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ABSTRACT

Transcriptomic data of cultured cells treated with a
chemical are widely recognized as useful numeric in-
formation that describes the effects of the chemical.
This property is due to the high coverage and low
arbitrariness of the transcriptomic data as profiles of
chemicals. Considering the importance of posttrans-
lational regulation, proteomic profiles could provide
insights into the unrecognized aspects of the effects
of chemicals. Therefore, this study aimed to address
the question of how well the proteomic profiles ob-
tained using data-independent acquisition (DIA) with
the sequential window acquisition of all theoreti-
cal mass spectra, which can achieve comprehensive
and arbitrariness-free protein quantification, can de-
scribe chemical effects. We demonstrated that the
proteomic data obtained using DIA-MS exhibited fa-
vorable properties as profile data, such as being able
to discriminate chemicals like the transcriptomic pro-
files. Furthermore, we revealed a new mode of ac-
tion of a natural compound, harmine, through profile
data analysis using the proteomic profile data. To
our knowledge, this is the first study to investigate
the properties of proteomic data obtained using DIA-
MS as the profiles of chemicals. Our 54 (samples)
× 2831 (proteins) data matrix would be an important
source for further analyses to understand the effects
of chemicals in a data-driven manner.

INTRODUCTION

Transcriptomic data of cultured cells treated with a specific
chemical have been used as numeric information that de-

scribes the effects of the chemical. The aggregation of such
profiles, hereafter referred to as profile data, has been em-
ployed as a database for searching similar chemicals, such as
that in the connectivity map (CMap) project, or subjected to
latent variable models to identify essential relationships be-
tween genes, which has contributed to the understanding of
the effects of chemicals (1–4). Because it is necessary to cap-
ture the responses of cells comprehensively and describe the
effects of chemicals without arbitrariness, the choice of us-
ing the transcriptome is rather reasonable. However, the im-
portance of posttranslational regulation is evident in molec-
ular biology, and there may be effects of chemicals that can-
not be fully described using the transcriptomic layer.

As one of the other methods to obtain profiles of chemi-
cals, a morphology-based approach has been developed by
leveraging high content analyzers (5,6). While this approach
is attractive because of its extremely high throughput na-
ture, it is difficult to interpret individual features using this
method. Although the approach works well for evaluating
the similarity of chemicals, subsequent analyses are diffi-
cult to perform for understanding the mechanisms from
the viewpoint of molecular biology. Similarly, the 2D elec-
trophoresis approach has been used with success in identify-
ing novel aspects of chemicals, but it is difficult to interpret
the features biologically using this approach (7,8). In terms
of interpretability, the proteomic approach is superior be-
cause, as with the transcriptome, the features are specific
protein names and can be directly interpreted biologically.
For instance, Creech et al. developed a proteomic profile
platform called the Global Chromatin Profiling by measur-
ing global modifications to histones and Abelin et al. devel-
oped a proteomic profile platform called the P100 by mea-
suring approximately 100 phosphosites of proteins, both of
which constitute the library of integrated network-based
cellular signatures (LINCS) project (9,10). However, in both
cases, coverage has been an issue because the number of
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variables is on the order of 102, which is less than that of suc-
cessful transcriptome, and the descriptive ability of chemi-
cal effects depends on the properties of the scope of the fo-
cused proteome although these platforms capture irreplace-
able layers for describing chemical effects. Therefore, there
are few methodologies for quantifying compound responses
that concurrently satisfy both comprehensiveness and inter-
pretability.

