidney tissues are extracted from the real

cases, and the number distribution of different diatom genera

is not uniformly distributed for the training of a multi-class

recognition AI model that can work well on the inference of

all the target genera. The label information of both the lung

data and the liver and kidney data is illustrated in Figure 3, and

we notice that there are two interference labels named “debris”

and “other.” The label “debris” means the incomplete diatoms

and the second label “other” denotes those uncommon diatom

genera in forensic practice. Therefore, we only conduct the study

of assessing the performance of the diatom detection based on

the current samples.

YOLOv5

Same as the RetinaNet framework (Lin et al., 2017), the

YOLOv5 is also a one-stage object detection framework that

takes a batch of the resized 3-channel SEM images as input and

can directly predict the location of the diatoms and optionally

their genera. The localization of each diatom candidate is

predicted by a sub-regression model as a part of the YOLOv5

detection solution. On the other hand, it has a sub-classification

model trained to recognize if the candidate is a real diatom

with a confidence prediction. More specifically, the YOLOv5

has four model structures depending on the number of the

model layers and parameters, ranging from small to super large,

and we picked a medium model YOLOv5m for training and

testing to evaluate the performance on the given image data.

The YOLOv5m model has the network architecture illustrated

in Figure 4, and the architecture can be broken down into a

backbone network followed by a neck structure connecting to

the section for detection prediction. In detail, the construction

of the backbone network is based on the Focus module and

CSP module (see Figure 4), and the neck structure is the

enhancement of the FPN structure (Lin et al., 2017) appeared in

the RetinaNet by adding a structure called PAN for bottom-up

path aggregation. The combination of the FPN structure and the

PAN structure was originally proposed for image segmentation

(Liu et al., 2018) to shorten the information path between lower

and topmost features. It was first introduced into YOLOv4 and

then in the YOLOv5 framework, this structure was slightly

modified with the replacement of some CBLmodules by the CSP

modules which are constructed based on CBL.

The prediction from the neck structure consists of three

outputs with different feature sizes (e.g., 80). The prediction

from the neck structure consists of three outputs with different
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FIGURE 3

The number distribution of di�erent diatom genus in the lung (a), liver and kidney samples (b).

feature sizes (e.g., 80 × 80, 40 × 40, and 20 × 20) and receptive

fields. The 3rd dimension of every output is composed of four

coordinates of a bounding box, one confidence score, and K

probability values for the genus recognition (Redmon et al.,

2016), and K = 1 if we only consider the diatom detection

for counting the diatoms without the genus recognition. In

addition, corresponding to the diatom classification and the

diatom localization regression, the loss function used for the

YOLOv5m model training can be divided into classification

loss and bounding box regression loss. The classification loss is

calculated via binary cross entropy (BCE) and the bounding box

regression loss is calculated by a novel metric CIoULoss which

takes overlapping area, center distance, and aspect ratio into

consideration. The formula of the CIoULoss loss is defined in

Equations (1–3).

CIoULoss = 1−(IoU−
Dist2

2

DistC
2
−

ν2

(1− IoU)+ν
) (1)

IoU =
Ogt∩Op

Ogt∪Op
(2)

ν =
4

π2

(

arctan
wgt

hgt
−arctan

wp

hp

)2

(3)

IoU is the intersection over the union between the candidate

localization prediction op and the ground truth localization ogt

(rectangle). Dist2 is the center distance between the prediction

and the ground truth, and DistC is the diagonal distance

of the ground truth. In addition,
{

wgt , hgt
}

and
{

wp, hp
}

are the width and height sizes of the ground truth and the

prediction, respectively.

Moreover, the training of a deep neural network model

is generally based on the back-propagation strategy which

follows the chain rule to iteratively update the learnable

parameters of the model. Gradient descent is used to optimize

the training process, and specifically, we adapt the stochastic

gradient descent optimization which can be formulated as

Equations (4–6).

gk = ∇wk + wk ∗ wd (4)

vk + 1 = vk ∗mu+ gk (5)

wk + 1 = wk − vk + 1 ∗ lr (6)

Here, wk is a parameter to be estimated by training, and the

parameters wd,mu, and lr denote weight decaying, momentum,

and learning rate, respectively.
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FIGURE 4

The YOLOv5m architecture.

