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One of the obstacles to a better understanding of the pathogenesis of human cardiomyopathies has been poor availability of heart-tissue samples
at early stages of disease development. This has possibly changed by the advent of patient-derived induced pluripotent stem cell (hiPSC) from
which cardiomyocytes can be derived in vitro. The main promise of hiPSC technology is that by capturing the effects of thousands of individual
gene variants, the phenotype of differentiated derivatives of these cells will provide more information on a particular disease than simple geno-
typing. This article summarizes what is known about the ‘human cardiomyopathy or heart failure phenotype in vitro’, which constitutes the ref-
erence for modelling sarcomeric cardiomyopathies in hiPSC-derived cardiomyocytes. The current techniques for hiPSC generation and cardiac
myocyte differentiation are briefly reviewed and the few published reports of hiPSC models of sarcomeric cardiomyopathies described. A dis-
cussion of promises and challenges of hiPSC-modelling of sarcomeric cardiomyopathies and individualized approaches is followed by a number of
questions that, in the view of the authors, need to be answered before the true potential of this technology can be evaluated.
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This article is part of the Spotlight Issue on Sarcomeric cardiomyopathies: from bedside to bench and back.

1. What is a (human)
cardiomyopathy phenotype
in the dish?
The central assumption underlying the concept of modelling cardiomy-
opathies in vitro is that the phenotype seen in patients has its correlate in
the pathology of isolated cardiac myocyte or heart muscle preparations,
i.e. that it is based on an intrinsic cardiac myocyte pathology. This
assumption may not be always true. For example, the initial myocyte
function is essentially normal in infarcted or pressure-overloaded
hearts; the problem lies outside the myocytes (coronaries, peripheral
vasculature, valves). It is just that the work overload and/or neurohu-
moral stimulation can reach a level at which compensatory mechanisms
fail and clinical symptoms (the syndrome called ‘heart failure’) occur.
Thus, very likely many of the characteristics we know from human
heart failure (HF) are secondary alterations and likely to disappear
if cells are not exposed to such stressors. The situation is, however, dif-
ferent in sarcomeric cardiomyopathies on which this chapter focuses.
Here the primary defect lies in the sarcomere itself (i.e. mutant

sarcomeric protein) and everything else follows. The problem is that
much less is known about cardiac myocyte function in human
(sarcomeric) cardiomyopathies because they represent only a minor
fraction of explanted human hearts and have not been studied systemat-
ically in relation to aetiology. An exception is hypertrophic cardiomyop-
athy (HCM) where surgical septum myectomy provides a unique
opportunity to study living human heart samples. The following para-
graph therefore summarizes characteristics of in vitro preparations
from patients with terminal HF (mixed aetiology, mainly ischaemic and
dilated, few HCM) and myectomy samples of patients with HCM.

1.1. Isolated heart muscle preparations
with intact sarcolemma
Much of our current understanding of mechanisms of heart failure
origins in work on trabeculae carneae, i.e. small diameter heart muscle
strips excised from the right of left ventricle of explanted, terminally
failing, or non-failing human hearts, an experiment first described by
Sonnenblick et al.1 in 1965. It was this preparation in which Bristow
et al.2 identified a reduced positive inotropic response to b-adrenergic
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stimulation of the failing heart, but also a normal maximal Ca2+- or
cardiac glycoside-stimulated force generation (at low stimulation rate).
This (somewhat forgotten) finding was reproduced and extended
by others in similar preparations,3,4 indicating that mechanisms regulat-
ing force rather than thoseunderlying maximal force generation capacity
are affected in heart failure. Accordingly, myofilament Ca2+ sensitivity
(as measured in skinned preparations, see below) is likely unaltered in
terminal HF.5 Other characteristics of the failing heart muscle were
unravelled in the 90s: blunted or reversed force–frequency relation,
i.e. lack of increase or even reduced force generation with increasing
stimulation rate,6 prolonged relaxation,3 and increased diastolic tension
with increasing stimulation rate and reduced post-rest-potentiation.7

Another key regulatory mechanism of heart muscle, the length-
dependent activation (Frank-Starling mechanism) has been either
described as blunted8 or unaltered.9,10 Most functional abnormalities
in failing human hearts pointed to altered Ca2+ handling and could be
related to a decreased function of the sarcoplasmic reticulum Ca2+-
ATPase (SERCA2a11) and increases in the sarcolemmal Na+/Ca2+

exchanger.12,13

Multifold evidence suggests energy deficit to be another common
alteration in heart failure and cardiomyopathies.14 Whereas energetic
alterations in heart failure are, in most cases, the consequence rather
than the cause of failure,14 this is likely different in sarcomeric cardiomy-
opathies. Loweredphosphocreatine–ATP ratioshave been measured in
HCM patients irrespective of the degree of hypertrophy,15 pointing to a
primary defect in HCM. A recent study confirmed and extended this
conclusion by showing with [11C]-acetate PET and CMR imaging that
myocardial energy efficiency was lower in patients with HCM associated
with mutations in MYH7 or MYBPC3 than healthy controls.16 The in vivo
findings in patients correlated with higher tension costs (ATP consump-
tion per force development) measured in permeabilized muscle strips
in vitro, indicating (i) that the defect in energetic efficiencyof myofilament
function is a primary alteration in sarcomere-positive HCM and (ii) can
be faithfully analysed in vitro.