Recent technical advances in proteome with MS enables
simultaneous acquisition of 103 order or even more proteins
such as data-dependent acquisition with Tandem Mass Tag
technique and data-independent acquisition (DIA) with the
sequential window acquisition of all theoretical mass spec-
tra (SWATH-MS) method (11–14). The proteomic data ac-
quired using these methods are not restricted to specific pro-
teomic scopes and would have ideal properties as a chemi-
cal profile contributing to the understanding of the effects
of chemicals. However, this hypothesis has yet to be tested.
Therefore, the present study aimed to test the usefulness
of the proteomic profiles obtained using DIA-MS with-
out focusing on specific proteome scopes in understand-
ing the chemical effects using profile data analysis. To our
knowledge (based on a survey of around 300 studies in
the PubMed searched using a query, ((data-independent ac-
quisition) OR (DIA) OR (SWATH-MS)) AND (proteome)
AND (drug OR chemical) in December 2022), this is the
first study to address the question of how well the proteomic
profiles obtained using DIA-MS can describe chemical ef-
fects, although the methodology is often employed for in-
vestigating the effects of a specific chemical (15). The over-
all design of the present study is shown in Figure 1. We
found that the proteomic profile data were comparable with
the transcriptomic profiles regarding the properties discrim-
inating the effects of compounds and captured a novel as-
pect of a natural product, harmine, which could not be rec-
ognized in the analyses of transcriptomic profiles. The pro-
file data set obtained in this study, although relatively small
in size, has few confounding factors and could be an im-
portant source for understanding the properties of chemical
profiles in the proteomic layer.

MATERIALS AND METHODS

Cell culture

MCF7 cells were cultured in Dulbecco modified Eagle’s
medium (11995–065, Life Technologies, Carlsbad, CA,
USA) with 10% fetal bovine serum. All cells were main-
tained at 37◦C under 5% CO2.

Treatment of chemicals

The list of chemicals used in this study is presented in Sup-
plementary Table S1. MCF7 cells were treated with the indi-
cated chemical for 24 h at 37 ◦C. The treatment concentra-
tion was determined based on the morphological changes,
as shown in Supplementary Figure S1.

Preparation of whole cell sample for proteomic analysis

Cells were seeded in six-well plates at a density of 1.0 × 105

cells/well and maintained for 48 h. After drug treatment,

cell morphology was evaluated using a microscope. Then,
the cells were washed twice using phosphate buffered saline
and collected using a cell scraper. Pelleted cells were stored
in an −80◦C freezer until further use.

Protein digestion using lysyl endopeptidase and trypsin

Protein digestion was performed as described previously
(16). Briefly, 40–50 �g protein obtained from MCF7 cells
was solubilized in a denaturing buffer (7 M guanidium hy-
drochloride, 0.5 M Tris–HCl [pH 8.5], and 10 mM EDTA).
The solubilized proteins were reduced using dithiothreitol
for 1 h at 25 ◦C and subsequently S-carboxymethylated us-
ing iodoacetamide for 1 h at 25 ◦C. The alkylated proteins
were precipitated using a methanol-chloroform-water mix-
ture. The precipitates were solubilized using 6 M urea in 0.1
M Tris–HCl (pH 8.5) and diluted fivefold using 0.1 M Tris–
HCl (pH 8.5) containing 0.05% ProteaseMax surfactant
(Promega, Madison, WI, USA). The dilutions were incu-
bated with lysyl endopeptidase (Lys-C; Wako Pure Chem-
ical Industries, Osaka, Japan) at an enzyme:substrate ratio
of 1:100 for 3 h at 30 ◦C. Subsequently, Lys-C digested pro-
teins were treated with TPCK-treated trypsin (Promega) at
an enzyme:substrate ratio of 1:100 for 16 h at 37 ◦C. The
digested samples were cleaned up using a self-packed SDB-
XD 200 �l tip (3M, Saint Paul, MN, USA).