Evaluation metric

In accordance with our previous work, we also calculate the

recall and the precision given by Equations (6, 7) to evaluate

the performance of the trained YOLOv5m models on the image

data mentioned in the section of “materials and methods—

data acquisition.” Here, the terms TP, FN, and FP are the

numbers of true positives, false negatives, and false positives,

respectively. The recall metric is to reflect the proportion of the

actual positives identified correctly and the precision metric is

to answer the question: what is the proportion of the correct

positive identification? This metric couple is very significant for

the quantitative assessment of the false negative rate and the false

positive rate. For instance, if there are a total of 100 diatoms

for detection, a recall score of 0.95 means only five objects are

not recognized. On the other hand, a precision score of 0.95

represents that 5% of all the detected objects are not diatoms.

Recall =
TP

TP + FN
(7)

Precision =
TP

TP + FP
(8)

The precision-recall curve is another metric to reflect the

overall performance of the trained models on a given data.

Previously (Yu et al., 2021), we obtained a set of precision-

recall measurements by manually setting different confidence

threshold values for inference and plotted them as a precision-

recall curve. Hereby, we propose a more elaborate definition of

the precision-recall curve that is based on the following steps:

1. Sort the confidence scores (i.e., probabilities) of all the

diatom candidates outputted from a trained AI model in

descending order;

2. Iteratively update the confidence threshold from 0 to 1

with the change of a small step like 0.01. The threshold is

the lower limit of accepting a detected object as a diatom

according to its confidence score. For each threshold, we can

calculate a couple of precision-recall values, and then a group

of precision-recall values can be obtained by changing the

confidence threshold;

3. Plot these precision-recall points as a curve and optionally

smooth them if necessary.

The area under a given precision-recall curve (AUC), also

known as average precision (AP), is a metric for assessing the

overall accuracy of a model. In general, a higher AUC score
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indicates potentially better performance on the same test dataset,

and ideally a perfect case would be subject to the AUC score of 1.

The prediction on an SEM image via the trained YOLOv5m

model depends on the inference settings of not only the already-

mentioned confidence threshold but also the IoU threshold

as the lower boundary of the overlapping level between a

diatom candidate and the ground truth to decide whether the

candidate can be accepted as a diatom. There are two more

evaluation metrics associated with the IoU threshold: AP@0.5

and AP@0.5:0.95 that are involved as part of the measurements

in our study. The metric AP@0.5 is the average precision at the

IoU threshold of 0.5 and the metric AP@0.5:0.95 is the mean

value of all the APs corresponding to the IoU threshold setting

from 0.5 to 0.95 with an interval of 0.05.

To evaluate the performance of the multi-class diatom

recognition on the lab-grown diatom samples, we introduce

another two evaluation methods called mAP and confusion

matrix into this study. For each diatom genus, there is

an AP@0.5/AP@0.5:0.95 score and the mAP is essential to

calculate the mean value of the average precisions in terms

of all the classes. Therefore, in the case of the multi-class

diatom recognition, we can also achieve the mAP@0.5 and

mAP@0.5:0.95 scores other than the previous AP@0.5 and

AP@0.5:0.95 for each genus. On the other hand, the confusion

matrix in our scenario is a way of observing the implicit

correlation among different diatom genera. Specifically, it

demonstrates the relations in a matrix where the sum of each

row is the actual number of one genus and each column

includes the prediction results of each genus for a specific

diatom class, in such a way that the number of correct and

incorrect predictions are summarized with their counts and

are broken down by each class. This can help us to find out

which classes are hard to be differentiated and further can

guide us to designmore reasonable algorithms for distinguishing

them. Note that the recall score of each class can be directly

computed from the confusion matrix according to the definition

of Equation (6).

Settings

The following studies were conducted on the hardware and

software environments summarized in Table 3. All the scanned

SEM images have the same image size 1,024 × 1,024 and

considering the trade-off between the available computation

resource of the Nvidia RTX 2080Ti GPU in Table 3 and a

reasonable batch size, we resized each SEM image to either 800

× 800 or 640× 640 before feeding it into the YOLOv5m model.