It is important to keep in mind that most of the alterations have
been identified in preparations from patients with terminal heart
failure, i.e. patients exposed to chronically increased catecholamine
levels, with marked dilatation of the ventricular walls, maximal wall
stress, and extremely reduced left-ventricular ejection fraction. It is
therefore likely that much of the ‘HF-specific myocyte phenotype’ is in
fact an adaptation to increased workload and humoral stimulation. For
example, the force–frequency-relation was blunted in HCM samples
from patients with decompensated HCM,17 but unaltered in samples
from compensated HCM patients undergoing septum myectomy in
which maximal force development and response tob-adrenergic stimu-
lation were preserved.18

1.2. Freshly isolated intact beating myocytes
The few studies on electrically stimulated beating human cardiomyo-
cytes, freshly isolated either from (terminally failing) explanted human
hearts or myectomy samples from (compensated) patients with ob-
structive HCM, principally supported the above data on muscle strips
(Table 1). Important additional information comes from measurements
of action potentials, ion currents, Ca2+ transients, Ca2+ sparks, and
mitochondrial membrane potential and the redox state. Caveats of
this approach include rather harsh conditions of enzymatic isolation
(from heart muscle blocks or biopsies) and the unloaded conditions
of contraction, i.e. the almost complete absence of workload. A peculi-
arity of HCM myectomy samples is the large degree of fibrosis,19 a

condition that notoriously impedes cell isolation. Since the degree of fi-
brosis is systematically lower in non-failing hearts, but also in HCM
samples without sarcomeric gene mutation,20 it is well possible that
some of the reported differences between these groups (Table 1) in
fact represent isolation artefacts rather than true differences in
biology, e.g. enzymatic over-digestion and oxidation.

1.3. Skinned cells/heart preparations
A key parameter of cardiac contractile function is the response of myo-
filaments to Ca2+. This can be experimentally assessed in a whole spec-
trum of preparations, ranging from muscle strips/cells in which the
plasma membrane is perforated to make it freely permeable for Ca2+

(staphylococcus exotoxin or b-escin) to fully skinned muscle strips/
cells or isolated myofibres hooked to nano-force transducers. The per-
foratedmembranemethodshave the advantage thatpartof the signalling
cascade remains intact, allowing the evaluation of agonist responses. Iso-
lated skinned cells/myofibrils are more prone to experimental artefact,
but can be isolated from frozen whole heart samples, which facilitates
logistics. Force measurement can be combined with determination of
ATP consumption, providing an index of energy cost.

Experiments in skinned human preparations have not revealed sys-
tematic alterations in myofilament Ca2+ sensitivity in terminal HF.5

In contrast, passive stiffness was found to be increased in skinned cardi-
omyocytes from biopsies of patients with diastolic, but not systolic heart
failure, likely a consequence of altered titin function.36 Common, but not
unequivocal findings in HCM samples are increased myofilament Ca2+

sensitivity,34 reduced maximal force generation,37 and faster cross-
bridge relaxation kinetics of isolated myofibrils57 associated with
higher energy consumption and tension costs.58

1.4. Actin–myosin sliding assays
Even further reduction in complexity is achieved by assays that allow
video-optical control of fluorescently labelled actin filaments sliding
on myosin preparations that have been fixed on cover slides.59

Maximal myosin motility was found to be unchanged in mitral valve
HF39 or slightly reduced in terminal HF,40 again suggesting that the prin-
cipal components of the contractile apparatus are unaffected or only
mildly affected in secondary forms of HF. In contrast, several abnormal-
ities were described in myosin preparations of HCM patients with muta-
tions in MYH7. For example, homozygous V606M mutations were
associated with increased actin sliding motility.40 Similarly, homozygous
R403W mutations in MYH7 were associated with a small increase in
actin-sliding velocity, but a more than two-fold increase in ATP con-
sumption, indicating inefficient energy utilization and increased tension
costs associated with this mutation.41 On the other hand, actin-sliding
velocity was normal on myosin preparations from an unselected
cohort of HCM myectomy samples,40 indicating that altered myosin
properties are not a general feature of HCM.

1.5. Biochemical assays and gene expression
Whereas decreased myofibrillar ATPase activity has been identified as
one of the earliest alterations in HF,60 maximal actomyosin ATPase
activity was found unchanged in HF,39 suggesting that primary
myosin properties are unchanged in common forms of HF, but that
the assembly or post-translational modifications differ. Indeed, numer-
ous HF- and HCM-associated alterations have been described in the
phosphorylation state (e.g. decreased cMyBP-C, myosin light chain-2,
troponin I phosphorylation) and isoform composition of myofilament
proteins (increase in the atrial isoform of myosin light chain-1 in the
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Table 1 Commonly used in vitro preparations of cardiac samples for the analysis of a pathology-related phenotype

In vitro preparation Readout parameters Advantages/Disadvantages Pathology in human terminal HF or HCM
(myectomy or explanted hearts)

Electrically stimulated muscle
strip in organ bath (generally
isometric)

- Twitch force - Relatively intact - Unchanged max. force in HF (low frequency)2–4

- Twitch kinetics (time-to-peak [TTP]
and time-to-relaxation [TTR])

- Simple - Unchanged FLR in HF8–10

- Diastolic tension - Integrated readout - Subsensitivity to catecholamines in HF2–4

- Force–length relation (FLR) - Amenable to full
concentration–response
curves

- Prolonged TTP in HF3,21

- Force–frequency relation (FFR) - Requires immediate exp.
(difficult logistics for human
material)

- Prolonged TTR in HF, HCM3,18

- Post-rest-potentiation (PRP) - Handling artefacts - Prolonged Ca2+ transient in HF, HCM3,21

- Action potential (APD, sharp
microlectrodes, voltage-sensitive
dyes)

- Core ischaemia - Increased cross-bridge force–time integral in
HF22

- Ca handling - Blunted FFR in HF6,17

- Heat/oxygen consumption - Unchanged FFR (HCM myectomy)18

- Pharmacology - Blunted PRP in HCM23

- Unchanged PRP (HCM myectomy)18

- Increased diastolic tension in HF, HCM12,18,21

Freshly isolated electrically
stimulated cardiomyocytes

- Cell or sarcomere shortening
(unloaded)

- Intact cardiac myocyte - Unchanged max. shortening at low frequency in
HF24,25

- Peak shortening - Amenable to measurements of
subcellular functions

- Hypertrophy in HF26

- Shortening kinetics (TTP, TTR) - Isolation artefacts (particularly
from human heart)

- Decreased shortening response to
catecholamines in HF25

- Diastolic sarcomere length - Loss of 3D context - but increased kinetic response to catecholamines
in HF27

- Ca2+ transients - Unloaded contraction - Prolonged TTR in HF25

- Ca2+ sparks - Limited work - Prolonged Ca2+ transient in HF28,29 and HCM
(myectomy)18

- Redox potential - Unstable over time ¼ short
time window of exp.

