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Coronary artery stenting or angioplasty procedures frequently result in long-term endothelial dysfunction or loss and complications
including arterial thrombosis and myocardial infarction. Stem cell-based therapies have been proposed to support endothelial
regeneration. Mesenchymal stem cells (MSCs) differentiate into endothelial cells (ECs) in the presence of VEGF-A in vitro.
Application of VEGF-A and MSC-derived ECs at the interventional site is a complex clinical challenge. In this study, we examined
the effect of atherogenic cytokines (IL-6, TNF𝛼, and Ang II) on EC differentiation and function. MSCs (CD44+, CD73+, CD90+,
CD14−, and CD45−) were isolated from the bone marrow of Yucatan microswine. Naı̈ve MSCs cultured in differentiation media
containing VEGF-A (50 ng/mL) demonstrated increased expression of EC-specific markers (vWF, PECAM-1, and VE-cadherin),
VEGFR-2 and Sox18, and enhanced endothelial tube formation. IL-6 or TNF𝛼 caused a dose-dependent attenuation of EC marker
expression in VEGF-A-stimulated MSCs. In contrast, Ang II enhanced EC marker expression in VEGF-A-stimulated MSCs.
Addition of Ang II to VEGF-A and IL-6 or TNF𝛼 was sufficient to rescue the EC phenotype. Thus, Ang II promotes but IL-6 and
TNF𝛼 inhibit VEGF-A-induced differentiation of MSCs into ECs.These findings have important clinical implications for therapies
intended to increase cardiac vascularity and reendothelialize coronary arteries following intervention.

1. Introduction

Cardiovascular diseases are the foremost cause of mortality
in the United States [1]. Myocardial infarction often results
from atherosclerotic occlusion of coronary arteries. Inter-
ventional procedures, including angioplasty and stenting, are
performed in order to restore cardiac blood flow and function
[2]. At the site of intervention, denudation and dysfunction
of endothelial cells (ECs) contribute to thrombosis, intimal
hyperplasia, and restenosis [2].

Recent studies have demonstrated the importance of cir-
culating progenitor cells in maintaining normal endothelial
function as well as endothelial repair after vascular injury [3].
MSCs are a potential source of autologous ECs [4–6]. MSCs
are multipotent cells capable of differentiating into cells of
mesodermal lineage. Upon vascular injury, the endothelium

engages in de novo synthesis of cytokines, chemokines, and
growth factors, including VEGF-A [7]. VEGF-A promotes
EC proliferation and angiogenesis. VEGF-A also acts as
a mitogen to attract peripheral stem cells [7–9]. VEGF-
A orchestrates the differentiation of bone marrow-derived
MSCs (BM-MSCs) into ECs in vitro [5, 9–11]. The emergent
ECs can then be transplanted into the site of occlusion or into
the ischemicmyocardium.However, the local site of occlusive
arterial disease consists of a complex inflammatory cytokine
milieu [12].

Atherogenic cytokines play important roles in the inflam-
matory response at the site of plaque formation, and
their synthesis and secretion are dynamically regulated. In
particular, there is little to no basal expression of IL-6
and TNF𝛼 by healthy endothelium [13–15]. Likewise, IL-6
receptors and TNF𝛼 receptors are not basally expressed on
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BM-MSCs [4, 6]. The levels of IL-6, TNF𝛼 and Ang II have
been shown to increase in arteries in response to intervention
[15–17]. Therefore, it is important to consider the effects
of these factors on MSCs intended for transplantation. The
goal of the present study was to investigate the effect of key
atherogenic cytokines on EC differentiation and function.