For these two input image sizes, the corresponding batch sizes

are 16 and 28, so that they are not too small and are not prone

to cause the oscillation of training. The training parameters

wd, mu, and lr for the stochastic gradient descent optimization

are set to be 5e-4, 0.937, and 0.01. Moreover, we define the

TABLE 3 The configuration of hardware and software environment for

evaluation.

Hardware CPU Intel Xeon CPU E5-1620 v2 @ 3.70GHz

RAM 24GB

GPU NVIDIA GeForce RTX 2080 Ti (×1)

Video Memory 12GB

Hard Disk 500GB

Software OS Windows 10

Programming Toolkit Python 3.9+ PyTorch 1.9+ CUDA 11.1

IDE PyCharm Professional

complete pass of a training dataset as an epoch, and the epoch

number of every single training is set to be 100 for all the

proposed studies. For a single training, each model instance

after an epoch was used to test the given test data set, and

we denote the model achieving the best AP@0.5 score as Best-

640/Best-800 and the finally obtained model after 100 epochs

as Last-640/Last-800.

Results

Study on the samples of five lab-grown
diatom genera

According to the summary of Table 1, we collected five lab-

grown diatom genera that areCoscinodiscus, Cymbella, Navicula,

Nitzschia, and Synedra. There are around 2,000 images prepared

for each diatom genus, and about 46% of all the images have

at least one diatom. We applied 4-fold cross-validation on the

available images to evaluate both the single-class detection of

the diatoms and the multi-class diatom recognition. Specifically,

we partitioned the images of each genus into two categories

depending on the criterion if one image contains at least one

diatom or not. Furthermore, we uniformly divided the images

of every category into four groups, and then all the images

labeled with the same group index were mixed for the 4-

fold cross-validation. In each fold, one group was picked for

validation, and the rest three groups were used for training.

All the models were initialized by the pre-trained parameters

learned on the image dataset ImageNet (Girshick et al., 2014)

before training.

For the single-class diatom detection, all the results achieved

at the confidence threshold of 0.5 are outlined as a table

in Figure 5. We can find that the input image size of 800

× 800 is slightly superior to 640 × 640 in terms of precision,

and the recall score achieved by the Best-800 model has

reached 0.94 while the corresponding precision score is 0.914.

Besides, no matter whichever model, the AP@0.5 score is

always around 0.95, which demonstrates the capability of the

trained YOLOv5m models in handling the standard samples.
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FIGURE 5

(a) The precision-recall curves of the single-class diatom detection under the confidence threshold 0.5 and the IoU threshold 0.5. (b) The

precisions and recalls at the confidence threshold 0.5 achieved by di�erent models. (c–g) The qualitative demonstration of the detection cases

of the five test genus.

The precision-recall curves are plotted in the left-upper corner

of Figure 5, and we also exhibited the detection cases of all five

genera. Here, it is noticeable that the sizes of the diatom genera

are quite different, which proves that the YOLOv5m architecture

enables to capture the objects on a large scale.

In a forensic diatom test, the recall should be more

important than the precision, in that the false positives can

be possibly corrected via some post-processing strategies, such

as an individual classification after the current detection.

Since the precision and the recall are commonly a couple

of measurements standing by the false negative rate and the

false positive rate, respectively, we modulated the confidence

threshold and achieved different results. Especially, when the

confidence threshold is set to be 0.4, the recall score achieved

by the Best-800 model is slightly higher than 0.95, while the

associated precision score is 0.9.

For the multi-class diatom recognition which includes

the diatom detection and the classification of every diatom

candidate with a genus label, we computed the mAP@0.5 score

and mAP@0.5:0.95 score from the AP results of each genus and

summarized them in Figure 6. In comparison to the previous

single-class diatom detection test, there are no remarkable

differences between the Best-640 model and the Best-800 model,

while the mean recall of the last-640 model is 1% higher than

the one of the last-800 model. To get a perception of the model

performance in each genus, we plot the precision-recall curves

of the five genera in Figure 6. The AP@0.5 scores of the two

diatom genera Nitzschia and Synedra achieved by the Last-

640 model are considerably better than the Last-800 model,

leading to the overall AP of the Last-640 model being superior

to that of the Last-800 model. In addition, we notice that the

performances of the Best-800 model on every genus are similar

with a smaller variance of the AP@0.5 scores than that achieved

by the Best-640 model.

