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Abstract

Premature birth results in an increased risk of respiratory distress and often requires oxygen 

therapy. While the supplemental oxygen has been implicated as a cause of bronchopulmonary 

dysplasia (BPD), in clinical practice this supplementation usually only occurs after the patient’s 

oxygen saturation levels have dropped. The effect of hyperoxia on neonates has been extensively 

studied. However, there is an unanswered fundamental question: which has the most impact-

hyperoxia, hypoxia or fluctuating oxygen levels? In this review, we will summarize the reported 

effect of hypoxia, hyperoxia or a fluctuation of oxygen levels (hypoxia/hyperoxia cycling) in 

preterm neonates, with special emphasis on the lungs.
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Bronchopulmonary dysplasia (BPD)

Bronchopulmonary dysplasia (BPD) is a form of chronic lung disease that affects premature 

newborns and infants and is the result of damage to the lungs caused by mechanical 

ventilation and long-term use of oxygen.1–4 Despite many advances in neonatal ventilation 

techniques and the widespread use of surfactant and antenatal corticosteroids, the incidence 

of BPD has been reported to be relatively stable at approximately 40% of surviving 

premature infants ≤28 weeks gestational age, with an estimated 10,000–15,000 new cases 

annually in the US alone.5–11 Mechanical ventilation and excessive oxygen supplementation 

are well-studied risk factors for BPD.12–14 Both the airway and parenchyma of the lung 

tissues are affected. These abnormalities have been attributed to ventilator induced injury as 

well as to oxygen therapy.15
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BPD is recognized as a chronic lung disease of infancy that presents as a systemic syndrome 

and can be associated with neurodevelopmental deficits, cognitive impairments, failure to 

thrive, pulmonary hypertension and cor pulmonale.16 High rates of in utero and perinatal 

exposure to infection may be causally related to preterm delivery and subsequent lung 

injury.17 Over the past three decades, the histological presentation of BPD has changed 

from heterogeneous pulmonary inflammation and fibrosis (“Old BPD”) to uniform arrest 

of alveolar development and variable interstitial cellularity and/or fibroproliferation (“New 

BPD”).18,19

Oxidative injury and development of BPD

Reactive oxygen species (ROS) generation in the perinatal period

The fetus normally lives in a physiologically hypoxic environment, and relative hyperoxic 

exposure can cause an increase in the generation of “reactive oxygen species” (ROS). 

Preterm newborns are particularly vulnerable to oxygen toxicity due to inadequate levels 

of antioxidant enzymes, and hence to decreased protection from oxidative injury of rapidly 

growing tissues.20–24 The developing lung of the neonate is a perfect example of those 

vulnerable tissues; the endothelial cells and the alveolar type II cells are especially 

susceptible to oxidative injury. Oxidative stress in these cells activates transcription factors 

and pathways leading to cellular dysfunction, inactivation of surfactant, and impaired cell 

survival.23–27

Several pre- and post-natal adverse events generate ROS exposure and contribute to BPD 

pathogenesis; these include hypoxic, hyperoxic, and mechanical stimuli.28 Excess levels of 

oxygen (hyperoxia), as occur in supplemental oxygen administration, generate accumulation 

of ROS1. Hypoxia/hypoxemia, as in episodes of oxygen desaturations, also results in 

generation of ROS via a superoxide burst that occurs rapidly with hypoxic exposure.29–31 

This ROS generation has been shown to be necessary for stabilization of Hypoxia Inducible 

Factor 1α (HIF-1α) and activation of the HIF system.27,29,30

The ROS generated by both hyperoxia and hypoxia can result in alterations in cellular 

proliferation and apoptosis. Mechanisms may involve dysregulation of key transcription 

factors involved in ROS signaling such as HIF, nuclear factor E2 related factor 2 (Nrf2), NF-

κB, and activator protein-1 (AP-1).1,2,32 Altered regulation of these transcription factors and 

pathways can disrupt postnatal alveolar development, cause inflammation, and potentially 

lead to fibrosis in preterm infants.33,34 ROS generation activates the HIF system.27 Nrf2 

deficiency was shown to augment lung injury and arrest of alveolarization caused by 

hyperoxia during the newborn period.32 Both NF-κB and AP-1 are activated in multiple 

cell types, as well as in lung, following hyperoxia.2 A summary of ROS generation and 

neonatal lung injury is summarized in Figure 1.