- Decreased SR Ca2+ content in HF30

- Mitochondrial parameters - Prolonged APD18,29, decreased K-currents18,31,32

and increased Na-current18 in HF and HCM
(myectomy)

- Pharmacology - Increased PRP33

- APD (sharp microlectrodes, patch
clamp, voltage-sensitive dyes)

- Loss of T-tubules26

- Ion currents (patch clamp)

Skinned preparations (muscle
strips, cells, myofibres)

- Myofilament Ca2+ sensitivity
(pCa-force)

- Direct access to myofilament
function

- Normal Ca2+ sensitivity in HF5

- Maximal force - Simple logistics (analysis from
frozen samples)

- Altered Ca2+ sensitivity in HCM34,35

- Contraction kinetics - Preparation artefacts - Altered passive tension in HF36

- ATP consumption - Unphysiological condition - Normalized function after phosphorylation34

- Myofilament response to
phosphorylation/oxidation

- Decreased maximal force in HCM37,38

- Passive tension - Decreased length-dependent activation in
HCM34

Myosin preparations for
actin-sliding assays

- Sliding velocity (unloaded,
actinin-loaded)

- Direct assessment of actin–
myosin interactions

- Normal39 or slightly decreased40 sliding velocity
in HF

- ATP consumption - Simple logistics - Slightly increased sliding velocity, but doubled
increase in ATP consumption in R403W
b-MHC41

Continued
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ventricle. . . ,) as well as in the gene expression (e.g. down-regulation of
b-adrenoceptors or SR Ca2+ ATPase, SERCA) and phosphorylation
state of proteins involved in cardiac excitation–contraction–coupling
(Table 1). As for the HF-associated alterations in contractile function,
many molecular HF-abnormalities have also been identified in HCM
myectomy samples, suggesting that they are secondary to cardiac
stress rather than primary causes of disease.

2. Making hiPSC and hiPSC-derived
cardiomyocytes
A novel source of cardiomyocytes for modelling disease is human pluri-
potent stem cells (hPSC). These may either be human embryonic stem
cells (hESC) in which mutations for particular cardiac diseases are intro-
duced by gene targeting or human induced pluripotent stem cells
(hiPSC) derived from patients with the disease.61 The generation of
hiPSC from somatic tissue (Figure 1) has been reviewed extensively else-
where,62–64 but broadly the approaches can be divided into two main
categories depending on whether or not the reprogramming genes inte-
grate into the genome of the target cell. Most widely used ‘integrating’
methods use either retroviral or lentiviral vectors to deliver the repro-
gramming genes; these are efficient, but may integrate into relevant
genes of importance to the derivative cells. So they are falling in use in
favour of non-integrating Sendai virus or episomal vectors. In both
cases, combinations of ‘reprogramming genes’ are introduced into
cells from somatic tissue growing in culture. These cells may be
dermal fibroblasts, keratinocytes or blood, but also dental pulp or
kidney cells shed into urine are now being used. Initially, the transcription
factors OCT4, SOX2, KLF4, and cMYC61 or OCT4, SOX2, NANOG,
and Lin265 were identified as crucial reprogramming genes, but multiple
other combinations of fewer factors, in combination with miRNA or
small molecules have also been described. In all cases, the reprogram-
ming genes induce endogenous pluripotency genes, remove the

somatic cell gene expression profile and are then silenced. Cells repro-
grammed in this way acquire all of the characteristics of pluripotent
hESC. Like hESC, they can self-renew indefinitely, express characteristic
transcription factors (e.g. OCT4, NANOG, SOX2), cell-surface pro-
teins (SSEA3, SSEA4, and a glycoprotein recognized by antibody
TRA-1–60) and differentiate in vitro and in vivo (as teratomas) into deri-
vatives of the three embryonic germ layers: ectoderm (neural), endo-
derm (pancreas, liver, lung), and mesoderm (cardiomyocytes, vascular
endothelial cells).

Making cardiomyocytes for experimental use requires that the pluri-
potent stem cells first differentiate to the mesodermal germ layer. All
protocols for cardiomyocyte differentiation rely on the premise that
recapitulating development signals in the embryo that first direct meso-
dermal fate and then pattern the nascent mesoderm to cardiogenic
mesoderm will result in the formation of bona fide cardiomyocytes.
The various ways to do this have been recently reviewed,66,67 but can
be divided broadly into two approaches: (i) aggregation-based methods,
in which the undifferentiated cells are forced together as clumps (also
known as ‘embryoid bodies’), and (ii) monolayer-based methods, in
which the cells remain attached to a culture substrate or extracellular
matrix protein.68 In both cases, the cells are first exposed to a sequence
of mesoderm differentiation-inducing molecules, usually bone morpho-
genetic protein (BMP), activin (as a substitute for nodal signalling), and
wnts or wnt activators such as CHIR for approximately 3 days, then
an inhibitor of wnt signalling (Dkk1) is added to pattern the mesoderm.
First beating cardiomyocytes are generally observed on Day 7 after
induction of differentiation, reaching a maximum after 12–14 days.
The aggregation-based methods have the advantage of scalability, in
that aggregates may be grown in bioreactors in suspension to large
numbers. This method can result in several hundreds of million cardio-
myocytes fairly easily and is preferred industrially. In addition, cardio-
myocytes can be easily selected to purity based on incorporation of
an antibiotic resistance gene coupled to a cardiomyocyte promoter.
The monolayer method is lower scale, but has the advantage of allowing
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Table1 Continued

In vitro preparation Readout parameters Advantages/Disadvantages Pathology in human terminal HF or HCM
(myectomy or explanted hearts)

- Confounding presence of
regulatory proteins

- Overproportional increase in ATP consumption
in V606M b-MHC41

- Preparation artefacts

- Unphysiological

Tissue/cell homogenates - Protein activity, concentration,
isoforms, phosphorylation,
oxidation. . .