Comprehensive quantitative protein expression profiling using
SWATH-MS

Comprehensive quantitative protein expression profiles
were obtained using SWATH-MS as described previously
(17). Briefly, the cleaned peptide samples of MCF7 cells
were injected into a NanoLC 425 system (Eksigent Tech-
nologies, Dublin, CA, USA) coupled with an electrospray-
ionization Triple TOF 5600 mass spectrometer (SCIEX;
Framingham, MA, USA), which was set up for a single di-
rect injection, and analyzed using SWATH-MS acquisition.
The peptides were directly loaded onto a self-packed C18
analytical column, which was prepared by packing Pron-
toSIL 200-3-C18 AQ beads (3 �m, 120 Å, Bischoff Chro-
matography, Germany) in a PicoFrit tip (ID 75 �m, PF360-
75-10-N5, New Objective) with a length of 20 cm. After
sample loading, the peptides were separated and eluted us-
ing a linear gradient; 98% A:2% B to 65% A:35% B (0–
120 min), increased to 0% A:100% B (120–121 min), main-
tained at 0% A:100% B (121–125 min), reduced to 98%
A:2% B (125–126 min), and then maintained at 98% A:2%
B (126–155 min). Mobile phase A composition was 0.1%
formic acid in water, and mobile phase B contained 0.1%
formic acid in acetonitrile. The flow rate was 300 nl/min.
The eluted peptides were positively ionized and measured
in the SWATH mode. The measurement parameters were
as follows: SWATH window, 64 variable windows from
400 to 1200 m/z; product ion scan range, 50–2000 m/z;
declustering potential, 100; rolling collision energy value,
0.0625 × [m/z of each SWATH window] − 3.5; collision
energy spread, 15; and accumulation time, 0.05 s for each
SWATH window. Spectral alignment and data extraction
from the SWATH data were performed with the SWATH
Processing Micro App in PeakView (SCIEX) using two
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Figure 1. Overall study design.

spectral libraries: an in-house spectral library and a pub-
licly available pan-human library (18) for increasing the
identification number of expressed proteins. The parame-
ters for peak data extraction using PeakView were as fol-
lows: number of peptides per protein, 999; number of tran-
sitions per peptide, 6; peptide confidence threshold, 99%;
false discovery rate threshold, 1.0%; extracted ion chro-
matogram extraction window, ±4.0 min; and extracted ion
chromatogram width (ppm), 50. Unreliable data were ex-
cluded based on the in-house data/peptide selection work-
flow (19), and the quantification data of 2831 proteins in
total were obtained in the final data set. It means that
2831 proteins were quantified in at least one sample. 1000
count of peak area was used for missing values in transition
level.

Data processing

Each signal intensity of each fragment ion was standardized
by dividing it with the mean value of all measured samples.
After conversion to protein expression data, quantile nor-
malization with the median of each rank data set was con-
ducted to make all sample data identical regarding statisti-
cal properties. Cleaned data were converted to a modified
robust z score as follows:

modi f ied robust z = x − median
1.4826 × MAD

MAD = median (|x − median|)
where x is each value of data, and median and median abso-
lute deviation (MAD) are calculated using either only con-
trol sample data or all sample data. All data processing
procedures were performed using the Pandas, NumPy, and
SciPy packages in Python 3.7.

Transcriptomic profile data

The transcriptomic profile data were downloaded from the
website of iLINCS (http://www.ilincs.org/ilincs/datasets/
LINCS). We employed the profile data of MCF7 cells
treated with the indicated chemicals. As for compounds that
have multiple data with different treatment concentrations,
averaged data were employed.

Factor analysis of profile data with OLSA

To extract latent variables in profile data, both processed
proteomic and transcriptomic profiles are subjected to
OLSA algorithm, which is a factor analysis adapted for
chemical profiles considering reversibility of effects of
chemicals such as agonism and antagonism and is avail-
able at https://github.com/mizuno-group/OLSApy (1–4).
The number of factors is a hyperparameter and was deter-
mined by parallel analysis in this study (20). The number is
16 for the proteomic profiles and 9 for the transcriptomic
profiles.

Gene ontology analysis

Gene ontology analysis was conducted using the data set de-
rived from the Gene Ontology consortium (biological pro-
cess, 2019). Fisher’s exact test was employed for the calcu-
lation of enrichment, and the obtained P-values were ad-
justed using the Benjamini–Hochberg method.

Immunofluorescence and acquisition of signal intensity data

After the MCF7 cells were treated with each compound
for 24 h, they were rinsed with PBS two times. Then, they
were fixed by incubating with 4% paraformaldehyde for
10 min and made permeable by incubating with Triton-
X for 5 min. Then, the cells were stained using an anti-
coilin antibody (#ab11822, Abcam, Cambridge, UK) and

http://www.ilincs.org/ilincs/datasets/LINCS
https://github.com/mizuno-group/OLSApy
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visualized by confocal microscopy using a laser-scanning
confocal microscope (TCS SP5 II; Leica, Solms, Germany)
and a high content analyzer (ArrayScan VTI; Thermo Sci-
entific, Waltham, MA, USA). Signal intensities were mea-
sured using the imaging software module of ArrayScan
called BioApplications.