Prenatal hypoxia

Tissue injury due to oxidative stress is also noted in placental hypoxia, as is seen in preterm 

born neonates of pre-eclamptic mothers, where ROS are elevated and antioxidant levels are 

decreased in the maternal circulation.26,35,36 Placental hypoxia also induces an imbalance 
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between pro-angiogenic and anti-angiogenic factors inhibiting VEGF signaling.37,38 This 

reduction in VEGF signaling in the developing lung was shown to result in impaired 

pulmonary vascular growth and alveolarization in neonatal rats.39 Maternal exposure to 

hypobaric hypoxia at high-altitudes can alter placental function, influence oxygen delivery 

to the fetus, result in lower birth weight, and increase the risk for pre-eclampsia.40,41

Postnatal hypoxia

Premature babies are exposed post-natally to chronic or intermittent hypoxia as a 

result of immature lungs, apnea of prematurity, inadequate ventilation, or persistence of 

intrapulmonary arteriovenous shunts causing hypoxemia.27,42 Hypoxia of the infant leads to 

generalized pulmonary vasoconstriction and increases the pulmonary vascular resistance, 

causing pulmonary hypertension. Sustained hypoxic pulmonary vasoconstriction causes 

vascular remodeling of the pulmonary vascular bed leading ultimately to right heart 

failure.43 Postnatal hypoxia causes impaired alveolarization and alveolar simplification with 

fewer and larger alveoli. The impaired alveolarization also impairs the vascular maturation 

in the alveolar wall via mechanisms involving. altered signaling of HIF-1α, VEGF, and 

TGF-β,27,44,45

Postnatal hyperoxic interventions

Preterm birth leads to premature transition of the pulmonary circulation from the 

physiologic hypoxic fetal environment to a relative hyperoxic postnatal environment (room 

air). In addition, oxygen supplementation is often required to fulfill the oxygen demands 

for adequate functioning of the body’s tissues and organs, in particular the brain, intestines, 

and kidneys.28 systemically circulating oxygen saturation levels (SPO2) is generally targeted 

to reach above 85%. However, the optimal systemic oxygen saturation in preterm infants 

is currently not clear. To compensate for the premature lung’s simplified alveolar structure 

and thick alveolar septae, higher levels of supplemental oxygen are often required to achieve 

the targeted intravascular oxygen levels, further augmenting the already existing (relative) 

postnatal hyperoxic state.25,27 Hyperoxia leads to impaired VEGF expression and disrupted 

angiogenesis and alveolarization due to rapid proteasomal degradation of HIF-1α.46–48 This 

induces vascular arrest, leading to pulmonary vascular diseases. Relative hyperoxia also 

increases generation of ROS and induces oxidative stress, an important contributor to the 

development of neonatal BPD. In addition, lower levels of antioxidants including vitamin 

E, transferrin, and superoxide dismutase, and higher levels of free iron further predispose 

preterm infants to oxidative injury.20,21,23,49,50

Mechanical ventilation in BPD

Although mechanical ventilation is often essential and life-saving, it can provoke ventilator-

induced lung injury in severely premature infants mainly by over-stretching of the distal 

epithelium and capillary endothelium.25,51–55 The development of that injury is dependent 

on the developmental stage of the lung, and the type, duration, volume and pressure of 

the mechanical ventilation.52,54 Mechanical ventilation also results in down regulation of 

VEGF-1 and its receptor flt-1 and up-regulation of the TGF-β co-receptor endoglin. This 

imbalance in mechanically ventilated lungs likely contributes to altered alveolarization and 

angiogenesis.28,55,56
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The renin angiotensin system (RAS) and BPD