2. Materials and Methods

2.1. Swine Model. All animal procedures were in compliance
with applicable federal, state, and local laws and regulations
and institutional policies. Animal work was performed in
accordance with the guidelines set by the National Institutes
of Health for the care and use of experimental animals.
The Creighton University Institutional Animal Care and
Use Committee approved the animal research protocol. The
swine model of coronary artery intimal hyperplasia was
implemented, as previously established by our group [18,
19]. Yucatan microswine (30–40 lbs) was purchased from
Sinclair Bioresources (Windham, Maine). Microswine were
maintained on high cholesterol diet (Harlan Laboratories).
After 6 months, microswine in the interventional group were
subjected to percutaneous transluminal balloon angioplasty
(PTCA) in the left circumflex artery (LCX).The animals were
sacrificed 4 months after angioplasty. Age-matched control
microswine were maintained on high cholesterol diet and
received no PTCA interventional procedures.

2.2. MSC Isolation and Differentiation. For cell culture stud-
ies, MSCs were isolated from femur bone marrow of Yucatan
microswine as previously reported by our group [20, 21].
MSCs used for experiments in this study were between
passages 3 and 5.The isolated näıveMSCs were characterized
as highly immunopositive for the expression of stem cell
markers, CD44, CD73, and CD90, as determined by flow
cytometry. The cells from the same gate were negative for the
macrophage marker, CD14, and the hematopoietic stem cell
marker, CD45. Growth media consisting of Dulbecco mod-
ified eagle medium (DMEM) with 10% fetal bovine serum
(FBS) were used to harvest and culture MSCs. EC differen-
tiation media (DM) was endothelial growth media 2 (EGM-
2) containing 50 ng/mL of recombinant human VEGF-A

165

(Peprotech, Rocky Hill, New Jersey). In further experiments,
näıve MSC cultures were differentiated in the presence of
1–100 pg/mL of IL-6 (Peprotech, Rocky Hill, New Jersey)
and/or TNF𝛼 (Peprotech, Rocky Hill, New Jersey) and/or
2–50 ng/mL Ang II (Sigma). For experiments designed for
costimulation with cytokines, MSCs were pretreated with
Ang II for 1 hr, and thenVEGF-Aplus IL-6 and/or TNF𝛼were
added to the culture. For cotreatment with Ang II andVEGF-
A together, the peptides were added at the same time. For
cotreatment with IL-6 and/or TNF𝛼 and VEGF-A together,
the agents were added at the same time. Basic EGM-2 was
the negative control for DM. Stimulation of differentiation
was initiated when naive MSCs were 50% confluent and
the protocol continued for 10 days. The cell cultures were
maintained at 37∘C in a humidified atmosphere containing
5% CO

2
. Media containing various combinations of VEGF-

A, Ang II, and IL-6 and TNF𝛼 was changed every 48 hrs.

2.3. Multilineage Differentiation Potential of MSCs. Mes-
enchymal capacity of bone marrow cells was proved by
trilineage differentiation into osteogenic, chondrogenic, and
adipogenic lineages. In brief, during osteogenic and adi-
pogenic differentiation, the cells were cultured in a 6-well
plate and induction medium was added at 50% confluency.
For osteogenesis, the cells were analyzed by alizarin red stain
after 14 days and adipogenesis differentiation by oil red O
staining after 21 days of stimulation. To test for chondrogenic
differentiation, the cells were cultured in induction media
for 21 days and then stained with Alcian blue/Safranin O.
Reagents were from Sigma Aldrich Company.

2.4. FACS Characterization of Naı̈ve MSCs and ECs. Flow
cytometry was performed using standard methods and car-
ried out on a BD FACSAria I/II System (BD Biosciences, San
Jose, CA). First, cells (∼1 × 106/mL) were washed with PBS
containing 4% FBS and incubated with primary antibodies
conjugated to fluorophore (FITC) for 30min at 4∘C in the
dark. The antibody concentrations followed the specifica-
tions of the manufacturer. After 3 washes in PBS, cells
were resuspended in FACS-FIX. MSCs were characterized
as CD14−CD45−CD44+CD73+CD90+. At the end of the 10-
day differentiation protocol, MSCs were analyzed for the EC
markers PECAM-1-APC (ebiosciences, San Diego, CA), VE-
cadherin-FITC (ebiosciences, San Diego, CA), and vWF-PE
(R&D Systems, Minneapolis, MN).

