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Abstract: Acute myeloid leukemia (AML) is a clonal hematologic neoplasm characterized

by rapid, uncontrolled cell growth of immature myeloid cells (blasts). There are numerous

genetic abnormalities in AML, many of which are prognostic, but an increasing number are

targets for drug therapy. One of the most common genetic abnormalities in AML are

activating mutations in the FMS-like tyrosine kinase 3 receptor (FLT3). As a receptor

tyrosine kinase, FLT3 was the first targetable genetic abnormality in AML. The first genera-

tion of FLT3 inhibitors were broad-spectrum kinase inhibitors that inhibited FLT3 among

other proteins. Although clinically active, first-generation FLT3 inhibitors had limited suc-

cess as single agents. This led to the development of a second generation of more selective

FLT3 inhibitors. This review focuses on quizartinib, a potent second-generation FLT3

inhibitor. We discuss the clinical trial development, mechanisms of resistance, and the recent

FDA decision to deny approval for quizartinib as a single agent in relapsed/refractory AML.
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Introduction
AML is a deadly disease, and identification of targetable molecular drivers in AML is an

active area of investigation. FLT3, a cell-surface, membrane-bound class III receptor

tyrosine kinase, plays a seminal role in normal hematopoiesis.1 FLT3 is composed of five

immunoglobulin-like extracellular domains, a transmembrane domain, a juxtamembrane

domain, and a tyrosine-kinase domain consisting of two lobes that are connected by

a kinase-insert domain1 (Figure 1A). FLT3 is mutated in ~35% of AML patients and is

one of the most common genetic abnormalities observed in AML.2,3

There are two types of FLT3 mutations. FLT3 internal tandem duplication (ITD)

mutations are more common, present in ~25% of the AML patients. FLT3-ITD

mutations occur in the juxtamembrane region of the protein, interfering with the

auto-inhibitory function of the domain, which leads to kinase activation. FLT3-ITD

kinase activity causes uncontrolled cell proliferation, survival, and differentiation

through pathways such as PI3K/AKT, MAPK/ERK, and JAK/STAT.4 FLT3-ITD

mutations are a poor risk marker and associated with increased rates of relapse and

reduced overall survival.5–8 The negative impact of FLT3-ITD has been further

refined by the allelic ratio of FLT3-ITD, with a low allelic ratio of ITD (FLT3-ITD

/FLT3 wild type <0.5) demonstrating improved outcomes in comparison to a high

ITD allelic ratio.9 That being said, the impact of allelic ratio on prognosis was
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recently reported to be nullified by the clinical use of FLT3

inhibitors,10 so it is unclear if this distinction will remain

in the future. FLT3 also has point mutations in the activa-

tion loop of the tyrosine kinase domain (FLT3-TKDs),

usually around the D835 residue.11 FLT3-TKDs are pre-

sent in ~5% of the AML patients but are not associated

with worse outcome. FLT3-TKDs also lead to activation of

the FLT3 receptor in cell line models, but are not as

broadly activating of downstream kinases as FLT3-

ITDs12 (Figure 1).

Due to its role in driving leukemia cell growth, there has

been a concerted effort to develop clinically useful FLT3

inhibitors. The first-generation FLT3 inhibitors were multi-

targeted kinase inhibitors that were also noted to have

FLT3 activity. These include midostaurin (protein kinase C

inhibitor),13 sunitinib (VEGFR inhibitor),14 sorafenib (RAF

inhibitor),15 and ponatinib (BCR-ABL inhibitor).16 These

drugs were tested in patients with FLT3-mutated AML and

had clinical activity, but their use was limited as single agents

due to short duration of response. The second-generation FLT3

inhibitors were rationally designed to be more selective and

potent FLT3 inhibitors with fewer off-targets. The second gen-

eration of FLT3 inhibitors includes quizartinib, gilteritinib, and

crenolanib.