RAS and local tissue injury

The RAS (Figure 2) is traditionally known to play a significant role in blood pressure 

regulation. Renin is produced by kidney and acts on circulating angiotensinogen (AGT) 

protein. Renin cleaves AGT to produce angiotensin I (Ang I). Ang I is converted by 

angiotensin-converting enzyme (ACE) to Ang II, which exerts its actions through binding 

to specific cell surface angiotensin receptors. Two main receptors to Ang II have been 

identified; AT1 and AT2; both belong to a super family of seven transmembrane G-protein 

coupled receptors. The AT1 receptor mediates all of the classical actions of Ang II 

(vasodilatation, sodium retention, cell growth and proliferation), while the AT2 receptor 

promotes vasodilatation, cell differentiation, inhibition of cell growth and apoptosis and 

may play a counterbalancing role to the effects of Ang II on the AT1 receptor.57 ACE-2 

and its product angiotensin 1–7 (Ang 1–7) acting on its receptor Mas were shown to have 

counteracting effects against the adverse actions of the other RAS components. Findings 

from numerous experimental studies have suggested notable protective effects of ANG1–

7/Mas activation in the cardiovascular system.58 Local tissue effects of RAS have been 

identified in a variety of tissues such as heart, kidney, liver, lung, brain, pancreas and 

adipose tissue, where RAS component expression has been detected.59,60 Local RAS is 

involved in injury and inflammatory and fibrogenic diseases of many organs including 

heart,61,62 lung,63–65 liver,66 pancreas,67 and kidneys,68,69 by mechanisms independent of 

the blood-derived RAS.

The role of RAS in BPD

RAS is believed to play a role in neonatal lung development and BPD pathogenesis (Figure 

2). Perinatal exposure of animal models to ACE inhibitors was shown to disrupt normal 

alveolar and secondary septal formation during lung development in neonatal pups.70 

In addition, neonatal rat ACE inhibition lowered the surface tension of bronchoalveolar 

lavage fluid and caused widening of respiratory airspaces and thinning of alveolar septa.71 

Autopsy of human BPD patients showed decreased ACE expression in lungs as compared to 

controls without lung disease.72 Wagenaar et al.4 reported that Mas receptor and angiotensin 

receptor 2 (AT2) agonists reduced inflammation of oxygen-induced lung injury in rats. In 

this study, mRNA levels of the RAS component genes were measured during normal lung 

development. The mRNA levels of AT1, AT2, and ACE-2 decreased gradually, whereas 

expression of angiotensinogen and ACE-1 increased gradually as the neonatal rat lung 

develops. Exposure to 100% oxygen for 10 days resulted in an increase in expression 

of AT2 and a decrease in expression of AT1, angiotensinogen, and ACE.4 These studies 

suggest a critical role for angiotensin-angiotensin receptor signaling involving pulmonary 

alveolarization in the normal physiology of the neonatal lung and in the pathophysiology of 

BPD,. Angiotensinogen and ACE-1 play a role in alveolar development and septation, while 

the reported lower expression levels of ACE-2 in the neonatal lung could be facilitating the 

lung injury in the neonatal period.4,70–72
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The protective potential of ACE-2 in BPD

ACE-2 has been shown to play a protective role in lung disease through effects mediated 

by the receptor Mas, the receptor for the ACE-2 peptide product ANG1–7.3,4,65,73 Previous 

studies from our lab and other groups suggest that ACE-2 is down-regulated in fibrotic 

conditions of the adult and neonatal human lung,3,65,73 via Mas receptor mechanisms.74 

We have also demonstrated that ACE-2 regulates alveolar epithelial cell survival by 

balancing the proapoptotic Ang II and its antiapoptotic degradation product Ang 1–7, 

through Ang 1–7 action on its receptor Mas.74 Furthermore, we showed that ACE-2 is 

expressed in fetal human lung fibroblasts but is significantly decreased by hyperoxic lung 

injury in a cell culture model.3 Importantly, this effect was reversed by hypoxia preceding 

hyperoxia.65 Recombinant human ACE-2 has been tested in healthy individuals in clinical 

trials to determine medication pharmacokinetics and pharmacodynamics,75 and has been 

investigated as pipeline drug “GSK2586881” in a pilot clinical trial to treat adult acute lung 

injury.76 ACE-targeted therapies might be future beneficial treatments for BPD.77