RESULTS

Selection of test compounds, acquisition of proteomic
data and conversion to response profiles

First, we selected the compounds to be used in this study. To
explore the usefulness of proteomic data as proteomic pro-
files, we decided to compare the characteristics of proteomic
data with those of CMap transcriptomic data, which have
already been confirmed to be useful in profile data analy-
sis (21,22). Based on the preliminary analyses, we selected
15 compounds from eight groups that showed distinct sep-
aration in the result of orthogonal linear separation anal-
ysis (OLSA), which is a modified factor analysis we previ-
ously developed to delineate the multiple effects of chemi-
cals (Supplementary Figure S2) (3). Proteomic data of the
selected 15 compounds were obtained using DIA-MS with
the SWATH-MS method, which resulted in a 54 (samples)
× 2831 (proteins) data matrix. The expression data were
converted into population-based modified robust z-score
data (2) and averaged over compounds. Data quality was
confirmed by visualizing heatmap of each sample (Supple-
mentary Figure S3).

Evaluation of robustness against the random noise of pro-
teomic profile data

Robustness against noise is one of the advantages of pro-
file data analysis, which captures the covariance structure
of data. To verify this advantage, 100 noise-added data sets
were generated by adding random noise following the nor-
mal distribution with 0 as the average; 20%, 40%, 60%, 80%,
100%, 200% and 300% of the standard deviation (SD) cal-
culated from proteomic profiles. Then, we investigated how
much the correlation coefficient between each chemical pro-
file and the other profiles changed after the Gaussian noise
was added. Consequently, no clear difference was found be-
tween the proteomic and transcriptomic data (Figure 2A
and B). Moreover, even when Gaussian noise equal to three-
fold of the SD of each sample data was added, the small-
est correlation coefficients were 0.904 and 0.879 in the pro-
teomic and transcriptomic profile data, respectively. This
finding suggested that the acquired proteomic data were as
robust against the noise as the transcriptomic data. Next,
we investigated how much noise addition affects the factor
structures and whether the degree of influence differs be-
tween the transcriptomic and proteomic data using noise-
added data sets. After adding random noise, the correla-
tion coefficients between the factors derived from profile
data with or without random noise. Compared with whole
variable analysis, the factor structure was largely affected
by noise addition, and the smallest correlation coefficients
in both data types were approximately 0.2 with 3 SD noise
(Figure 2C and D). Regarding the layer difference, no clear

difference was observed between the proteomic and tran-
scriptomic data.

Evaluation of robustness against missing variables of pro-
teomic profile data

In addition to robustness against noise, robustness against
missing variables is also one of the advantages of profile
data analysis. To verify this advantage, 100 data sets were
generated by randomly deleting 10%, 20%, 30%, 40%, 50%,
60%, 70%, 80% and 90% of the variables of both types of
chemical profiles. Then, we investigated how much the cor-
relation coefficient between each chemical profile and the
other profiles changed when the variables were deleted. We
found that even when 90% of the variables were deleted,
the correlation coefficients were high (0.914 and 0.855 for
the proteomic and transcriptomic profile data, respectively).
This finding suggested that the proteomic data were as ro-
bust against missing variables as the transcriptomic data
(Figure 3A and B). Then, we investigated how missing vari-
ables affect the factor structure and whether the degree of
influence differs between the transcriptomic and proteomic
data using the above data sets whose variables were ran-
domly deleted. After deleting variables, the correlation co-
efficients between the factors derived from profile data with
or without random noise. Consequently, the smallest corre-
lation coefficient in both types of data was greater than 0.6,
suggesting that the factor structures derived from both pro-
file data were almost unchanged by missing variables (Fig-
ure 3C and D).