FLT3 inhibitors can be further separated into type 1 and

type 2 inhibitors based upon their interaction with the kinase

domain of the FLT3 receptor. Normally, FLT3 ligand bind-

ing induces the kinase domain to switch from an inactive to

active conformation and drive downstream signaling. Type 1

inhibitors interact with the active conformation and are able

to inhibit both FLT3-ITD and FLT3-TKD mutations. Type 2

inhibitors interact with the inactive conformation and, thus

prevent activation. Since FLT3-TKD mutations favor the

active conformation of FLT3, type 2 inhibitors do not inhibit

most FLT3-TKD mutations.17 This difference in type 1 and

type 2 inhibitors impacts resistance patterns between the two

types of FLT3 inhibitors. FLT3-ITD patients treated with

type 2 inhibitors frequently acquire FLT3-TKD mutations as

a mechanism of resistance, whereas FLT3-ITD patients trea-

ted with type 1 inhibitors tend to have other mechanisms of

resistance. Of the first-generation FLT3 inhibitors, midos-

taurin, lestaurtinib, and sunitinib are type 1 inhibitors, while

sorafenib, ponatinib, and tandutinib are type 2 inhibitors. Of

the second-generation, crenolanib and gilteritinib are type 1

inhibitors, and quizartinib is a type 2 inhibitor.

Quizartinib Preclinical
Investigations
Quizartinib (AC220, Daiichi Sankyo) was originally devel-

oped by Ambit Biosciences, which was acquired by Daiichi

Sankyo in 2014. Quizartinib is a potent second generation,

type 2 FLT3 inhibitor with additional inhibitory activity

against KIT and PDGFR.18 Quizartinib was identified in

2009 out of a series of compounds and found to have good

efficacy and tolerability in xenograft models.19 It is an extre-

mely potent FLT3 inhibitor, with activity in the low nano-

molar range in cell culture assays, and animal models at

doses as low as 1 mg/kg.20 From this promising pre-clinical

data, quizartinib was taken into clinical trials21 (Table 1).

Phase 1 Clinical Trials
In an American and Republic of Georgia phase 1 safety study,

quizartinibwas tested in relapsed/refractory patients regardless

of FLT3 mutation status. Seventy-six patients received esca-

lating doses of quizartinib monotherapy. The maximum toler-

ated dose was found to be 200 mg daily with the main dose-

limiting toxicity at 200–300 mg being grade 3–4 QTc

Figure 1 (A) Representative FLT3 receptor indicating location of internal tandem

duplication (ITD) and tyrosine kinase domain (TKD)mutations. (B) The crystal structure
of the FLT3 kinase domain is shown in blue (Griffith, J. et al (2004) Mol Cell 13: 169–178)

with the ATP binding site in yellow (where FLT3 inhibitors bind). The activation loop

(salmon) with most commonly mutated residues (magenta), and the F691 gatekeeper

residue (white) are highlighted to show the close interaction of these domains. The

juxtamembrane domain is also shown (gray) in relation to the kinase domain.
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prolongation at 16% (4/25).22 The response rate was 30% (23/

76) with 13% (10/76) composite complete remission22 (CRc).

CRc includes complete remission (CR, defined by the

International Working Group as <5% blasts in the bone mar-

row, neutrophils >1000/mm3, platelets >100K/mm3, absence

of circulating blasts/extramedullary disease, and transfusion

independence23) and CRwith incomplete count recovery (CRi

if neutrophils <1000/mm3 and platelets <100K/mm3, or CRp

if only platelets <100K/mm3). Of those that obtained a CRc,

three had incomplete platelet recovery and five had incomplete

neutrophil recovery. Of note, in patients with FLT3-ITD, 53%

responded (9/17), with five CRcs.22

Due to the high risk of relapse after allogeneic trans-

plant in patients with FLT3-ITD, a phase 1 study was

undertaken to determine optimal dosing to potentially pre-

vent relapse after transplant. A 3+3 design enrolled 13

patients and identified a dose of 60 mg daily.24 Seventy-

seven percent (10/13) continued quizartinib for at least

1 year with nine patients (69%) alive >50 weeks and

four patients (31%) were still alive >2 years.24 Main

toxicities included neutropenia (4/17, 31%), nausea (3/17,

23%), and leukopenia (3/17, 23%).24 Instead of

a standalone trial, maintenance therapy was included in

the QuANTUM-R Phase 3 trial (see below).

Phase 2 Trials
Building off the initial phase 1 results, a single-arm multi-

center trial was performed with quizartinib monotherapy.

It contained two cohorts, one cohort enrolling ages >60

years old with relapsed/refractory AML within 1 year of

initial induction treatment and without allogeneic trans-

plant, and a second cohort 18–85 years of age with

relapsed/refractory AML after at least one salvage regimen

or allogeneic transplant (>100 days post-transplant).