- Simple logistics - Down-regulation of b1-adrenoceptors2

- mRNA/miR concentration - Mechanistic insights - Reduced SERCA activity,3 mRNA, and,
inconsistently, protein3,11, Inhibitor-142

- Confounding cell mixtures
(70% non-myocytes)

- Up-regulation of Gia43,44, GRK245, phosphatase
146, CaMKII47, NCX13

- Unclear representation of in
vivo state

- Hypophosphorylation of PLB48, TnI48,
cMyBP-C48–50, MLC-240,51

- Hyperphosphorylation of RyR252, hyperactivity
of LTCC53

- ANP54, BNP55, sACT56 up

The table lists typical readout parameters, advantages, and disadvantages and a selection of pathologies described in samples fromhuman terminal heart failure (HF) compared with non-failing
controls and myectomy samples from patients with HCM. Abbreviations are explained at first entry.
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the individual cells to be monitored and remain accessible to various
stimuli during the differentiation process itself. While there has been
no direct comparison of monolayer vs. bioreactor methods for cardio-
myocyte differentiation using the same line in parallel experiments,
monolayer methods are presently regarded as having the highest effi-
ciency, the bioreactor methods better scalability.

These protocols have been developed over a number of years and
each new formulation has generally resulted in improved differentiation
efficiencies. In the very earliest protocols developed for hESC, only
10–30% of cell aggregates actually began beating synchronously and
the proportion of individual cardiomyocytes within beating aggregates
was unknown.69 In later protocols using defined growth factors under
defined and optimized conditions, 70–90% cardiac differentiation effi-
ciencies have been reported, rising to .99% if the cardiomyocytes
are selected and purified. Selection methods have included the use of
mitochondrial dyes (but these may introduce some toxicity) and tittered
metabolic substrates (but these may also affect cell function). Least inva-
sive are antibody selection methods based on SIRPA and VE-CAM epi-
topes early during differentiation.66,67,70 In general, despite increasing
use of defined reagents, there has remained a certain amount of variabil-
ity between the efficiencies with which individual cell lines differentiate.
Although the better the protocol, the smaller these differences in effi-
ciency,71 it has been proposed that the differences may be because indi-
vidual lines produce their own growth factors in variable amounts,

making their sensitivity to exogenous growth or inhibitory factors differ-
ent.72 These differences have become increasingly evident as an increas-
ing number of hiPSC lines have been produced: despite the similarity of
these lines in terms of pluripotency many groups find the differentiation
of hiPSC to cardiomyocytes more challenging than hESC although many
hiPSC lines do differentiate just as efficiently as hESC. Minor genetic dif-
ferences between the lines may account for this variability, which does
not seem to be the result of a specific mutation in cardiac genes.73

3. Published hiPSC-CM models
of inherited heart disease
The hiPSC technology has been used to model a number of inherited
heart diseases, with a total of 39 publications to date. Figure 2 shows
the breakdown by inherited disease. Most reports investigated inherited
channelopathies that cause either long QT syndrome (LQTS74– 87) or
catecholaminergic polymorphic ventricular tachycardia (CPVT88– 94)
in patients with structurally normal hearts. The remaining studies
investigated various forms of inherited cardiomyopathies due to muta-
tions in mitochondrial proteins (Friedreich’s ataxia,95– 97 Barth syn-
drome,98 carnitine palmitoyltransferase II deficency99), in desmosomal
proteins associated with arrhythmogenic right ventricular cardiomyop-
athy (ARVC100– 103), and other rare genetic syndromes associated with

Figure 1 Principle of making cardiomyocytes from somatic cells.
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cardiomyopathy (LEOPARD syndrome,104 Pompe disease,105 –107 lami-
nopathies,106,107 intermediate filament mutations108). Currently, there
are only four reports of hiPSC models of sarcomeric cardiomyopathies,
the focus of this spotlight issue. Two extensive studies from the Wu lab
published in 2012109 and 2013,110 and two more limited studies pub-
lished online in the fall of 2014.111,112 The findings of those four
studies are compared in Table 2.

How do the phenotypes of the four iPSC models comparewith thatof
‘real’ human cardiomyopathy in the dish described in Table 1? Let us first
consider the two most recent studies that describe the phenotype of
hiPSC-CM generated from patients with HCM. The major finding in
both studies was that all HCM hiPSC-CM lines exhibited cellular hyper-
trophy and disorganized sarcomeres. In the report by Tanaka et al.,112

endothelin 1 enhanced this phenotype in hiPSC-CM generated from 3
HCM patients, where the underlying mutation (cMyBP-C deletion,
Table 2) was known only in one subject, whereas the other two HCM
patients were negative for sarcomeric mutations. While the effect of
endothelin 1 is provocative (validation studies using neonatal myocytes
from cMyBP-C heterozygous mice also exhibited a hypertrophic re-
sponse to endothelin 1), it remains unclear what mechanism was
responsible for the common hypertrophic phenotype in the HCM
hiPSC-CM that carry different mutations. Maybe even more puzzling is
a result from the other report: MYH7-R442G hiPSC-CM exhibited
massive AP prolongation and a profound up-regulation of Na and Ca
currents,111 which has not been reported in human myocytes harvested
from HCM patients (Table 1). A plausible explanation for these dis-
crepancies is that, in both studies, the investigators used as controls
hiPSC-CM that were previously generated from unrelated healthy sub-
jects as part of other published studies (Table 2). Such an indirect
comparison can give rise to differences in AP duration that are unrelated
to any cardiomyopathy phenotype (see also 6 below).74 Hence, the
relevance of the findings for HCM pathophysiology remains unclear.