2.5. Western Blot. Total protein lysates were isolated and
quantified by Bradford assay. The lysates were separated
by 10% SDS-PAGE and transferred onto a nitrocellulose
membrane (BioRad, Hercules, CA). The membrane was
incubated in blocking solution (1x TBS, pH 7.6, 0.1% Tween-
20, and 5% w/v of nonfat dry milk) and then incubated
with a primary antibody to detect Sox18 (Abcam ab23342).
Themembrane was probed for GAPDH (NOVUS Biological,
NB300-221) to normalize the protein loading.Themembrane
was then incubated with HRP-conjugated secondary anti-
body (1 : 1000) in blocking solution for 1 hour at room temper-
ature.HRP activity was detected by incubating themembrane
in chemiluminescence solution (Bio-Rad, Hercules, CA).
The exposure time was adjusted to keep the integrated
optical densities within a linear and nonsaturated range.
Densitometric analysis was done using a UVP Bioimaging
system (UVP, Minneapolis, MN).

2.6. Quantitative RT-PCR. Using Trizol reagent protocol
(Sigma), total RNA was isolated from näıve MSCs accord-
ing to the manufacturer’s instructions. The quality and
quantity of RNA were quantified using a Nanodrop (Ther-
mo-Scientific, Rockford, IL). First-strand cDNA synthesis
was performed following the manufacturer’s instructions
(Improm II reverse transcription kit; Promega,Madison,WI)
using oligo dT primers. Real-time qPCR was performed in
triplicate using SYBR Green Master Mix and a Real-time
PCR system (CFX96; BioRad Laboratories, Hercules, CA).
The following primers were used:

AT2R-F: 5-GTTCCCCTTGTTTGGTGTAT-3.
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AT2R-R: 5-CATCTTCAGGACTTGGTCAC-3.
GAPDH-F: 5-CCCATCACCATCTTCCAGGAG-3.
GAPDH-R: 5-GTTGTCATGGATGACCTTGGCC
-3.
IL-6-R-F: 5-GCCGTGTTACTGGTGAGGAA-3.
IL-6-R-R: 5-AACTGGCAGAAAAACCGCTGC-3.
TNF𝛼-R-F 5-CCCGAGTCTCAACCCTCAAC-3.
TNF𝛼-R-R 5-GTTCCTTCAAGCTCCCCCTC-3.
VEGFR-2-F 5-CTGGATTCGTGGAGGAGAAATC
-3.
VEGFR-2-R 5-GAGATGCTCCAAGGTCAGAAAG
-3.

2.7. Angiogenesis Assay. Following 10 days of stimulationwith
VEGF or cytokine/hormone supplemented DM, MSCs were
harvested and an angiogenesis assay was performed accord-
ing to manufacturer’s protocol (Chemicon, Temecula, CA).
Polymerized EC background was prepared by incubating
100 𝜇L ECMatrix gel solution into each well of a 24-well
plate at 37∘C for 1 h. The stimulated cells were seeded at a
concentration of 1× 104 cells on ECmatrices. EGM-2medium
(300 𝜇L) was added to each well and maintained at 37∘C and
5% CO

2
incubator for 6 hrs. The formation of capillary tubes

was analyzed using an inverted phase contrast microscope
(Model CKK41, Olympus, Tokyo, Japan).

2.8. Immunofluorescence. Blocking solution against nonspe-
cific binding contained phosphate-buffered saline (PBS),
0.25% Triton X-100, 10mg/mL bovine serum albumin (BSA),
and 5% normal goat serum (Jackson Laboratories, West
Grove, PA) and was used for 1 hour at room temperature.
The cells were then incubated with primary antibodies
selective for anti-Ang II (Abcam ab47831), anti-IL-6 (Abcam
ab6672), and anti-TNF𝛼 (Abcam ab2271) for 1 hour at room
temperature. After washing with PBS containing 0.1% BSA
three times for 5min each, a secondary antibody (affinity
purified goat anti-rabbit Cy2 & Cy3 antibody, 1 : 500) was
applied to the sections for 1 hour in the dark to visualize
immunofluorescent cells (Jackson Immunolabs, West Grove,
PA). Negative controls were run in parallel either by using
rabbit preimmune serum PAC-767 (Pacific Immunology,
Ramona, CA) instead of primary antibody or by complete
omission of primary antibody. Negative control was absent of
staining. Sections were washed with PBS with 0.1% BSA three
times for 5min and dipped into distilled water for 2 sec. Fluo-
rescence was preserved by sealing specimens with a solution
of equal parts of PBS and glycerol containing 10mg/mL n-
propyl gallate and 1.5mg/mL 4,6-diamidino-2-phenylindole
(DAPI). To prevent the escape of themountingmedium from
the coverslips, a single layer of nail polish was placed around
the edges. Pictures were taken within 1 hour of the mounting
using an Olympus DP71 camera (Olympus, St Louis, MO).