Patients were considered to be FLT3-ITD+ if allelic fre-

quency was >10%, but were not required to have FLT3-

ITD mutations for the trial. Patients were started on

200 mg daily but due to QTc prolongation in the first

patient, dosing was reduced to 135 mg for men and

90 mg for women, since women were noted to be more

susceptible to QTc prolongation.25 A total of 333 patients

were enrolled. In cohort 1, 56% (63/112) FLT3-ITD+

patients and 36% (16/44) of FLT3-ITD− patients achieved

CRc(including <10% FLT3-ITD variant allele frequency

and one-third of patients were low positive); however,

most of these were CRi/CRp (FLT3-ITD+ 60/63, ITD−

14/16). Only three FLT3-ITD+ and two FLT3-ITD−

patients achieved CR.25 In cohort 2, 62/136 (46%) FLT3-T
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ITD+ patients achieved CRc and 12/40 (30%) FLT3-ITD−

patients achieved CRc. In cohort 2, only five FLT3-ITD+

patients and one FLT3-ITD− patient achieved CR.25 The

most common adverse events included cytopenias (neutro-

penia, anemia, thrombocytopenia), infections (febrile neu-

tropenia and pneumonia), and QTc prolongation. One

patient developed torsade de pointes while on study, and

5% of the patients (18/333) died secondary to an adverse

event considered to be treatment related.25

Due to the QTc prolongation issues and cytopenias,

a second randomized phase 2b trial was done to evaluate

lower doses of quizartinib. Patients >18 years of age with

either relapse after allogeneic transplant or relapsed/refrac-

tory AML after at least one salvage regimen were eligible

for treatment. In contrast to the initial phase 2, only FLT3-

ITD+ patients (defined at >10% allelic frequency) were

included. Patients were randomized to 30 mg (n=38) or

60 mg (n=36) per day with the option to escalate by 30 mg

if lack of response. Primary endpoints were CRc rate and

QTcF >480 (QT corrected by Fridericia’s formula). The

CRc rate was 47% for patients started at 30 or 60 mg

per day. Eleven percent of the patients who started on

30 mg and 17% of the patients started on 60 mg developed

a QTcF >480.26 In the 60 mg group, there were higher

transplant rates (42% vs 32%), higher median overall

survival (27.3 weeks vs 20.9 weeks), survivors living

beyond 1 year (5 vs 1), and longer duration of CRc (9.1

weeks vs 4.2 weeks) when compared to the 30 mg daily

group.26 This was only numerically higher as the study

was not powered to statistically compare these groups. Of

note, 61% (23/38) of the patients at 30 mg required dose

escalation to 60 mg per day, with four achieving CRc after

dose increase. Common toxicities in the 30 mg per day

group were cytopenias (anemia 21.1%, thrombocytopenia

10.5%), nausea 10.5%, fatigue 13.2%, febrile neutropenia

10.5%, and dysgeusia 10.5%. In the 60 mg per day group,

nausea was more frequent at 22.2%, absolute neutropenia

was 11.1%, and vomiting was 11.1%.26 The remainder of

the toxicities were similar.

PHASE 3 Clinical Trials
QuANTUM-R was a randomized, controlled, multicenter

phase 3 trial to determine the efficacy of quizartinib mono-

therapy in relapsed/refractory FLT3-ITD AML.27 Patients

were randomized 2:1 to quizartinib 60 mg daily vs inves-

tigator’s choice of chemotherapy. There was a 30 mg lead-

in of quizartinib for the first 15 days, which was then

increased to 60 mg if the mean QTcF was <450 ms. The

options for chemotherapy included a low-intensity salvage

regimen (low dose cytarabine) and higher intensity regi-

mens (mitoxantrone, etoposide, cytarabine [MEC] or flu-

darabine, cytarabine, granulocyte colony-stimulating

factor, idarubicin [FLAG-IDA]). Patients were able to

move to allogeneic transplant when appropriate and

could restart quizartinib as maintenance after transplant.