Fluctuation of oxygen levels and BPD

Premature infants are known to experience intermittent episodes of hypoxemia lasting from 

a few seconds to several minutes78. Postnatal exposure to intermittent hypoxia followed by 

interventional hyperoxia induces oxidative stress and free radicals, which leads to direct 

cellular injury, oxidation of DNA, induction of cytokines, and recruitment of neutrophils and 

macrophages to the lung, manifested as pulmonary inflammation.20,21 Furthermore, ROS 

are released by immune cells resulting in epithelial and endothelial cell injury.26 Clinically 

unsuspected oxygen desaturation occurs frequently in preterm infants with and without 

bronchopulmonary dysplasia, and profound hypoxemia is claimed responsible for sudden 

unexplained deaths in these infants.79 Furthermore, infants who develop BPD experience 

more frequent episodes of oxygen desaturations than infants who recover from respiratory 

distress syndrome without developing BPD.19,80

BPD and Fluctuation of oxygen levels in animal models

Very few studies in literature directly compare the effects of hyperoxia, hypoxia, or their 

fluctuation on the neonatal lung development or injury. Table 1 summarizes the studies 

discussed below. Ratner et al.19 demonstrated that cycling hypoxia with hyperoxia episodes 

exacerbated lung injury in neonatal mice.19 In their study they tested the effects of hypoxic 

episodes on a normoxia background, continuous hyperoxia, and hypoxic episodes combined 

with a hyperoxia background on neonatal mice and compared the results with the normoxia 

group. Compared with the normoxia control, the hypoxic episodes on normoxia background 

had no significantchanges on radial alveolar count (RAC) as a marker of lung injury, 

on oxidized glutathione, or on protein carbonyls as markers of oxidative stress, while 

continuous hyperoxia significantly reduced RAC and increased oxidative stress markers 

compared with normoxia. Interestingly, the intermittent hypoxia on hyperoxia background 

group of mice showed significantly lower RAC and higher oxidative stress markers 

compared with continuous hyperoxia. Their study suggested that the combination of two 

oxidative stress mechanisms, hypoxia and hyperoxia, cause a more profound lung injury 
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than either one alone. Furthermore, their study even suggests that hypoxic mice did not have 

any BPD-like changes.19

A study by Schmiedl et al.82 on animal models of BPD compared the different effects 

of prenatal hypoxia and postnatal hyperoxia in neonatal mouse lung. Compared with 

normoxia controls, the lung volume, total air space volume and total septal surface were 

significantly reduced in the postnatal hyperoxia groups compared with either prenatal 

normoxia or prenatal hypoxia. The volume weighted mean volume of the parenchymal 

airspaces and the wall thickness of septa was significantly higher, and the volume density 

and the volume weighted mean volume of lamellar bodies in alveolar epithelial cells type II 

(AEII) were significantly lower in the prenatal hypoxia-postnatal hyperoxia group compared 

with normoxia controls, while prenatal normoxia-postnatal hyperoxia did not cause these 

changes. The study suggested that the prenatal hypoxia and postnatal hyperoxia model 

was found to best reflect morphological changes in lung development comparable with 

alterations found in BPD.81

A recent study by Valencia et al.82 examined the effects of intravitreal bevacizumab, a 

treatment for retinopathy of prematurity (ROP), on the lungs of a newborn rat pup model. 

The study showed long term effects of exposure to intermittent hypoxia and hyperoxia 

during the first 2 weeks of life. At postnatal days P23 and P45, both pO2 and SaO2 were 

lower in intermittent hypoxia exposure, while hyperoxia alone increased pO2 compared 

to the room air group. Interestingly, no significant difference was found in SaO2 in the 

hyperoxia group compared to room air.82 The results of this study suggest long-term effects 

of hypoxemia-hyperoxemia fluctuation on blood oxygenation and indicate the presence of 

a discrepancy between pO2 and SaO2 measures. In a 3-dimiensional cell culture organoid 