2.9. Statistical Analysis. Data are presented as the mean ±
standard deviation (SD). For each experiment, stem cells were

isolated from the femoral bone of separate pigs. Data were
analyzed using GraphPad Prism. Multiple group compar-
isons were performed by Bonferroni’s multiple comparison
test using One-way ANOVA. Probability (𝑝) value < 0.05 was
accepted as statistically significant.

3. Results

3.1. Characterization of BM-MSCs. Primary cultures of
freshly isolated MSCs from swine bone marrow were estab-
lished from the adherent cells. FACS analysis revealed
that the isolated MSCs were negative for CD14 and CD45
and immunopositive for CD44 (hyaluronic acid receptor),
CD73 (5-nucleotidase), and CD90 (Thy-1) (Figure 1(a)).
MSCs displayed the typical fibroblastoid morphology (Fig-
ure 1(b)). Furthermore, multilineage differentiation of the
immunophenotyped MSCs into adipocytes, osteocytes, and
chondrocytes confirmed their stem-like nature (Figure 1(b)).
Näıve MSCs did not express EC markers (Figure 1(c)). When
subjected to an angiogenesis assay, näıve MSCs failed to
display capillary tube formation, which is a characteristic
property of ECs (Figure 1(c)). Differentiation of MSCs for 10
days in DM containing VEGF-A (50 ng/mL) increased the
percentage of cells immunopositive for the expression of EC
markers to >70% of the total gated cells (Figure 1(d)).The dif-
ferentiated ECs displayed functional capillary tube formation
in the angiogenesis assay (Figure 1(d)). HUVECswere used as
positive control for the EC phenotype. HUVECs were ≥90%
immunopositive for the EC markers (Figure 1(e)). HUVECs
also displayed robust capillary tube formation (Figure 1(e)).

3.2. Balloon Angioplasty Induces Expression of IL-6, TNF𝛼,
and Ang II. We used microswine that were maintained on
high cholesterol diet and underwent PTCA intervention
in the LCX artery. The animals were sacrificed 4 months
after angioplasty, allowing time for coronary artery intimal
hyperplasia to develop, as previously described by our group
[18, 19]. Age-matched control microswine were maintained
on high cholesterol diet and received no angioplasty. The
degree of hypercholesterolemia, as measured by serum total
cholesterol levels, was similar between the PTCA group
(446 ± 70mg/dL) and the control group (473 ± 61mg/dL).
Immunofluorescence was performed on LCX arteries in
order to characterize the local cytokine/hormone milieu at
the arterial intervention site. LCX arteries that underwent
angioplasty were immunopositive for Ang II (Figure 2(a)),
TNF𝛼 (Figure 2(c)), and IL-6 (Figure 2(e)). The immunos-
taining of these molecules was prominent in the medial
and neointimal layers of LCX arteries after angioplasty.
Noninjured control arteries displayed little to no basal lev-
els of Ang II (Figure 2(b)), TNF𝛼 (Figure 2(d)), or IL-6
(Figure 2(f)). The results indicate that IL-6, TNF𝛼, and Ang
II levels are increased in coronary arteries as a result of
arterial injury following PTCA interventional procedures.
These inflammatorymediators could have detrimental effects
against arterial repair and endothelial function.
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Figure 1: Characterization of BM-MSCs: detailed FACS characterization revealed that MSCs at P3 to P5 stained negatively for CD14 and
CD45 but expressed surface markers that are indicative of MSC lineage, including CD44, CD73, and CD90 (a). Isolated MSCs also exhibited
fibroblastoid-like morphology (b). Naı̈ve BM-MSCs demonstrated the capacity to differentiate in osteogenic, chondrogenic, and adipogenic
lineages. Alizarin red showed staining of calcium deposits in MSCs differentiated into the osteogenic lineage. Alcian/Safranin O blue
showed staining of peptidoglycans characteristic of differentiation into the chondrogenic lineage. Oil Red O showed staining of the lipids
and triglycerides, indicating differentiation into the adipogenic lineage. Each image shown is representative of independent experiments
performed with BM-MSC cultures derived from separate microswine (𝑛 = 3). FACS analysis performed for EC markers on näıve MSCs (c),
MSCs treated with VEGF-A (d), and HUVECs (e). Each grid shown is representative of independent experiments performed with cultures
derived from bone marrow of separate microswine (𝑛 = 3–6).