The primary endpoint was overall survival. A total of 367

patients were enrolled (245 quizartinib, 122 chemother-

apy) over a span of just under 3.5 years. Quizartinib was

associated with a 24% reduction in risk of death compared

to chemotherapy (hazard ratio 0.76, 95% CI 0.58–0.98;

p=0.02) while overall survival was improved from 4.7

months in the chemotherapy arm to 6.2 months in the

quizartinib arm.27 The CRc rate was 48.2%, and similar

to previous trials most of these were CRi or CRp (108/

118). In terms of allogeneic transplantation, 78 (32%)

patients on quizartinib proceeded transplant while only

14 (11%) of 122 patients in the chemotherapy arm pro-

ceeded to transplant.27 The most common side effect in the

quizartinib group were infections: 19% sepsis/septic

shock, 12% pneumonia. Grade 3 QTc prolongation was

seen in 3–4% of the patients on quizartinib. There were no

grade 4 events. Based on this data, quizartinib was sub-

mitted for FDA approval as a single agent for relapsed/

refractory disease. However, despite the positive results,

quizartinib approval was rejected by the FDA, which we

discuss in further detail below.

Challenging Toxicities of Quizartinib
One of the notable toxicities of quizartinib is prolonged

cytopenias. As noted above, in phase 2 and phase 3 studies

most patients achieved CRi or CRp, with only a few CRs

(10/118 in phase 3 QuANTUM-R).27 For comparison, in

the phase 3 ADMIRAL trial with the FLT3 inhibitor

gilteritinib,28 52/134 patients achieved CR. One potential

explanation for this disparity is that quizartinib also inhi-

bits KIT, which is important for both myeloid and ery-

throid progenitor cell function.29 The impact of inhibition

of both FLT3 and KIT inhibition as an explanation for

more profound cytopenias is supported by in vitro bone

marrow progenitor cell assays.30

The other notable toxicity of quizartinib is QT prolon-

gation via potassium channelblockade.31 This was noted in

the initial phase 1 and 2 trials, with subsequent dose

adjustments to 135 mg for men and 90 mg for women as

discussed above. The concern about QT prolongation led

to the additional phase 2b study with 30 and 60 mg doses
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before opening the phase 3 QuANTUM trial. In the FDA

review of the QuANTUM-R study, there was a concern

that four deaths were possibly related to QTc prolongation,

either from direct cardiac toxicity in form of myocardial

infarction, cardiac failure, or fatal subdural hematoma

from fall related to cardiac event.31 Furthermore, in the

QuANTUM-First trial, the Oncologic Drugs Advisory

Committee meeting noted five cardiac deaths to date in

the quizartinib arm vs none in the placebo arm (2 cardiac

arrest, 1 sudden death, 1 ventricular fibrillation, 1 ventri-

cular dysfunction).32

In comparison, midostaurin does not prolong the QT

interval but interacts with many anti-emetic and antifungal

medications, so the recent phase 3 RATIFY clinical trial

included close monitoring with ECGs and dose adjustments

for prolonged QTc.33 This was similar for gilteritinib, which

also had a low rate of QTc prolongation (4.9%) in the phase 3

ADMIRAL trial.28 This issue did not impact FDA approval

for either of these drugs, but monitoring of QTc and dose

reductions are recommended in the package inserts.

Resistance to Quizartinib
Despite the initial clinical efficacy of FLT3 inhibitors such

as quizartinib, resistance to single agents develops after

months of therapy, which limits their use in the clinic.

Although clinical resistance eventually develops with all

FLT3 inhibitors, there are differences between each drug

with respect to the development of resistance mutations

and off-target effects. Resistance to quizartinib can be

broadly categorized into intrinsic and extrinsic. In the

context of quizartinib, tumor intrinsic mechanisms involve

(i) secondary point mutations in the FLT3 receptor, (ii)

expansion of pre-existing subclones with additional gene

mutations, and (iii) activation of alternative signaling path-

ways. Extrinsic mechanisms involve crosstalk between

leukemia cells and cells of the bone marrow microenvir-

onment that modulate quizartinib response.

Intrinsic Resistance Mechanisms
The most common tumor intrinsic mechanism is the accumu-

lation of secondary point mutations in the TKD of FLT3 that

confer quizartinib resistance. In 2012, shortly after the release

of the interim analysis for the phase 2 trial of quizartinib

monotherapy of 53 patients with relapsed/refractory FLT3-

ITD AML, point mutations at three residues within the kinase

domain of the FLT3 receptorwere reported to confer resistance

to quizartinib.34 These residues consist of the “gatekeeper”

residue (i.e., F691) and residues within the activation loop of

FLT3 (i.e., D835, Y842). The binding of quizartinib to the

crystal structure of the FLT3 kinase domain was modeled and

suggested that substitutions of F691 with non-aromatic resi-

dues could hinder the π-π stacking interaction needed to stabi-
lize the benzo-imidazol-thiazol ring of quizartinib.34 In

contrast, replacement of residues D835 or Y842 resulted in

a loss of hydrogen bonding between these residues and S838,

which is critical to maintain the inactive confirmation of FLT3

needed for quizartinib to bind to FLT334 (Figure 1B).