Profile data analysis in the proteomic layer

The findings suggesting the usefulness of proteomic profiles
obtained using the proteomic profile data as profile data
motivated us to elucidate novel aspects of chemicals by an-
alyzing the proteomic profile data. Thus, we analyzed the
proteomic profile data using OLSA and obtained 13 fac-
tors in this time. Notably, the proteomic profiles were sub-
jected to the analysis without taking the average, unlike that
in Figures 1–3, to capture the variances of the factor scores
of each compound. To investigate whether the obtained fac-
tors have biological meanings, we performed a GO anal-
ysis for each set of the main constituent variables of the
factors. We found that all 13 factors had one or more an-
notations at the significance level of 0.05, even after the P-
values were adjusted using a multiple-test correction (Ta-
ble 1). This was accomplished owing to the comprehensive-
ness of the proteomic data and has never been achieved
with other proteomic data acquisition methods with limited
comprehensiveness. Moreover, many chemicals had their
characteristic factors associated with their known effects,
as shown in the heat map of the response score matrix
(Supplementary Figure S4). For example, trichostatin and
vorinostat, which are both known as histone deacetylase in-
hibitors (23,24), were ranked high in the third factor (P3V)
(Figure 4A), and cyclosporine and thapsigargin, which are
both known to induce endoplasmic reticulum stress (ref),
were ranked high in P5V, followed by geldanamycin, which
is also known to induce endoplasmic reticulum stress (25)
(Figure 4B).
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Figure 2. Robustness of the proteomic profile data against noise. (A, B) Bubble plots of correlation coefficients calculated using the SWATH-MS proteomic
and CMap transcriptomic data, respectively. Each bubble indicates a median value and the IQR value of 100 rank-based correlation coefficients between
the original rank order of each compound as the reference data and the rank order after Gaussian noise addition. (C, D) Bubble plots of correlation
coefficients calculated using the SWATH-MS proteomic and CMap transcriptomic data, respectively. Each bubble indicates a median value and the IQR
value of correlation coefficients between each factor data as the reference data and other factors. SD: standard deviation, IQR: interquartile range.

Discovery of a new mode of action of harmine based on the
proteomic profile data

In the result of proteomic data analysis using OLSA, the
ninth factor, P9V, was specific for harmine, which is a nat-
ural product (Supplementary Figure S5). In general, natu-
ral products have many effects and are often employed as
seed compounds in drug discovery (22,26). Therefore, we
looked into the detail of P9V. We found that the GO terms
for P9V were related to telomeres or the Cajal body, which
was not found in the analyses of the transcriptomic pro-
files (Supplementary Tables S2 and S3). The Cajal body,
which was first discovered by Ramon y Cajal, is one of
the spherical organelles found in the nuclei of proliferative
cells (27). Although coilin is known as the marker protein
of the Cajal body, no study has investigated the effect of
harmine on coilin. Therefore, we investigated the effect of
harmine on coilin using imaging analysis. An immunoflu-
orescence study showed that harmine treatment increased
the signals of coilin in the nuclei of MCF7 cells (Figure 5A).

Thus, we quantitatively investigated the effects of harmine
and apigenin, which was the second-highest scoring com-
pound for P9V, on the expression levels of coilin using a
high content analyzer. We found that harmine increased the
expression levels of coilin, and that the degree of this in-
crease was greater than that after apigenin treatment, which
agreed with the P9V score (Figure 5B and Supplementary
Figure S6).

DISCUSSION

As the term polypharmacology implies, it is widely accepted
that a chemical has multiple effects (28). Latent variable
models, such as factor analysis, of a data set composed of
omics data of the cells treated with a variety of chemicals
are an effective approach for understanding such multiple
effects of a chemical, including even unrecognized ones (4).
To maximize the power of the above combination, the uti-
lized omics analysis method must be comprehensive and
interpretable. Although transcriptomic data are the first
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Figure 3. Robustness of the proteomic profile data against missing variables. (A, B) Bubble plots of correlation coefficients calculated using the SWATH-
MS proteomic and CMap transcriptomic data, respectively. Each bubble indicates a median and the IQR value of 100 rank-based correlation coefficients
between the original rank order of each compound as the reference data and the rank order after randomly deleting variables. (C, D) Bubble plots of
correlation coefficients calculated using the SWATH-MS proteomic and CMap transcriptomic data, respectively. Each bubble indicates a median value
and the IQR value of correlation coefficients between each factor data as the reference data and other factors. SD: standard deviation, IQR: interquartile
range.