3.3. IL-6 and TNF𝛼 Are Negative Regulators of EC Phenotype.
Mechanistically, VEGF-A alone induced the mRNA expres-
sion of its receptor VEGFR-2 (Figure 3(a)) and the protein
expression of the transcription factor Sox18 (Figure 3(b)).
Our group recently demonstrated that Sox18mediatesVEGF-
A-induced differentiation of bone marrow-derived MSCs
into ECs [21]. In tandem with VEGF-A, IL-6 caused a dose-
dependent increase in IL-6R mRNA and a dose-dependent
decrease in VEGFR-2 mRNA (Figure 3(a)) and Sox18 protein
(Figure 3(b)). Differentiation of bone marrow-derived MSCs
with VEGF-A (50 ng/mL) induced the expression of EC
markers (Figure 1). IL-6 cotreatment inhibited VEGF-A-
mediated induction of EC marker expression (Figures 3(c),
3(d)–3(g)). IL-6 also caused a functional decrease in capillary
tube formation (Figures 3(d)–3(h)).

Similar to IL-6, TNF𝛼 also caused a dose-dependent
increase in TNF𝛼-R mRNA and a dose-dependent decrease
in VEGFR-2 mRNA (Figure 4(a)) and Sox18 protein (Fig-
ure 4(b)). TNF𝛼 cotreatment inhibited VEGF-A-mediated
induction of EC marker expression (Figures 4(c), 4(d)–4(g))
and inhibited angiogenesis (Figures 4(d)–4(h)). Thus, IL-6
and TNF𝛼 are negative regulators of the EC phenotype and
MSC differentiation into ECs.

3.4. Ang II Is a Positive Regulator of EC Phenotype. Ang II is
also known to act as a proinflammatory mediator. In contrast
to IL-6 or TNF𝛼, cotreatment of MSCs with Ang II with
VEGF-A increased the percentage of cells immunopositive
for vWF, PECAM-1, and VE-cadherin, compared to VEGF-
A alone (Figures 5(c), 5(d)–5(g)). MSCs differentiated with
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Figure 2: Angioplasty increases the local production of atherogenic cytokines: histological evaluation was performed on LCX arteries
taken from hypercholesterolemic microswine at 4 months after angioplasty and age-matched control hypercholesterolemic microswine. The
immunostaining was assessed for Ang II ((a)-(b)), TNF𝛼 ((c)-(d)), and IL-6 ((e)-(f)). Each image shown is representative of independent
experiments performed from separate microswine (𝑛 = 3).

Ang II and VEGF-A retained the ability to form capillary
tubes (Figures 5(d)–5(h)). Ang II cotreatment with VEGF-
A further upregulated expression of VEGFR-2 and AT2R
mRNA (Figure 5(a)) and Sox18 protein (Figure 5(b)), com-
pared to VEGF-A alone. Unlike IL-6 and TNF𝛼, Ang II is a
positive regulator of the EC phenotype and MSC differentia-
tion into ECs.