These observations were further confirmed with the first

cocrystal structure of quizartinib bound to the FLT3 kinase

domain. Importantly, this structure demonstrated that quizarti-

nib binding to FLT3 relies on edge-to-face aromatic interac-

tions mediated by the gatekeeper residue, F691, and activation

loop residues.35 Only disruptions that strongly hinder this

interaction enabled quizartinib resistance.35 A more recent

study that performed extensive atomistic molecular dynamics

simulations of the FLT3-quizartinib complex further suggests

that once the active state of FLT3 is adopted due to the TKD

mutations, the transition to the FLT3 inactive state is less likely

due to the reaction kinetics.36 However, in a follow-up study, it

was reported that not all D835 mutations facilitate quizartinib

resistance.37 Specifically, bulky hydrophobic substitutions

(i.e., D835Y/V/I/F) at this residue produced a resistant pheno-

type as these mutations prohibited hydrogen bonding between

the activation loop and the S838 region of FLT3 and sterically

hindered the binding of quizartinib.37 In aggregate, these early

studies demonstrated that TKD mutations provide a survival

mechanism by enabling the FLT3 receptor to shift from an

inactive to active confirmation, precluding the binding of qui-

zartinib. Likewise, these mutations also promote resistance to

other type 2 FLT3 inhibitors such as sorafenib and ponatinib.37

More recently, single-cell analysis of FLT3-ITD pri-

mary AML cells suggests that mutational resistance to

quizartinib is more complex than initially thought.38

While FLT3-ITD AML cells can acquire de novo FLT3-

TKD mutations following treatment with quizartinib, this

model alone does not accurately depict what is observed

clinically. In an analysis of 15 patients treated with qui-

zartinib, FLT3-TKD mutations were detected in 14 at

resistance. Interestingly, the FLT3-TKD mutations were

often found on the native FLT3 allele rather than the

FLT3-ITD allele, and there were subpopulations that

were resistant to quizartinib that did not contain FLT3-

TKD mutations.38 Thus, in some patients, both FLT3-

dependent and -independent resistant mechanisms can

coexist, highlighting the underlying clonal heterogeneity

that contributes to development of quizartinib resistance.
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Apart from resistance mutations in the FLT3 receptor,

upregulation of receptor tyrosine kinase AXL provides

another route to quizartinib resistance. Previous studies

have shown that increased expression of AXL is asso-

ciated with worse progression-free and overall survival

for patients with AML.39–41 Mechanistically, upregulation

of AXL has been shown to mediate phosphorylation of

FLT3.42 Inhibition of AXL via inhibitor or siRNA sup-

presses cell growth, induces apoptosis, and restores mye-

loid differentiation in vivo.42 Upon treatment with

quizartinib, it was shown that expression of AXL increases

in AML cell lines and in patients after treatment with

quizartinib, supporting the idea that AXL upregulation

may enable quizartinib resistance in the setting of

leukemia.43 Inhibition of AXL with a small-molecule inhi-

bitor TP-0903 restored sensitivity to quizartinib, corrobor-

ating its role in mediating resistance. The FLT3 inhibitor

gilteritinib is also an AXL inhibitor,44 and it has been

suggested that AXL inhibition delays the development of

resistance. Apart from AXL’s role in promoting tumor-

intrinsic resistance, a recent study has shown that marrow

stromal cells support increased phosphorylation of STAT5,

which in turn leads to increased AXL activity that drives

quizartinib resistance both in vitro and in vivo.45 The

study showed that the hypoxic marrow microenvironment

further contributed to increased AXL activity, and thereby,

aids quizartinib resistance in an extrinsic manner.45

Extrinsic Resistance Mechanisms
Many studies,46–51 including our own,52–54 have shown

that the bone marrow microenvironment contributes sig-

nificantly to the development of drug resistance in the

setting of AML. Leukemia cells circulating in the periph-

eral blood are rapidly cleared by FLT3 inhibitors while

leukemia cells within the microenvironment respond more

slowly and a small number of leukemia cells persist

despite treatment.50,55,56 Survival of these residual cells

leads to the development of resistance and eventual

relapse.57,58 This tumor-permissive microenvironment

consists of a collection of mesenchymal stromal cells,

immune cells, and hematopoietic cells that signal to resi-

dual leukemia cells.