model of BPD, Sucre et al.83 showed that markers of fibroblast activation were increased 

by hypoxia-hyperoxia cycling as seen in BPD; α-SMA, Col1A1, TGFβ1, and PDE5a, and 

downstream targets of Wnt signaling (Cyclin D1, MMP2, and MMP9 RNA) were increased 

in hypoxia-hyperoxia relative to normoxia cultured organoids.83 A study by Chang et al.84 

investigated the effects of hyperoxia with intermittent hypoxia on neonatal rats and found 

that repeated intermittent hypoxia during hyperoxia can alter biomarkers responsible for 

normal microvascular and alveolar development.84 However, both the Sucre et al.83 and 

Chang et al.84 studies have not compared the effects of hyperoxia alone to the effects of 

intermittent hypoxia during hyperoxia.

What is the safe oxygen target level for newborns?

Several clinical studies and randomized controlled trials (RCTs) were performed to 

determine the range of optimal saturation by pulse oximetry in preterm infants receiving 

supplemental oxygen.85–91 Many of these studies have been discussed in detail in other 

reviews,92,93 we summarize these in Table 2. The assessment outcomes for these studies 

involved mortality, morbidity, development of chronic lung disease, and ROP. The current 

2016 update of the European Consensus Guidelines on the management of neonatal 

respiratory distress syndrome recommends an oxygen saturation target between 90 and 94% 

with suggested alarm limits of 89 and 95%.93 These guides are based on the NeOProM 

meta-analysis study of the three largest and most recent RCTs94; the Surfactant Positive 
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Pressure and Pulse Oximetry Randomized Trial (SUPPORT),89 the Benefits of Oxygen 

Saturation Targeting II (BOOST II),90 and the Canadian Oxygen Trial (COT).91 In these 

trials oxygen saturation monitoring by pulse oximetry was the method used to monitor 

oxygen levels. Pulse oximetry is currently the prevalent monitoring technology to detect 

blood oxygenation.95 However, invasive blood gas analysis is needed in order to monitor the 

oxygenation status when SpO2 is close to saturation (≥97%). A new technological measure 

using multiwavelength pulse co-oximetry called oxygen reserve index (ORI) can be used to 

monitor oxygenation in the moderate hyperoxemic range (PaO2 100–200mmHg). The ORI 

is an index with a unit-less scale between 0.00 and 1.00, which is a relative indicator of 

changes in PaO2 in the moderate hyperoxemic range, and is used as a companion to pulse 

oximetry monitoring in patients receiving supplemental oxygen.96

Effects of altered oxygen levels on other organs

Retinopathy of prematurity

ROP is a disease affecting the development of the retinal vasculature characterized 

by abnormal growth of retinal blood vessels in the incompletely vascularized retina 

in preterm infants receiving supplemental oxygen therapy. ROP was first reported by 

Theodore L. Terry in 1942 and referred to as “retrolental fibroplasia”.97,98 An increase 

in arterial oxygen saturation, as when the preterm infant is resuscitated with high oxygen 

concentrations, is believed to be damaging to the newly developed retinal capillaries. 

After a preterm infant is no longer in supplemental oxygen, the avascular retina becomes 

hypoxic, leading to overexpression of angiogenic factors and vasoproliferation of intravitreal 

blood vessels.99–101 Penn et al.102 reported that exposure to variable hyperoxia (hypoxia/

hyperoxia fluctuations) has been shown to be much more effective at producing proliferative 

retinopathy in neonatal rat than exposure to constant hyperoxia.102 Numerous animal studies 

established that intermittent hypox(em)ia cycling with hyperox(em)ia produces severe 

oxygen induced retinopathy.82,103–107 These studies emphasize the critical role of oxygen 

level fluctuations.