3.5. Ang II Opposes IL-6- or TNF𝛼-Mediated Inhibition of
VEGF-A-Stimulated Differentiation of MSCs into ECs. Next
we tested the effects of combinations of cytokines on the
differentiation of MSCs into ECs. Treatment of näıve MSCs
with the combination of IL-6, VEGF-A, and Ang II resulted
in preservation of the EC phenotype. Compared to IL-
6 and VEGF-A alone, the addition of Ang II increased
the expression of VEGFR-2, Sox18, vWF, PECAM-1, and
VE-cadherin (Figures 6(a)–6(e)). Ang II cotreatment also

restored capillary tube formation (Figures 6(e) and 6(i)).
Likewise, differentiation of näıveMSCswith the combination
of TNF𝛼, VEGF-A, and Ang II resulted in preservation of the
EC phenotype (Figures 6(a)–6(f) and 6(i)).

The combination of IL-6, TNF𝛼, and VEGF-A resulted
in nearly complete inhibition of the expression of VEGFR-2,
Sox18, vWF, PECAM-1, andVE-cadherin (Figures 6(a)–6(d))
and capillary tube formation (Figures 6(a)–6(c), 6(g) and
6(i)). In this case, the addition of Ang II failed to rescue the
inhibitory effects of IL-6 plus TNF𝛼 on VEGF-A-mediated
differentiation ofMSCs into ECs (Figures 6(a)–6(c), 6(h), and
6(i)).

4. Discussion

Atherosclerosis is an inflammatory vascular disease, char-
acterized by the infiltration of immune cells into plaques.
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Figure 3: IL-6 negatively regulates EC differentiation: the effect of IL-6 on VEGF-A-stimulated differentiation of MSCs into ECs was
examined. IL-6R and VEGFR-2 mRNA expression was analyzed by RT-PCR and normalized to GAPDH (𝑛 = 3) (a). Sox18 protein levels
were measured byWestern blot analysis and normalized to GAPDH (𝑛 = 3) (b). Expression of ECmarkers was determined by FACS analysis,
and a representative grid is shown (𝑛= 3–6) ((c)–(g)). Endothelial tube formationwas examined using an angiogenesis assay (𝑛 = 3) ((d)–(h)).
Experiments were performed with samples taken from independent BM-MSC cultures from separate microswine. HUVECs were excluded
from statistical analyses. Data are shown as mean ± SD. ∗𝑝 < 0.05 versus näıve MSCs and #

𝑝 < 0.05 MSCs treated with VEGF-A versus
VEGF-A plus IL-6 cotreatment.
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Figure 7: Schematic diagram showing interactions among receptors and signaling pathways during the differentiation of BM-MSCs into
ECs.

Cardiovascular diseases are associated with a myriad of
conditions and risk factors that promote systemic inflam-
mation, including obesity, diabetes, high blood pressure,
stress, smoking, and various viral and bacterial infections
[1]. Coronary artery disease is a “silent killer” because the
diagnosis of ischemic heart disease is frequently delayed until
an acute event occurs. The right coronary artery and the
left anterior descending artery are common sites of blockage
[1, 2]. Symptoms of angina may arise from temporary loss
of blood flow due to the spasm of a narrow coronary
artery. Occlusion of coronary arteries can suddenly progress
into a myocardial infarction upon rupture of an unstable
atherosclerotic plaque [17]. The amount of time that the
blockage impedes coronary blood flow determines the extent
of damage to the heart muscle [1, 2].