The normalized confusion matrices in terms of the Last-

640 and Best-640 models are summarized in Table 4, where we

can find some hidden correlations among different genera. For

instance, there is a 45% probability of misrecognizing Nitzschia

as Synedra by the Last-640 model and indeed the two genera

look rather similar in shape. Also, the size of the Synedra is

very small in our standard samples and this genus is easy to be

recognized as background. Moreover, among the false positives,

more than 80% of them are identified as Nitzschia obtained

by the Best-640 model. As well, more than 30% and 65% of

the false positives detected by the Best-640 model are regarded

as Nitzschia and Synedra individually. Overall, the confusion

matrix is a useful tool to indicate the potential intra-class

confusion for solution improvement.
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FIGURE 6

The precision-recall curves of all the diatom genus achieved by the Last-640, Last-800, Best-640, and Best-800 models.

Study on the samples of lung tissue

We applied the evaluation to the lung samples from the

drowning cases. Since there are many sediments in the lung

of a drowning corpse, it is very challenging to effectively

distinguish the diatoms and the non-relevant objects in the

test images. Therefore, this study can be regarded as a

performance evaluation on the worst cases of the drowning

forensic diatom test.

Again, we evenly split the SEM images scanned on the

given lung samples into four groups and conducted a cross-

validation. As already mentioned, due to the existence of two

interference labels “debris” and “other,” as well as the count

imbalance among different genera, it is not suitable to launch

a multi-class diatom recognition study, instead, we only focus

on the search of all the diatoms in the images. Following the

denotation of the models trained on the samples of the lab-

grown diatom genera, we also compared the results achieved by

the Last-640, Best-640, Last-800, and Best-800 models. Note that

each training of the cross-validation begins with an initialization

by the YOLOv5m model pre-trained on the SEM images of the

lab-grown diatom samples, which already have learned some

general features of diatoms.

In Figures 7a,b, the precision-recall curves are plotted in

the left corner, and in the right corner, there is a summary

of the achieved results at the confidence threshold of 0.5. In

accordance with the summary, the recall score is getting higher

by increasing the size of the images fed into the YOLOv5m from

640 × 640 to 800 × 800. As a result, the Last-800/Best-800

models perform better than the corresponding Last-640/Best-

640 models because the textural and morphological information

is more abundant. Quantitatively, the best recall score is above
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TABLE 4 The confusion matrices derived from the multi-class recognition of the lab-grown diatoms with the Last-640 and Best-640 models.

Last-640 Predicted

Coscinodiscus Cymbella Navicula Nitzschia Synedra Background

Actual Coscinodiscus 0.94 0 0 0 0 0.06

Cymbella 0 1 0 0 0 0

Navicula 0 0 0.94 0 0.01 0.05

Nitzschia 0 0 0 0.51 0.45 0.04

Synedra 0 0 0 0 0.71 0.29

Background 0.01 0.01 0.02 0.81 0.15 0

Best-640 Predicted

Coscinodiscus Cymbella Navicula Nitzschia Synedra Background

Actual Coscinodiscus 0.94 0 0 0 0 0.06

Cymbella 0 1 0 0 0 0

Navicula 0 0 0.94 0 0 0.06

Nitzschia 0 0 0 0.88 0 0.12

Synedra 0 0 0 0.05 0.88 0.07

Background 0.01 0.02 0.01 0.31 0.66 0

The boxed values indicate high mis-recognition cases among some diatom genera and background.

0.8 by the Best-800 model and the corresponding AP@0.5 score

is also closed to 0.8. In Figures 7c–f, we qualitatively illustrated

several detection cases achieved by the Best-800 model and

imposed the confidence score of every diatom candidate on the

test images.