In contrast, both reports by the Wu lab used as controls hiPSC-CM
that were generated from mutation-negative family members. The

first report describes the hiPSC cardiomyocyte phenotype from
patientswith DCMassociated with a troponin Tmutation.109 Compared
to hiPSC-CM generated from three unaffected family members,
hiPSC-CM generated from four carriers of the TnT mutation all exhib-
ited more disorganized sarcomere ultrastructure, reduced contractility
by atomic force microscopy (AFM) and impaired SR Ca handling, all of
which are hallmarks of myocytes isolated from explanted hearts from
DCM patients (Table 1). On the other hand, cell size and cardiac
action potential were not different from mutation-negative hiPSC-CM
controls, which is different from that of myocytes isolated from DCM
hearts. It is possible that culture conditions were not optimal, since
serumsupplement in the culturemediumcan mask hypertrophic pheno-
type of hiPSC-CM.113 Since no comparison to human heart tissue from
the same patient was made, it remains unanswered if that is specific to
the mutation, or unique to the iPSC-CM. DCM hiPSC-CM were also
more sensitive to b-adrenergic stimulation, which could be blocked by
b-adrenergic receptor antagonists (b-blocker). Given that b-blockers
had the biggest effect when b-agonists were supplied in the media, the
relevance of this finding is uncertain. The authors went on to show
that gene-transfer of SERCA partially rescued the Ca handling defect
of the DCM iPSC-CM, analogous to what has been described in
various DCM animal models and humans.

The second report examined iPSC-CM generated from a family of 10
individuals, five of which carried a missense mutation in b-myosin heavy
chain (MYH7) previously associated with HCM,110 the other five indivi-
duals were mutation-negative. The clinical phenotype of the five muta-
tion carriers was variable: only the index patients exhibited classic
asymmetric hypertrophy, two individuals had only mild hypertrophy
and the youngest two individuals (aged 10 and 14) had no evidence of
cardiac hypertrophy. Despite the variable penetrance in patients,
hiPSC-CM from all five mutation carriers were significantly larger than
those generated from the five controls. HCM iPSC-CM expressed
hypertrophic markers, had elevated diastolic Ca and impaired Ca hand-
ling, which was responsible for an increased incidence of delayed after-
depolarizations and triggered beats (Table 2). Based on the finding that
overexpression of mutant b-myosin in hESC-derived myocytes recapi-
tulated the Ca handling abnormalities of the HCM hiPSC-CM, and that
cellular hypertrophy and Ca-triggered arrhythmias were prevented by
L-type Ca channel blockers, the authors concluded that elevated intra-
cellular Ca was a central mechanism in HCM, and that their findings ‘val-
idate iPSC technology as a method to understand how sarcomeric
mutations cause the development of HCM and to identify new thera-
peutic targets for the disease’.110 While we agree that the report
nicely illustrates the promises of hiPSC technology, together the four
reports also raise questions on how to best use hiPSC in sarcomeric car-
diomyopathy research, both of which will be discussed in more detail in
the next section.

4. Promises of hiPSCs in modelling
sarcomeric cardiomyopathies
As patient-derived in vitro models, hiPSC technology promises a number
of specific advantages:

(1) Testing the pathological significance of a gene mutation and establishing
its causality. A major challenge faced by doctors caring for patients
and family members with suspected sarcomeric cardiomyopathies
is how to establish causality of a specific gene mutation, especially
with incomplete penetrance and asymptomatic young patients so

Figure 2 Number of publications reporting hiPSC-CM models of
inherited heart diseases (PubMed accessed 18 September 2014).
LQTS, long QT syndrome; CPVT, catecholaminergic polymorphic
ventricular tachycardia.
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typical of HCM. For example, the Wu lab reported that the hiPSC
cellular phenotype tracked completely with mutation carrier
status, both for the HCM and the DCM model. The causality of
the mutation can be further examined by correcting the putative
mutation with gene-editing approaches [e.g. transcription activator-
like effector nuclease (TALEN) or clustered regularly interspaced
short palindromic repeats (CRISPRs) Cas9 systems] and thereby
generate genotype-matched iPSC control cell lines.114

(2) Determine proximate disease mechanisms caused by sarcomeric
mutation. HiPSC could be an enabling technology that allows
testing of hypotheses generated from studies in humans
(Table 1) and/or transgenic animal models. For example, ener-
getic deficit hypothesis, Ca sensitivity hypothesis, autophagy
hypothesis, loss of Frank-Starling hypothesis discussed else-
where in this issue could all be tested in hiPSC-models for differ-
ent mutations.

(3) Discovery of new disease mechanisms. HiPSC-CM models could help
us discover new cellular mechanism caused by gene mutations.
For example, the Wu lab concluded that elevated cytosolic Ca
was the underlying cellular mechanism responsible for the hyper-
trophy and arrhythmia phenotype in the HCM cells. It remains to
be seen whether this conclusion is valid and applies to other
HCM-linked sarcomeric mutations.

(4) Validation of genetic modifiers using gene-editing approaches. Gene-
editing approaches using CRISPRs or TALENs coupled with expres-
sion studies and/or proteomics can be used to not only establish
causality of disease-causing mutations, but also to validate the
effect of genetic modifiers.

(5) Cellular phenotyping to aid risk stratification and prognosis. If the cellular
phenotype is robust and clinical correlation can be established, one
could envision using the hiPSC cellular phenotype as novel tool for
risk stratification and prognosis. This would help address a major
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Table 2 Published hiPSC-CM models of sarcomeric cardiomyopathies

Sarcomere gene mutation Human
disease

Number of mutation
negative/positive family
member hiPSC lines

hiPSC-CM phenotype In vitro assays
employed

Cardiac Troponin T
TNNT2-R173W109

DCM 3/4 multiple lines from each
subject

Sarcomere disorganization EP by MEA of EBs and
patch clamp
single-cell AP

Impaired Ca transients and contractility Contractility by AFM
and video edge
detection

Impaired SR Ca uptake Ca handling

Enhanced susceptibility to inotropic stress and
prolonged strain

Cell size

No change in AP Drug testing

No cell hypertrophy

b-Myosin Heavy Chain
MYH7-R663H110

HCM 5/5 multiple lines from each
subject

Cell hypertrophy with increased Single-cell EP

ANF expression, multi-nucleated cells, disordered
sarcomeres, and nuclear NFAT

Contractility by video
edge detection

Hypercontractility Ca handling

No change in AP duration Cell size

Delayed afterdepolarizations Expression of
hypertrophic genes

Reduced SR Ca content, increased resting Ca Drug testing

Enhanced hypertrophy in response to inotropic stress

b-Myosin Heavy Chain
MYH7-R442G111

HCM 0/1 2 control lines from
unrelated donors

Cell hypertrophy with disordered sarcomeres and
nuclear NFAT

Whole transcriptome
sequencing

Massive AP prolongation Single-cell AP

Increased Ca, Na, and Ito currents Patch clamp analysis of
ion channels

Elevated diastolic Ca Ca handling

Irregular spontaneous beating Cell size

Drug testing

cMyBP-C
MYBPC3-999-1004del 2
HCM of unknown cause112

HCM 0/1 2 HCM lines from
sarcomere mutation
negative patients, 3 control
lines from unrelated donors