Heart

Several independent studies in humans and animal models have reported that chronic 

fetal hypoxia can trigger a fetal origin of cardiac dysfunction and increase the risk of 

cardiovascular disease in later life.108–115 A transcriptomic study of neonatal ventricular 

chamber growth and development during perinatal circulatory transition identified Wnt11 

as a prominent regulator of chamber-specific proliferation. Perinatal hypoxia treatment in 

mice suppressed Wnt11 expression and was associated with cyanotic congenital heart defect 

(CHD) phenotypes and correlated with O2 saturation levels in hypoxemic infants with 

Tetralogy of Fallot (TOF).116 Several animal studies have shown cardiovascular adverse 

effects of neonatal hyperoxia with long-term consequences into adulthood. Mouse model 

studies on perinatal or maternal inflammation combined with neonatal hyperoxia exposure 

showed altered fetal development affecting cardiac structure and function, resulting in 

early cardiac dysfunction leading to cardiac failure in adulthood.117,118 In newborn pigs, 

hyperoxia was found to trigger oxygen free radical-mediated membrane injury together 

with an inability of the newborn heart to up-regulate its antioxidant enzyme defenses 
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while impairing myocardial function and hemodynamics.119 In addition, neonatal hyperoxia 

exposure was shown to increase systemic blood pressure and impair vasoreactivity in adult 

rats,120 possibly due to developmental programming of endothelial nitric oxide synthase 

uncoupling and enhanced vascular oxidative stress.121 Neonatal hyperoxia exposure also 

increased adult airway reactivity and was associated with left ventricular (LV) dysfunction 

in adult mice.44 Cardiac effects of hyperoxia also affect adults. In adult patients with 

and without congestive heart failure (CHF), hyperoxia was associated with impairment of 

cardiac relaxation and increased LV filling pressures. These studies indicate that caution 

should be used in the administration of high inspired O2 fractions.122

Kidney

Oxygen supplementation and hyperoxic exposure of newborn animal models resulted in 

enlarged renal corpuscles and decreased number of nephrons in the kidneys in early 

adulthood.120,123 Neonatal hyperoxia exposure also resulted in impaired nephrogenesis 

causing reduction in both nephrogenic zone width and glomerular diameter and increased 

apoptotic cell count.124 Since the kidneys are highly vascular organs, the relative hyperoxia 

and oxygen supplementation in preterm infants could be responsible for the renal 

developmental abnormalities and for affecting glomerular vascularization, and should be 

examined in future studies.

Summary of clinical importance/correlation

Various groups are shedding light on the importance of events that are commonly seen in 

neonatal ICUs, particularly with extremely low birth weight preterm babies, and with how 

prematurity affects the lung as well as other organs. Hyperoxia might not be the only risk 

factor for worsening BPD. However, uncontrollable fluctuation/cycling between hypoxemia, 

normoxemia and hyperoxemia might be a higher risk than hyperoxemia alone. There are 

trials of simulations to those cycling effects in different animal models. In the neonatal ICU 

there is no clear cut-off to delineate the “sweet-spot” in the oxygen saturation zone; how 

much is too much has not yet been clearly defined.

In mice, the episodic “fluctuation” of hypoxia and hyperoxia during the induction 

of BPD potentiated the oxidative stress in lung tissue and exacerbated the alveolar 

developmental arrest.19These results suggest that the aggressive prevention of hypoxemic 

episodes in human neonates at risk for the development of BPD needs to be further 

investigated. Our group, along with other groups, has studied the role of RAS in local 

tissue injury,59,92,125–130 and showed that ACE-2 might be beneficial to attenuate lung 

injury.3,65,73 A future study by our group is planned to look at the effect of cycling of 

hypoxemia/normoxemia/hyperoxemia and the effect of ACE-2 in a small animal model of 

BPD. Measurement of partial pressure of oxygen and/or SPO2 is planned to better assess 

and quantify the effects of hypoxemia with that of hyperoxemia/hypoxemia.
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Abbreviations:

BPD bronchopulmonary dysplasia

ROS reactive oxygen species

HIF hypoxia inducible factor

RAC radial alveolar count

AP-1 activator protein-1

AGT angiotensinogen

RCTs randomized controlled trials

ACE angiotensin-converting enzyme
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Figure 1. 
Schematic diagram illustrating reactive oxygen species (ROS) generation in neonatal 

pulmonary disease.
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Figure 2. 
The renin angiotensin system components and its involvement in lung injury.
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