Study on the samples of liver and kidney
tissues

In this study, we evaluated the image data scanned from

the liver and kidney tissues of some drowning corpses. Once

more, the available SEM images cannot meet the requirement

for a multi-class diatom recognition study due to the already

mentioned reasons of the uneven count distribution of each

genus, as well as a large portion of diatoms labeled as “other” and

“debris.” Hence, we took an evaluation of the single-class diatom

detection with a 4-fold cross-validation, while only the input

image size 800 × 800 is taken into consideration this time. We

initialized each training of the cross-validation with the weights

pre-trained on the dataset of ImageNet (Girshick et al., 2014) to

reduce the influence of transfer learning. Note that the image

dataset used in this study is composed of 11 samples with an

obvious variation in the dirty level of the image background

which can be found in Figure 8. The image quality of some

samples is as poor as that of the previous lung samples, while

in the best cases, there are only the diatoms left after the MD-

VF pre-processing steps, therefore this study takes the general

situation into account for a fair evaluation of the simulation of

routine cases.

The assessment was conducted on the prepared image data

and all the quantitative results are shown in Figures 9a,b. In

comparison to the RetinaNet-101 architecture, the YOLOv5m

achieved a balance between the precision score of 0.84 and the

recall score above 0.86 at the confidence threshold of 0.5. For

the same threshold, the RetinaNet-101-Last-800 model is tilted

to the precision side, while the false negative rate is therefore

much higher than that achieved from the YOLOv5m model.

In Figures 9c–f, there are two couples of the diatom detection

results predicted by the YOLOv5m-Last-800 model and the

RetinaNet-101-Last-800 model.

Since the diatom candidates predicted from a

YOLOv5m/RetinaNet-101 model will be filtered both by

the IoU threshold and by the confidence threshold defined

empirically, we would like to explore the impact of the two

threshold parameters on both the precision and the recall

to guide our practice. In detail, we kept one threshold at

0.5 and changed the other threshold from 0.1 to 0.5 with

a step of 0.1 to observe the trend of performance. All the

precision and recall scores are outlined in Tables 5, 6 where

the precision and recall scores maintain stable when the

IoU threshold is ≤0.5, and when the threshold is above 0.5,

the average precision drops down according to the AP@0.5

score and the AP@0.5:0.95 score from the same model as

shown in Figure 9. The invariant property of the precision

and recall scores shows that most of the true positives and

the corresponding ground truth are well overlapped with

each other. On the other hand, when progressively changing

the confidence threshold from 0.1 to 0.5, the precision score

increases while the corresponding recall score decreases, and
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FIGURE 7

The demonstration of the quantitative results of the lung samples (a,b). Several qualitative cases achieved by the Best-800 model (c–f).

FIGURE 8

(a–c) Three annotated images acquired from the liver and kidney samples with di�erent situations on background.

we notice that the precision and the recall get closed at a low

confidence threshold of 0.1 for the RetinaNet-101-Last-800

model, while the YOLOv5m-Last-800 model approaches the

balance at the threshold 0.5, which is preferable for practice. In

conclusion, the results in Tables 5, 6 indicate that the training

in distinguishing the diatoms from the other sediments in the
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FIGURE 9

The evaluation result summary of the liver and kidney samples (a,b) and two drowning cases qualitatively compared between the

YOLOv5m-Last-800 model and the RetinaNet-101-Last-800 model (c–f).

images is much more challenging than learning of predicting

the diatom locations.

Discussion

In this article, we proposed an AI solution to assist the

diatom test for searching drowning forensic evidence. Inspired

by the huge success of deep learning in various domains (LeCun

et al., 2015), we collected the samples from different sources and

generated a large image dataset with the microwave digestion

and vacuum filtration pre-processing steps (Zhao et al., 2013,

2017) and the image acquisition by a desktop scanning electron

microscopy to train our deep learning-based diatom detection

models. We adapted the YOLOv5 which is an engineering-

optimized version of a well-known object detection architecture

(Redmon et al., 2016). If the image data used for training is

accompanied by the bounding box annotation, as well as the

genus label for every diatom, we can train the multi-class diatom

recognition model to predict not only the location of a diatom

candidate but also its most possible genus.