Cell hypertrophy with disordered sarcomeres,
exacerbated by endothelin 1. ‘Disordered’
contractility. Similar endothelin 1 response in
neonatal mouse cMyBP-C+ myocytes

Contractility by video
analysis

Cell morphology by
EM

Drug testing

cMyBP-C, cardiac myosin binding protein C; AP, action potential; NFAT, nuclear factor of activated T-cells; EP, electrophysiology; MEA, multi-electrode array.
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challenge to doctors caring for patients carrying sarcomeric muta-
tions and their family members, as discussed elsewhere in this
issue of the Journal. However, for this to work, prospective, long-
term iPSC phenotype/clinical phenotype correlation studies
would have to be done in a large population of mutation carriers
to establish the natural history and prognosis of sarcomeric
cardiomyopathies.

(6) Testing of patient or mutation-specific drug/gene therapies. One of the
most widely advertised promises of the hiPSC technology is the
ability to test efficacy of drug or gene therapy in a mutation-specific
or patient-specific fashion. The Wu lab has demonstrated such
testing with clinically-available drugs used in patients with HCM or
DCM. However, the Ca channel blocker identified as effective in
the HCM hiPSC model—verapamil—failed to provide objective
benefit to HCM patients in a double-blinded clinical trial.115

Future, more systematic studies will have to determine the validity
of this approach.

(7) Use for drug discovery and development. Once hiPSC lines from mul-
tiple patients with sarcomeric mutations become available, those
could be used for large-scale high-throughput screens for drug dis-
covery.116 Alternatively, one could perform efficacy studies of a lead
compound in disease hiPSC-CM of multiple genetic backgrounds, in
essence conducting a ‘clinical trial in the dish’.

(8) Drug safety testing. One of the most widely advocated uses of hiPSC is
for drug safety testing. Here the hiPSC could be used as a source of
human myocytes for safety pharmacology, or even for testing drug
safety in a disease or mutation-specific fashion.117 Again, the validity
of these approaches remains untested.

5. HiPSC-CM approaches
As outlined in Table 1, a human ‘in vitro HF phenotype’ has been relatively
well defined in a whole array of in vitro preparations, ranging from
homogenates for the molecular data to intact trabeculae. Not all of
these technologies have been applied to hiPSC-CM as yet, but no
principal limitation exists. HiPSC-CM have been subjected to measure-
ments of action potentials (both microelectrodes and fluorescent dye-
based), ion currents (patch-clamping), Ca2+ transients (fluorescent
dyes), cell shortening (video-based edge detection), sarcomeric struc-
ture and orientation and cell size (immunofluorescent staining), and
AFM. Multi-electrode arrays integrated in cell culture dishes are fre-
quently applied for the evaluation of stem cell-derived field potentials
(‘in vitro ECG’) and detect repolarization-prolonging drug effects with
good sensitivity.118 It should be noted, though, that the hiPSC-CM
assays are all based on cells cultured for weeks (embryoid body or
monolayer), whereas none of the data from human HF and HCM
samples (Table 1) is.

One possibility to narrow this gap is to generate three-dimensional
engineered heart constructs. Different formats have been developed
over the past 20 years, both for cardiac repair and as experimental
test beds (reviewed in Hirt et al.119). The hydrogel (collagen I, matrigel,
fibrin, and mixtures thereof)-based methods are probably best suited
for hiPSC disease modelling. They come in different flavours (rings,
strips, biowire, networks), but the principals are the same as described
in the original publication.120 A suspension of cells in a liquid matrix
material is poured into casting forms and forms a 3D, cell-containing
hydrogel that acquires the form of the casting mold. Importantly, the
gel needs to be anchored to a support structure to expose the

remodelling cell–hydrogel block to mechanical strain. The geometry
of the casting mold and the integration of mechanical supports have
seen intense development. Whereas the original methods (lattices,120

rings,121 Flexcell122) required a two-step procedure (casting and
manual transfer in organ baths for force measurements), newer
methods123,124 integrate flexible silicone posts in the casting molds
which allows the growing heart tissue to develop around and fix to
two posts and start to deflect them when coherent beating starts. In
this format, CM form spontaneously beating, force-generating heart
muscles strips that perform contractile work against an elastic load (sili-
cone posts; Figure 3). The 24-well-fibrin-engineered heart tissue (EHT)
technology, applied to rat, mouse, and hPSC-derived cardiac myo-
cytes,124– 126 is simple and robust and, when coupled with an automated
video-based analysis system, provides a high-content readout of con-
tractile function. Measurements can be done repeatedly under sterile,
steady-state conditions without the need for manual handling. The
most radical simplification and miniaturization is a 200-well-format in
which tissues self-organize around posts, omitting casting of individual
EHTs.123 The higher throughput potential and the simplicity of the
systemareattractive,but theapplicabilityof the systemtodrug screening
and disease modelling remains to be demonstrated. Another technology
produces 3D networks by pouring a cell–hydrogel mixture into silicone
molds with arrays of mesoscopic posts.127 Using EHTs, we and others
faithfully recapitulated key abnormalities of MYBPC3 knockout122,128

and targeted knockin mice.128 Of note, the differences between geno-
types were discrete and still well detected. Even more, a pathological
phenotype (increased sensitivity to external calcium concentrations)
was robustly seen in EHTs from heterozygous mice, which develop dia-
stolic dysfunction, but no hypertrophy.129 The data indicate high sensi-
tivity of the in vitro system. The 3D systems work with pluripotent
stem cell-derived cardiomyocytes125,126,130 and comparisons of differ-
ent patient-derived hiPSC-EHTs are underway.