Marrow stromal cells produce a number of growth fac-

tors, cytokines, and adhesion molecules within the AML

microenvironment that provide the necessary cues for leu-

kemia cells to survive initial therapy and eventually become

resistant.46,50,53,54 One such factor is FLT3 ligand (FL),

which is secreted by stromal cells.1 FL binds to the FLT3

receptor and in turn leads to restoration of FLT3 and down-

stream MAPK signaling, allowing FLT3-ITD AML cells to

survive.59 The addition of exogenous FL to leukemia cell

lines in vitro protects cells and increases the IC50 for FLT3

inhibition by activating the MAPK pathway.56 In agreement

with this model, FL expression also increases in patients

treated with FLT3 inhibitors.56,60 The addition of a MAPK

inhibitor is able to abrogate stromal-mediated resistance and

restore sensitivity to quizartinib.56 Other groups have found

that AKT is also activated by marrow stromal cells. AKT

inhibitors have been shown to have synergy with quizartinib

and lead to increased cell death in FLT3-ITD+ cell lines

such as MOLM14 and MV4-11, and overcomes the protec-

tive effects of bone marrow stromal cells in vitro.61

Previous work from our laboratory has shown that

fibroblast growth factor 2 (FGF2) is secreted by marrow

stromal cells and can protect FLT3-ITD AML cells from

quizartinib.54,62 Addition of FGF2 leads to increased sur-

vival of FLT3-ITD AML cell lines and primary cells

in vitro. In patients treated with quizartinib, expression

of FGF2 in marrow stromal cells increased significantly

during treatment and peaked just prior to resistance. FGF2

binds FGFR1 on AML cells, leading to downstream RAS/

MAPK signaling, quizartinib resistance, and eventually

relapse. Combined inhibition of FLT3 and FGFR signaling

overcame FGF2-mediated protection of these AML

cells.54,62 In comparison to FL resistance, FGF2 activates

an accessory pathway through FGFR for survival, yet both

ligand-mediated resistance mechanisms converge on the

downstream MAPK pathway to drive resistance. In

a separate but similar finding, a genome-wide CRISPR

screen identified that loss of SPRY3, an intracellular inhi-

bitor of FGF signaling, and GSK3, a canonical Wnt sig-

naling antagonist, can also induce quizartinib resistance.63

Deletion of these genes in the FLT3-ITD AML cell line

MV4-11, conferred quizartinib resistance as evidenced by

increased cell viability and increased downstream MAPK

and Wnt signaling.63 These findings were further con-

firmed in quizartinib-resistant AML patient samples.

Although discussed separately, it should be noted that

extrinsic and intrinsic resistance mechanisms are not dis-

tinct, but interrelated. As previously mentioned, AXL

expression can be increased in AML cells during treatment

with quizartinib through intrinsic and extrinsic mechanisms,

and others have shown increased GAS6 expression in the

marrow microenvironment (ligand for AXL), that may also

influence resistance.64 Likewise, FL- or FGF2-mediated

resistance to quizartinib can lead to acquisition of resistance
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mutations over time in FLT3-ITD AML cell lines and

patients treated with quizartinib, suggesting that extrinsic

mechanisms of resistance mediate early resistance, which

then leads to acquisition and outgrowth of intrinsic resis-

tance mutations.54 Further characterization of the unique

features of the leukemia microenvironment may define tar-

gets in the microenvironment for future clinical trials. For

example, the finding that increased FGF2 expression in

leukemia stromal cells can be blocked by FGFR inhibitors

suggests a strategy to target the leukemia-permissive micro-

environment that protects leukemia cells.53

Quizartinib FDA Review
Based upon promising initial clinical trial results, quizarti-

nib was granted FDA breakthrough designation in 2018.65

However, in May 2019 the Oncologic Drugs Advisory

Committee (ODAC) voted 8 to 3 against approval of the

drug.32 This decision raised doubts as to whether quizartinib

would obtain FDA approval. In June 2019, the FDA

rejected approval for quizartinib for relapsed/refractory

AML. Of note, this decision came just 3 days after quizar-

tinib was approved for use in Japan.65 The QuANTUM-R

phase 3 results, although positive, were greeted with skepti-

cism by the FDA. First, while there was a significant overall

survival benefit, the median survival was only extended 6

weeks (6.2 vs 4.7 months). In addition to this, there was no

difference in event-free survival, which raised questions

about what led to the improvement in overall survival.