Surgical intervention is required to restore coronary
artery blood circulation. However, the surgical procedures
also impose further complications and damage to the coro-
nary arteries. Vascular injury initiates a cascade of events
that lead to production of cytokines, chemokines, and growth
factors by the local endothelium and smooth muscle layers
[15–17]. Our group examined the local effects of arterial
injury in previous studies using a swine model of coronary
artery intimal hyperplasia. We found that increased levels
of TNF𝛼 were associated with decreased vitamin D receptor
and suppressor of cytokine signaling 3 within the neointimal
region of coronary arteries after angioplasty [18, 19]. It is

intuitive that such products are a mixture of both harmful
and protective factors. Ultimately, the phenotype of vascular
smooth muscle cells is modulated to increase their prolifer-
ation, migration, and synthetic activity, which contribute to
repair a vessel after injury [22]. Endothelial production of
VEGF-A may elicit a protective response to vascular injury.
VEGF-A stimulates EC proliferation and the recruitment of
peripheral stem cells [7–9].

Stem cell-based therapies have the potential to improve
blood flow to the heart by either differentiating into vascular
ECs directly or by supporting the differentiation of ECs,
smooth muscle cells, and cardiomyocytes [3–6]. Human
clinical trials using stem cell-based treatments have been
performed in conjunction with balloon angioplasty and
intravascular stenting [23, 24]. The main routes of trans-
planting stem cells are intracoronary and transendocardial
delivery. The strategy of transplanting MSCs and differenti-
ated ECs into the ischemic heart is intended to regenerate
damaged vascular endothelium and to increase angiogenesis
and vascularity. Thus far, clinical outcomes are largely incon-
clusive. The rates of reendothelialization are highly variable
among patients [23–25]. Several factors released during the
procedure could limit the process of reendothelialization
following stem cell-based therapies, resulting in inadequate
cell survival, engraftment, or differentiation. In the case of
differentiated ECs, it is possible for the cells to lose their “EC-
like” traits and functions within the transplant region.
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In the present study, we assessed the impact of inflam-
matory cytokines on the molecular pathways that govern
the differentiation of MSCs into ECs. VEGF-A has been
characterized as a factor that coordinates the differentiation
of MSCs into ECs in vitro [5, 9–11]. We found that the
levels of IL-6, TNF𝛼, and Ang II are increased at the
PTCA interventional site within the LCX artery at long-term
postinjury compared to control noninjured arteries. Next,
we tested the effects of these inflammatory mediators on EC
differentiation and function. IL-6 andTNF𝛼 inhibitedVEGF-
A-induced differentiation of MSCs into ECs and capillary
tube formation. However, Ang II and VEGF-A produced a
cooperative increase in markers of EC phenotype. Cotreat-
ment with Ang II and VEGF-A effectively rescued ECmarker
induction and capillary tube formation despite the presence
of IL-6 or TNF𝛼. Effects on EC marker expression directly
correlated with levels of VEGFR-2 and the transcription
factor Sox18. These results suggest that angiotensin receptor
signaling opposes receptor-response coupling pathways of
IL-6 and TNF𝛼.

In a recent study, our group demonstrated that Ang II
promotes the differentiation of MSCs into functional ECs
through an AT2R-dependent mechanism [20].This is impor-
tant because the proinflammatory actions of Ang II aremedi-
ated throughAT1R signaling [26, 27].Herein, we propose that
local proinflammatory cytokine production causes failure of
EC differentiation and angiogenesis near the sites of arterial
occlusion and/or injury. The opposing signaling pathways
are illustrated in Figure 7. These revelations could aid in the
development of therapies geared towards replenishment of
endogenous ECs as well as exogenous stem cell transplants
in occlusive cardiovascular diseases.

In particular, AT2R-specific agonists, along with anti-
inflammatory compounds (i.e., inhibitors of IL-6R and
TNF𝛼-R), are candidates for promoting angiogenesis and/or
repair of damaged blood vessels. The use of angiotensin-
converting enzyme inhibitors and AT1R receptor blockers is
well established in the treatment of patients with cardiovas-
cular disease [28–31]. Inhibition of angiotensin-converting
enzyme has also been proposed as a means to interrupt the
proangiogenic activity of Ang II [32]. In context with the
new findings presented in this study, it may be possible to
enhance the beneficial effects of existing treatments. Further
preclinical and clinical testing is warranted to determine the
combinatorial effects of the aforementioned agents in tandem
with cell-based therapies in occlusive cardiovascular disease
intervention.
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