As discussed in the “materials and methods—data

acquisition” section, the collected samples include three groups

for different evaluation purposes via cross-validation. All the

scanned images have the same size 1,024 × 1,024 and almost all

of them were acquired at 1,500× magnification except a liver

sample (800×magnification) inherited from our previous work

(Yu et al., 2021). For the lab-grown samples of the five specific

diatom genera, we evaluated the capabilities of both single-class

diatom detection and multi-class diatom recognition. For the

former, we tried to achieve the upper limit of the YOLOv5m

model considering that the images in this group suffer less from

the pollution of impurities. As a result, a recall score of 0.95

together with a precision score of 0.9 are achieved by setting the

IoU threshold at 0.5, the confidence threshold at 0.4, and the

AP@0.5 score around 0.95. For the latter, it is more challenging

due to the extra diatom taxonomy. In conformity with the

results reported in the last section, we achieved the best recall

score of about 0.92 when the corresponding precision score is

0.9. The difficulty in recognizing the genus of each diatom is

not the same, and we observed that the Nitzschia and Synedra

are easy to be misidentified with each other while almost all the

false positives are from these two genera.

Both the lung samples and the samples of the liver

and kidney tissues were extracted from the drowning

cases. We conducted experiments on these samples to

estimate the performance of our AI solution in the general

situations encountered in the drowning forensic routine. Some

interference labels and the distribution of the diatom genera

from both groups make the multi-class diatom recognition

evaluation not applicable, we therefore care only about the

diatom detection issue. Especially, the experiments on the lung
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TABLE 5 The precision and recall scores when changing the IoU

confidence threshold from 0.1 to 0.5 and the confidence score is

always 0.5.

IoU

threshold

YOLOv5m-Last-800 RetinaNet-101-Last-800

Precision Recall Precision Recall

0.1 0.843 0.858 0.905 0.705

0.2 0.843 0.859 0.905 0.705

0.3 0.843 0.860 0.905 0.705

0.4 0.843 0.860 0.905 0.706

0.5 0.843 0.860 0.902 0.706

TABLE 6 The precision and recall scores by changing the confidence

threshold from 0.1 to 0.5 while the IoU score is fixed at 0.5.

Confidence

threshold

YOLOv5m-Last-800 RetinaNet-101-Last-800

Precision Recall Precision Recall

0.1 0.707 0.914 0.778 0.800

0.2 0.764 0.899 0.847 0.764

0.3 0.796 0.887 0.874 0.737

0.4 0.819 0.875 0.891 0.723

0.5 0.843 0.860 0.902 0.706

samples are designed to evaluate the worst cases due to the

existence of various sediments, which indicates the lower limit

of accuracy we can potentially achieve in those real cases. In the

controlled study of resizing the original image to 800× 800 and

640 × 640, respectively, as input for training and testing, the

best recall score is above 0.83 at the confidence threshold of 0.5

and the corresponding precision score is around 0.7 when the

input size is 800 × 800. Also, the AP@0.5 score can reach 0.8.

The precision score of 0.7 indicates that there are many false

positives that are common for the cases of lung samples, and

the candidates predicted from the current model can be further

refined by an individual AI model.

On the other hand, we tested the performance of the

trained YOLOv5mmodels on the given liver and kidney images.

In comparison to the RetinaNet-101 architecture (Lin et al.,

2017) adopted in our previous work, we conducted a 4-fold

cross-validation for both frameworks under the same threshold

settings. When the confidence threshold and the IoU threshold

are both 0.5, the precision score achieved by the RetinaNet-101

(∼0.9) is higher than the score from the YOLOv5m (∼0.84),

while the recall score achieved by the RetinaNet-101 (∼0.71)

is much lower than the score from the YOLOv5m (∼0.87),

and the AP@0.5 score of the YOLOv5m can be almost 0.9.

Moreover, a balance between the precision score and the recall

score was achieved at the confidence threshold of 0.5 and

0.1 corresponding to the YOLOv5m and the RetinaNet-101,

which demonstrates the superiority of the YOLOv5m since the

RetinaNet-101 is prone to be tilted to the precision side. Besides

the mentioned experiments, we also trained a YOLOv5m model

using all the images from the liver and kidney samples and

deployed it in application software for forensic practice.

In future, we will aim at the completion of our diatom

detection and recognition solution by integrating the function of

multi-class diatom recognition into it. Since an even distribution

of the diatom genera is a prerequisite for training, the annotation

on the newly scanned images from more samples is required

while there is another possible way for the same purpose by

generating many synthetic training images. The multi-class

diatom recognition function can be built on either an end-

to-end method or a hierarchical strategy, which has been on

schedule to be explored.
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