One specific criticism was that 23% of the patients rando-

mized to chemotherapy did not receive treatment while only

2% of those randomized to quizartinib did not receive

treatment, a concerning drop-out rate for the chemotherapy

arm. Another concern was that only 11% of the patients on

the chemotherapy arm underwent allogeneic stem cell trans-

plant whereas 32% of the patients treated with quizartinib

made it to transplant.27 Proponents of quizartinib have

argued that this effect size is due to the activity of the

drug, but the lower rate of patients who received allogeneic

transplant in the chemotherapy arm raised questions as to

whether this affected the difference in survival between the

two groups. Although the unique toxicities of QTc prolon-

gation and myelosuppression were noted, this did not

appear to be a major factor in the rejection decision.

FDA-Approved FLT3 Inhibitors
Development of quizartinib took place concurrently with

many other FLT3 inhibitors. Two other FLT3 inhibitors

were recently approved by the FDA and are discussed for

comparison. The first is midostaurin (PKC-412, Novartis),

a multi-kinase inhibitor with activity against both FLT3-

ITD and FLT3-TKD (type 1 inhibitor). As a first-

generation FLT3 inhibitor, the clinical development of

midostaurin has been ongoing for many years. The initial

activity was shown in relapsed/refractory disease with

70% of the patients having a 50% reduction in peripheral

blasts while 30% had a similar reduction in the bone

marrow, including one CR with hypocellularity.66

Although it had clinical activity, the duration of response

was limited as a single agent, so combination approaches

were prioritized over monotherapy. Midostaurin was com-

bined with induction chemotherapy and found to be safe

and well tolerated.67 The Randomized AML Trial in FLT3

(RATIFY) study was a phase 3 trial of midostaurin in

combination with 7+3 induction chemotherapy. A total of

717 patients with either FLT3-ITD or -TKD mutations

were randomized to receive standard 7+3 induction (dau-

norubicin + cytarabine) and consolidation chemotherapy

with or without midostaurin (360 midostaurin, 357 pla-

cebo). Patients were able to move to allogeneic transplan-

tation when clinically feasible during consolidation.

Patients in the midostaurin arm had a significantly

increased median overall survival of 74.7 months vs 25.6

months (hazard ratio for death 0.78; P = 0.009).33 Based

on this positive outcome, it was approved by the FDA for

combination therapy at 50 mg orally twice a day on days

8–21 with standard induction chemotherapy and consoli-

dation chemotherapy for newly diagnosed AML.68 In

comparison to quizartinib development, the decision to

test midostaurin in combination with chemotherapy started

relatively early, which was related in part to the limited

efficacy of midostaurin as a single agent. However, the

positive results of the RATIFY trial resulted in midostaurin

being the first FDA-approved FLT3 inhibitor for AML.

Whether or not more potent type 1 and type 2 second-

generation FLT3 inhibitors (including quizartinib, gilteri-

tinib, and crenolanib) will be more effective than midos-

taurin in combination with chemotherapy is of great

interest and currently under investigation.

The second FDA approved FLT3 inhibitor is gilteritinib

(ASP2215, Astellas). Gilteritinib is a potent type 1 inhibitor

of both FLT3-ITD and FLT3-TKD and also has activity

against AXL.44 Initial safety and efficacy were determined

in a phase 1/2 trial of 252 patients with relapsed or refrac-

tory FLT3-mutated AML. The recommended phase 2 dose

was 120 mg orally daily after the initial dose escalation.69

In the full analysis set, 40% of the patients (100/249) had at
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least some response, with 30% (75/249) achieving CRc and