The ‘in vitro HF phenotype’ refers to terminal stages of the multi-
faceted syndrome HF, and specificities of an (early) human DCM
phenotype characteristics are unknown. Somewhat surprisingly, key
HF characteristics were also found in myectomy samples from patients
with HCM who clearly exhibit a different clinical picture. This observa-
tion may indicate that the HF phenotype develops relatively early in
response to cardiac stress, that it is rather non-specific and/or, at
least in part, an artefact introduced by the isolation procedures from
fibrotic myectomy samples. In any case, we still have a very incomplete
picture of the real mechanisms involved in specific cardiomyopathies.
The only firm statement that can be made today is that, for the vast
majority of familial cases, sarcomeric gene mutations (or mutations
in genes with indirect effects on sarcomeric proteins such as
RB20131) are the underlying cause of the disease and that they have
almost certainly direct consequences on intrinsic cardiac myocyte
properties. Likely, however, both gain- and loss-of-function alterations
are disease-causing as exemplified by increases and decreases in
myofilament Ca2+ sensitivity associated with HCM and DCM,132 re-
spectively. In other words, it is quite possible that any (genetically
determined and thereby fixed) deviation from ‘normal function’
causes cardiomyopathy if it exceeds a certain severity. Such deviations
could be detected in patient-derived hiPSC-CM and the type of assays
described earlier (Table 1). Doing such evaluation on an individual
basis could in fact represent an important step forward in individua-
lized risk prediction, drug testing, and therapy. However, critical
issues and challenges need to be resolved as outlined in the
following sections.
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6. Challenges and bottlenecks
of the hiPSC-CM approach
One of the key shortcomings of the field concerns the lack of systematic
studies to define ‘normal values +/- SD’ for the parameters summarized
in Table 1. Only this would allow the detection of abnormalities in
individual patients or groups of patients with cardiomyopathy or, pos-
sibly, even other forms of heart failure (e.g. heart failure with preserved
ejection fraction, HFpEF). Defining meaningful normal values with rea-
sonable SD (similar to current clinical chemistry parameters) of hiPSC-
derived cardiomyocytes from healthy people requires experimental
procedures that are highly efficient, robust, and standardized to an
extent that they can be reproduced in many laboratories worldwide.
We are not at this point yet (discussed earlier). In contrast to the
direct measurement of, e.g. sodium levels in blood serum, the generation
and assessment of hiPSC-derived cardiomyocytes involves numerous
time-consuming and technically demanding manual handling steps with
still imperfect efficacy. Moreover, the approaches used to reprogram
somatic cells and then create cardiomyocytes are fundamental interven-
tions into the biology of the cell and incompletely understood. Thus,

accumulation of experimental variability at each of the many steps of
this approach is considerable and likely accounts for the current situ-
ation that differences between baseline values of ‘controls’ are often
larger than those between mutated samples and controls (e.g. action po-
tential duration, compare Fig. 7B,D74). This emphasizes the importance
using isogenic controls where possible that only differ in the gene muta-
tion of interest.

Assays are generally defined by their sensitivity and specificity, both
are currently unknown for the current tests employed for hiPSC
disease modelling. It remains to be shown that the effect size of hetero-
zygous mutations (the standard in autosomal dominant diseases) on the
parameters listed in Table 1 is larger than the experimental variability.
Specificity will be similarly important. Does an abnormality of hiPSC-
CM from one person reflect true biological abnormality or a technical
artefact that has either been introduced during the numerous rounds
of making hiPSC and CM or even earlier. An additional problem that is
increasingly recognized is that even normal cells (fibroblasts, but
also neurons) exhibit a surprisingdegree of large copy number variations
and even aneuploidy.134 Thus, clonally derived hiPSC may not necessar-
ily reflect ‘the’ genome of the corresponding person. Systematic

Figure 3 Fibrin-based engineered heart tissue (EHT) as an automated, high content readout of functional parameters of hiPSC-derived cardiomyocytes
in a three-dimensional heart muscle construct. (A) Setup to measure spontaneous or electrically stimulated contractile activity of EHT cultured around
elastic silicone posts in a 24-well format over extended periods. Note a temperature-, gas-, and humidity-controlled incubation chamber and a
PC-controlled video camera with XYZ drive above. (B) Image of a hiPSC-EHT between two silicone posts as viewed by the video camera. Note the mus-
cular structure. (C) Overlay of averaged contraction peak (black) and Ca2+ transient (red), normalized to their respective maxima. From Stoehr et al.126 (D)
Dystrophin-stained heart muscle structure of hiPSC EHT. Note longitudinal orientation and cross-striation. From Hirt et al.133
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experiments in larger series of patient-derived hiPSC-CM with experi-
menters blinded to the genotype or group assignment are warranted.
Such an approach should also include interlaboratory tests.

HiPSC-CM are immature when compared adult heart CMs (for
comprehensive review see Yang et al.135). This could create the situation
that proteins which are affected in certain cardiomyopathies are either
not expressed at all or at abnormal levels or in an environment that
differs substantially from that in the normal, mature heart. All methods
described in (iii) result in cardiomyocytes with action potentials of
lower than normal amplitude, disorganized sarcomeres and low forces
of contraction. Although they are often described as atrial-, ventricular-,
or pacemaker-like based on the shape of their action potentials, this is
usually difficult and not accurate since they are immature. For example,
myofilaments, sarcoplasmic reticulum, and mitochondria all exhibit sma-
ller than normal volume fractions,136 myofilaments are poorly oriented,
t-tubules are lacking, cells predominantly utilize glucose rather than fatty
acids, and show little inotropic response to b-adrenergic stimulation. Is
it reasonable to assume that, under such conditions, heterozygous
mutations in RyR2 (CPVT) or PLB (DCM) are really faithfully detectable?
Many groups work therefore on means to improve maturation. One
simple measure may be time of culture as impressively demonstrated

by Lundy et al.137 Here, culture of isolated hiPSC-CM for .3 months
led to substantial increases in multinucleation, sarcomere organization
and orientation as well as cell size. Further optimization likely requires
the combination of 3D tissue formation,124,125 co-culture,130 humoral
factors,138,139 geometric patterning,140 and electrical or mechanical
stimulation.141