choice for the input of such profile data analysis, the char-
acteristics of information obtained using omics data are dif-
ferent between different omics layers. In the present study,
we investigated the usefulness of proteomic data obtained
using DIA-MS, which satisfies the above two criteria, as the
input for profile data analysis by: (i) acquiring and analyz-
ing proteomic data obtained using the DIA-MS method,
and (ii) comparing the obtained proteomic profiles with
those in the CMap, which has been established as a valu-
able transcriptomic profile database (1). Based on a survey
of 289 studies in PubMed searched using a query, ((data-
independent acquisition) OR (DIA) OR (SWATH-MS))
AND (proteome) AND (drug OR chemical) in December

2022, this is the first study to address the question of how
well the proteomic profiles obtained using DIA-MS can de-
scribe chemical effects.

First, we examined whether the proteomic data obtained
using the DIA-MS method were robust against random
noise and missing variables, considering the unstable nature
of omics data. Note that we did not directly and quantita-
tively compare the transcriptome and proteome profiles of
each drug in this study because it is impossible to reproduce
specimens from other studies even if the same cell line and
the same drug are used. We employed transcriptome pro-
files as a reference from public database and compared the
two layers at the set level, focusing on a set of chemicals
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Table 1. GO analysis of factors derived from proteomic profiles

Factor GO term P-value
Adjusted
P-value Hit proteins

Factor 1 Canonical glycolysis (GO: 0061621) 7.88E-13 1.23E-10 {‘gpi’, ‘pfkl’, ‘eno1’, ‘pkm’, ‘gapdh’, ‘pgam1’}
Factor 2 Branched-chain amino acid catabolic

process (GO: 0009083)
1.98E-16 8.87E-14 {‘acat1’, ‘aldh6a1’, ‘mccc2’, ‘mccc1’,

‘hibadh’, ‘ivd’, ‘hmgcl’}
Factor 3 Fatty-acyl-CoA biosynthetic process

(GO: 0046949)
1.21E-09 1.08E-06 {‘acsl4’, ‘scd’, ‘acly’, ‘acsl3’, ‘hsd17b12’}

Factor 4 Pre-mRNA cleavage required for
polyadenylation (GO: 0098789)

2.51E-05 0.006586 {‘ncbp1’, ‘cpsf6’}

Factor 5 IRE1-mediated unfolded protein response
(GO: 0036498)

2.02E-25 1.58E-22 {‘ssr1’, ‘srprb’, ‘gfpt1’, ‘hyou1’, ‘sec61b’,
‘pdia6’, ‘sec31a’, ‘mydgf’, ‘preb’, ‘dnajb11’,
‘hspa5’, ‘pdia5’, ‘sec63’, ‘arfgap1’, ‘srpra’}

Factor 6 Response to unfolded protein
(GO: 0006986)

1.99E-22 1.70E-19 {‘hsph1’, ‘dnajb1’, ‘hspb1’, ‘hspa9’,
‘hsp90aa1’, ‘hspd1’, ‘serpinh1’, ‘hspa4l’,
‘hspa8’, ‘hsp90ab1’, ‘hspe1’, ‘dnaja1’}

Factor 7 Regulation of carbohydrate catabolic
process (GO: 0043470)

5.11E-05 0.013868 {‘pgam1’, ‘nup43’, ‘nup88’}

Factor 8 SRP-dependent cotranslational protein
targeting to membrane (GO: 0006614)

9.85E-09 2.30E-06 {‘rplp2’, ‘rpl18’, ‘rps25’, ‘rps19’, ‘rps7’,
‘rpl32’, ‘rps26’, ‘rplp1’}