the other 10% (25/249) achieving partial remission.69 Most

common grade 3–4 adverse events included cytopenias and

infectious complications (sepsis, febrile neutropenia, pneu-

monia). Other side effects included liver function abnorm-

alities, diarrhea, nausea/vomiting, stomatitis, fatigue, and

myalgias/arthralgias. These promising early results led to

the ADMIRAL Trial, a phase 3 randomized trial of gilter-

itinib vs salvage chemotherapy in FLT3+ relapsed/refrac-

tory AML.28 Gilteritinib was given orally at a dose of

120 mg daily until unacceptable toxicity or lack of clinical

benefit. After a median follow-up of 4.6 months (range: 2.8

to 15.8), 29 patients achieved CRc (21%, 95% CI: 14.5,

28.8).70 Based upon the interim results of the ADMIRAL

trial, gilteritinib was FDA approved for relapsed/refractory

AML in November 2018, and the full results of the

ADMIRAL trial were presented in April 201970,71 which

demonstrated an increase in median overall survival com-

pared to salvage chemotherapy. In comparison to quizarti-

nib, the ADMIRAL trial had more durable responses with

a median overall survival of 9.6 vs. 5.6 months for che-

motherapy (P<0.001) compared to the median overall sur-

vival with quizartinib 6.2 vs. 4.7 months with chemotherapy

(p=0.02). The major caveat to comparing these trials is that

the quizartinib trial limited the patient population to primary

refractory AML and relapsed AML within 6 months of first

CRc, essentially a higher risk population. This is reflected in

the shorter duration of response to chemotherapy in the

QuANTUM-R trial. That being said, the frequent develop-

ment of FLT3-TKD resistance mutations with quizartinib

and potentially the impact of AXL inhibition still appear to

lead to more durable responses with gilteritinib.

In addition to this approval, gilteritinib is currently

being investigated in multiple other settings in AML:

including in combination with standard induction

chemotherapy;72 in newly diagnosed not fit for standard

induction as standalone treatment or in combination with

hypomethylating agents;73,74 and as maintenance therapy

after completion of consolidation chemotherapy or as post-

transplant maintenance to prevent relapse.75

Future Directions
Quizartinib is approved in Japan for relapsed/refractory

FLT3-mutated AML, and there are still a number of ongoing

clinical trials with quizartinib in the US (see Table 2), so it

may be that quizartinib will eventually obtain FDA approval

as part of combination treatment. This would be more akin to

the approval of midostaurin in combination with induction

and consolidation chemotherapy, as opposed to the approval

of gilteritinib as a single agent in relapsed/refractory AML.

In the phase 1 dose escalation study of quizartinib with

induction chemotherapy, 40 mg per day of quizartinib

given on days 4–17 with standard 7+3 induction chemother-

apy was identified as the maximal tolerated dose.76

Preliminary efficacy from the trial showed a 74% (14/19)

CRc, and the phase 3 randomized QuANTUM-First trial is

ongoing to evaluate efficacy.77 The results of induction che-

motherapy trials with more potent second-generation FLT3

inhibitors such as quizartinib will be interesting to compare

with results from the midostaurin RATIFY trial since many

have speculated that some of midostaurin’s clinical success

is partly attributable to off-target effects. The other path to

FDA approval for quizartinib in the near future may also be

in combination with other drugs such as hypomethylating

agents or venetoclax as these combinations are currently in

clinical investigation (see Table 2).

In addition, there are a number of pre-clinical studies

with quizartinib investigating novel combinations. For

example, 8-chloroadenosine is a novel RNA directed

nucleoside analog with activity against both proliferative

and quiescent leukemia stem cells; and was shown to be

synergistic with quizartinib in cell lines and patient

samples.78 In another study, quizartinib downregulated

DNA repair genes such as BRCA1, BRCA2, and RAD51

leading to inhibition of double-strand DNA repair path-

ways. The PARP inhibitor BMN673 was able to overcome

this resistance mechanism and was synergistic with qui-

zartinib in cell line models, patient samples, and xenograft

mouse models.79 And as a final example, the autophagy

inhibitor TAK-165 was also shown to be synergistic with

quizartinib in both cell lines and patient sample models.80

Given the surge of recently approved drugs in AML,

there are a number of possible combinations with quizar-

tinib that may improve patient responses and overcome

resistance mechanisms. Many of these combinations are

already in clinical trials, but of course, so are combinations

with other FLT3 inhibitors. The right drug combination

and timely completion of a phase 3 clinical trial will be

important for quizartinib to move forward.
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