3D engineered heart constructs clearly promote maturation, but do
not solve all issues and have a number of shortcomings themselves. (i)
The advantage of being more complex, heart-muscle-like entails the po-
tential disadvantage of cellular heterogeneity and undefined cell–matrix
(often non-human) interactions. This complicates the establishment of
cause-effect relationships.Whereas manydata suggest that thepresence
of non-myocytes (stromal cells, endothelial cells) improves the quality of
3D in vitro tissues130,138 24-well fibrin-EHTs can be readily produced
from .99% pure hiPSC-derived cardiomyocytes (CDI, Axiogenesis)
with excellent alignment, force generation, and pharmacological re-
sponse profiles similar to EHTs from 70 to 80% hiPSC-cardiomyocyte
preparations (unpublished data). This shows that the presence of non-
myocytes in EHTs is not a conditio sine qua non. (ii) Reproducibility
and robustness may be expected to decrease with the increased
complexity of 3D constructs. Large data sets from hiPSC-CM are not

Figure 4 The inherent assumption of using hiPSC for modelling inherited sarcomeric cardiomyopathies is that the effect of the sarcomeric mutations
during cardiac development in vivo is the same as its effect on cardiac induction in the dish, which cannot be valid. Only certain aspects of disease pathology
will be approachable by the hiPSC technology.
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published yet, but in our hands the by far largest source of variability
is cardiomyocyte differentiation efficiency. With homogenous cell
batches, the variability between EHTs of one batch and different
batches is small. It actually appears that the EHTs format reduces
rather than increases variability, maybe by integrating the function of
many thousands of (individually different) cardiomyocytes. (iii) Classical
microelectrode and patch clamp analyses are difficult to obtain from
whole EHTs (possibly due to the relatively high fraction of extracellular
matrix), and isolating cardiomyocytes from EHTs requires relatively
harsh experimental conditions, calling in question the validity of the
data. We and others therefore work on methods to determine mem-
brane potential and intracellular Na+ and Ca2+ concentrations126,142

with fluorescent dyes.
Time may not be considered sufficiently. Patients with HCM or DCM

generally grow into adulthood without major symptoms or even
with normal heart function. Can we expect (immature) iPSC-CM to
develop a disease phenotype in the dish over an observation period
of a few days or weeks? A critical factor maybe mechanical load.
HiPSC-CM are normally not loaded (in embryoid bodies) or fixed
to the stiff surface of plastic dishes, are not oriented and perform little
or no contractile work. In contrast, cardiomyocytes in a real heart
are strictly oriented (anisotropically organized) and contract auxotoni-
cally, i.e. undergo phasicperiods of isometric and isotonic force develop-
ment. Advanced in vitro models orient cells and/or modify surface
stiffness143 –145 or impose mechanical load on auxotonically contracting
EHT.146 Such approaches may be able to systematically unmask a disease
phenotype not present under baseline conditions.

In view of these considerations, one could question the validity of the
in vitro hiPSC phenotype for modelling the cellular pathophysiology
caused by sarcomeric mutations. All four published hiPSC-CM models
of sarcomeric cardiomyopathies exhibited robust cellular phenotypes
(Table 2). A major question for the field is how to interpret this
finding. Does the hiPSC-CM phenotype truly reflect the phenotype
of the native myocytes in the patient, or does it reflect the effect of
the gene mutation on cardiac differentiation and ex vivo culturing
(Figure 4)? To address this issue, studies directly comparing hiPSC-CM
with myocytes isolated from patient hearts, ideally from young patients
prior to onset of macroscopic disease would be needed, but are close
to impossible to conduct. Such studies have so far only been done
using mouse models of channelopathies and, as discussed earlier, of
MYBPC3-related HCM. For Na channel mutations, the hiPSC-CM
indeed recapitulated typical electrophysiological disease features
found in ventricular myocytes examined immediately after isolation.80

On the other hand, hiPSC-CM lacking the major sarcoplasmic reticulum
Ca binding protein calsequestrin, which in humans causes a severe form
of CPVT, were immature, had impaired ultrastructure, and pronged
action potentials,93 none of which are features of CPVT caused by loss
of calsequestrin in humans.147 A likely explanation is that calsequestrin
levels determine the maturity of hiPSC-derived myocytes in culture
based on experiments in ESC-derived CM.148 Hence, this may be an
example where the hiPSC phenotype is driven by the interaction
between the mutation and the in vitro culture conditions in the dish
rather than reflecting the effect of the mutation during normal cardiac
development in humans. Based on the published reports of HCM
hiPSC models, results for sarcomeric mutations maybe somewhere in
the middle; all HCM hiPSC models regardless of the underlying mutation
exhibit cellular hypertrophy in a matter of weeks (Table 2), whereas
it takes decades for patient to develop cardiac hypertrophy. Paradoxic-
ally, while the published hiPSC-CM models do not provide much new

insight into underlying disease mechanisms or therapy of sarcomeric
cardiomyopathies, this accelerated hypertrophic response in the dish
could prove valuable for using hiPSC as prognostic tools to aid risk strati-
fication in the future.

7. Summary and conclusion
The seminal discovery of ways to induce pluripotency in somatic cells
and the enormous progress in deriving cardiomyocytes from these
stem cells at high numbers and with increasing robustness have
opened a new research field with great potential for cardiovascular re-
search. This encompasses applications in preclinical cardiac toxicology,
drug testing, disease modeling, and individualized risk prediction. To
realize the full potential of hiPSC-derived cardiomyocytes, great care
will nevertheless be required in applying the technology wisely and en-
suring the outcomes are not over-interpreted. It will need careful con-
sideration of the challenges and limitations of the procedures and cells
as discussed above, the development of automated approaches using
robotics for increased accuracy and throughput, blinded comparisons
of statistically meaningful numbers and interlaboratory tests. If such pre-
cautions are followed, hiPSC-derived cardiomyocytes havea real chance
of moving the field forward and, almost 25 years after the discovery of
the first HCM disease gene,149 to provide a better understanding of
the pathophysiology of sarcomeric cardiomyopathies and their indivi-
dualized treatment.
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