Factor 9 Regulation of establishment of protein
localization to telomere (GO: 0070203)

1.63E-08 7.63E-06 {‘cct2’, ‘cct7’, ‘cct4’}

Factor 10 Positive regulation of viral process
(GO: 0048524)

3.32E-06 0.002116 {‘hacd3’, ‘ppib’, ‘polr2h’, ‘dhx9’}

Factor 11 Chylomicron assembly (GO: 0034378) 1.19E-05 0.004887 {‘apoe’, ‘apob’}
Factor 12 Actin filament capping (GO: 0051693) 1.19E-05 0.004578 {‘capzb’, ‘scin’}
Factor 13 Nuclear-transcribed mRNA catabolic

process, nonsense-mediated decay
(GO: 0000184)

1.55E-13 8.82E-11 {‘rpl27a’, ‘rps6’, ‘rps11’, ‘rpl8’, ‘rpl31’,
‘smg1’, ‘rpl12’, ‘rpl27’, ‘rpl24’, ‘rpl34’,
‘rnps1’, ‘rpl21’, ‘rps20’}

Results of the GO analysis for main component variables of each factor. The top GO term of each factor is listed.

Figure 4. Profile data analysis in the proteomic layer. (A) Top 10 compounds for P3V factor and score distribution. P3V factor (the factor with the third
highest contribution) scores of all compounds are arranged in ascending order and plotted on the graph. The rank, name, score, mode of action, and
reference (PMID) of the top 10 compounds are shown. The top six compounds (trichostatin and vorinostat, which are well-known histone deacetylase
inhibitors) are shown in gold. (B) Top 10 compounds for P5V factor and score distribution. P5V factor scores of all compounds are arranged in ascending
order and plotted on the graph, as in (A). The top six compounds (thapsigargin and cyclosporin, which are well-known endoplasmic reticulum stress
inducers) are shown in gold, and the next three compounds (geldanamycin) are shown in yellow.
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Figure 5. Discovery of a new mode of action of harmine based on the proteomic profile data. (A) Immunofluorescence analysis of coilin treated with or
without harmine. Green signals indicate coilin in MCF7 cells treated with harmine at 16 �M for 24 h. Scale bars indicate 10 �m. (B) Increase of coilin
signals in MCF7 cells by harmine or apigenin treatment. MCF7 cells were treated with harmine (16 �M) or apigenin (14.8 �M) for 24 h and stained using
an anti-coilin antibody, and fluorescence signals were detected using Cellomics ArrayScan VTI. Black lines indicate the 95% confidence intervals.

with various effects. There were no clear differences in the
responses to the addition of noise and removal of variables
between the transcriptomic and proteomic profiles (Figures
2 and 3). Notably, the comparable performance of the pro-
teomic profile data obtained using DIA-MS in the factor
structure analysis indicates that these data capture the co-
variance structure caused by the analyzed chemicals as well
as the transcriptomic profile data. Although the correlation
coefficients cannot be directly compared because of the dif-
ference in the number of features, the fact that there was no
clear difference in the response to a gradual increase in the
perturbation intensity indicates that the proteomic profile
data have a comparable ability to classify the chemicals as
the transcriptomic profile data.

Our next concern was whether the analysis of the pro-
teomic profile data contributed to the discovery of novel
aspects of chemicals as the transcriptomic profile data. Al-
though many reports of profile data analysis have discov-
ered new effects of chemicals, no study has reported on
proteomic profile data obtained using DIA-MS with the
SWATH method. As shown in Figure 5, we found a novel
feature of harmine, which was its relationship with the Ca-
jal body, by focusing on the proteins that composed P9V.
This could not be achieved without the high comprehen-
siveness and interpretability of DIA-MS-derived proteomic
profiles. The Cajal body plays an important role in the
biogenesis of small nuclear ribonucleoproteins, small Cajal
body-specific ribonucleoproteins, small nucleolar ribonu-
cleoproteins, and the telomerase, which are all crucial for
efficient and rapid cell proliferation (27,29,30). One of the
possible mechanisms underlying the association between

harmine and the Cajal body may be dual-specificity tyro-
sine phosphorylation-regulated kinase 1A-dependent reg-
ulation because harmine is a potent inhibitor of this ki-
nase (31). However, it should be noted that we cannot in-
fer the causal relationship between them because the pro-
teomic profile data is a snapshot of one time point. Al-
though the relationship between dual-specificity tyrosine
phosphorylation-regulated kinase 1A and Cajal bodies is
not discussed in detail here, it is expected that further molec-
ular biological experiments will reveal the molecular mech-
anisms by which harmine affects the Cajal body, which is
an interaction recognized by the analysis of the proteomic
profile data obtained using DIA-MS.

Although we selected compounds with as diverse effects
as possible at the transcriptomic layer, one of the major lim-
itations of the present study is that the number of com-
pounds was limited. Recent methodological advances in
the field such as Scanning SWATH greatly improve the
throughput of data acquisition, in parallel with depth of
protein coverage (32,33). Combination of these advanced
methods with automated sample preparation enables acqui-
sition of hundreds of proteomic chemical profiles and could
clarify the differences between the transcriptomic and pro-
teomic layers in larger scale than that of this study regarding
describing the effects of chemicals.

CONCLUSION

Proteomic profile data obtained using DIA-MS with the
SWATH method are as robust as transcriptomic data re-
garding describing a set of chemicals with various effects.
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Owing to high comprehensiveness and interpretability, the
proteomic profile data have the potential to enable the iden-
tification of novel aspects of chemicals, which would differ
from those obtained using the transcriptomic layer.
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20. Ömay Çokluk,D.K. (2016) Using Horn’s parallel analysis method in
exploratory factor analysis for determining the number of factors.
Educ. Sci. Theory Pract., 16, 537–551.

21. Morita,K., Mizuno,T. and Kusuhara,H. (2020) Decomposition
profile data analysis of multiple drug effects identifies endoplasmic
reticulum stress-inducing ability as an unrecognized factor. Sci. Rep.,
10, 13139.

http://www.ilincs.org/ilincs/
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqad022#supplementary-data
https://doi.org/10.1080/15376516.2022.2156005


10 NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 1

22. Nemoto,S., Morita,K., Mizuno,T. and Kusuhara,H. (2021)
Decomposition profile data analysis for deep understanding of
multiple effects of natural products. J. Nat. Prod., 84, 1283–1293.

23. Yoshida,M., Kijima,M., Akita,M. and Beppu,T. (1990) Potent and
specific inhibition of mammalian histone deacetylase both in vivo and
in vitro by trichostatin A. J. Biol. Chem., 265, 17174–17179.

24. Marks,P.A. and Xu,W.-S. (2009) Histone deacetylase inhibitors:
potential in cancer therapy. J. Cell. Biochem., 107, 600–608.

25. Lawson,B., Brewer,J.W. and Hendershot,L.M. (1998) Geldanamycin,
an hsp90/GRP94-binding drug, induces increased transcription of
endoplasmic reticulum (ER) chaperones via the ER stress pathway. J.
Cell. Physiol., 174, 170–179.

26. Xu,L., Li,Y., Dai,Y. and Peng,J. (2018) Natural products for the
treatment of type 2 diabetes mellitus: pharmacology and mechanisms.
Pharmacol. Res., 130, 451–465.

27. Hebert,M.D. and Poole,A.R. (2017) Towards an understanding of
regulating Cajal body activity by protein modification. RNA Biol., 14,
761–778.

28. Ho,T.T., Tran,Q.T. and Chai,C.L. (2018) The polypharmacology of
natural products. Future Med. Chem., 10, 1361–1368.

29. Egan,E.D. and Collins,K. (2012) Biogenesis of telomerase
ribonucleoproteins. RNA, 18, 1747–1759.

30. Praveen,K., Wen,Y., Gray,K.M., Noto,J.J., Patlolla,A.R., Van
Duyne,G.D. and Matera,A.G. (2014) SMA-causing missense
mutations in survival motor neuron (Smn) display a wide range of
phenotypes when modeled in Drosophila. PLoS Genet, 10, e1004489.
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