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Combined analysis of transcriptome and
metabolite data reveals extensive differences
between black and brown nearly-isogenic
soybean (Glycine max) seed coats enabling the
identification of pigment isogenes
Nik Kovinich1,2*, Ammar Saleem3, John T Arnason3 and Brian Miki1

Abstract

Background: The R locus controls the color of pigmented soybean (Glycine max) seeds. However information
about its control over seed coat biochemistry and gene expressions remains limited. The seed coats of nearly-
isogenic black (iRT) and brown (irT) soybean (Glycine max) were known to differ by the presence or absence of
anthocyanins, respectively, with genes for only a single enzyme (anthocyanidin synthase) found to be differentially
expressed between isolines. We recently identified and characterized a UDP-glycose:flavonoid-3-O-
glycosyltransferase (UGT78K1) from the seed coat of black (iRT) soybean with the aim to engineer seed coat color
by suppression of an anthocyanin-specific gene. However, it remained to be investigated whether UGT78K1 was
overexpressed with anthocyanin biosynthesis in the black (iRT) seed coat compared to the nearly-isogenic brown
(irT) tissue.
In this study, we performed a combined analysis of transcriptome and metabolite data to elucidate the control of
the R locus over seed coat biochemistry and to identify pigment biosynthesis genes. Two differentially expressed
late-stage anthocyanin biosynthesis isogenes were further characterized, as they may serve as useful targets for the
manipulation of soybean grain color while minimizing the potential for unintended effects on the plant system.

Results: Metabolite composition differences were found to not be limited to anthocyanins, with specific
proanthocyanidins, isoflavones, and phenylpropanoids present exclusively in the black (iRT) or the brown (irT) seed
coat. A global analysis of gene expressions identified UGT78K1 and 19 other anthocyanin, (iso)flavonoid, and
phenylpropanoid isogenes to be differentially expressed between isolines. A combined analysis of metabolite and
gene expression data enabled the assignment of putative functions to biosynthesis and transport isogenes. The
recombinant enzymes of two genes were validated to catalyze late-stage steps in anthocyanin biosynthesis in vitro
and expression profiles of the corresponding genes were shown to parallel anthocyanin biosynthesis during black
(iRT) seed coat development.

Conclusion: Metabolite composition and gene expression differences between black (iRT) and brown (irT) seed
coats are far more extensive than previously thought. Putative anthocyanin, proanthocyanidin, (iso)flavonoid, and
phenylpropanoid isogenes were differentially-expressed between black (iRT) and brown (irT) seed coats, and
UGT78K2 and OMT5 were validated to code UDP-glycose:flavonoid-3-O-glycosyltransferase and anthocyanin 3’-O-
methyltransferase proteins in vitro, respectively. Duplicate gene copies for several enzymes were overexpressed in
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the black (iRT) seed coat suggesting more than one isogene may have to be silenced to engineer seed coat color
using RNA interference.

Background
Flavonoids represent a class of plant secondary metabo-
lites that have evolved a variety of physiological func-
tions including pigmentation, pathogen defense, and UV
protection [1]. Additionally, metabolic engineering of
flavonoids has become an important target for plant bio-
technology, as flavonoids provide health benefits to
foods, favorable agronomic traits to crops, and may be
used in the future to color commercial transgenic mate-
rials such as grains to facilitate their identification and
monitoring [2-4].
Commercial soybean (Glycine max (L.) Merr.) has a

yellow grain. However rare spontaneous mutants exist
that have black (iRT) or brown (irT) seed coat (testa)
color phenotypes. Black (iRT) and brown (irT) soybean
seed coats contain proanthocyanidins (PAs, a.k.a. con-
densed tannins) but differ in the presence/absence of
anthocyanins [5]. A goal for biosafety is to engineer a
novel red seed coat color as a marker for transgenic soy-
bean grains to facilitate their identification [4], and
could potentially be achieved by the suppression of
anthocyanin-specific genes that are overexpressed in the
black soybean seed coat. However the genes have not
yet been identified.
Six genetic loci (I, R, T, Wp, W1, and O) [6] identified

by classical genetics control flavonoid-based seed coat
color in soybean. The I locus controls the presence or
absence and spatial distribution of flavonoid pigments
and has four alleles (I, Ii, Ik, i); I gives completely non-
pigmented seed coat, Ii restricts pigment to the hilum
and Ik to a saddle-shaped region, whereas the i allele
results in a fully pigmented seed coat [6]. The recessive
i allele results from spontaneous deletion of CHS4 or
CHS1 promoter sequences and results in the abolish-
ment of a posttranscriptional RNA silencing mechanism
that results in the increased accumulation of chalcone
synthase (CHS) transcripts in the seed coat [7,8].
The T locus is a pleoiotropic locus that controls the

type and abundance of flavonoid pigments in the seed
coat in addition to other traits such as seed coat crack-
ing and trichome pigmentation [5,9,10]. Genetic poly-
morphisms that affect the expression or function of the
flavonoid 3’-hydroxylase gene (F3’H1) have been shown
to co-segregate with recessive t alleles [11,12].
The W1 locus controls flower color and affects seed

color only in an iRt background; where W1 and w1
alleles give imperfect black and buff seed coat colors,
respectively [6]. The W1 allele for purple flower color
was shown to code flavonoid 3’,5’-hydroxylase (F3’5’H),

as a 65-bp insertion in the gene (F3’5’H) co-segregated
with white flower color (w1) [13].
The Wp locus was suggested to code the flavonone 3-

hydroxylase gene (F3H1) by microarray analysis as high
levels of F3H1 transcripts co-segregated with purple
flower color (Wp), and low levels with pink (wp) flowers
[14]. In the seed coat, recessive wp resulted in a change
from black (iRTWp) to a lighter grayish (iRTwp) color
[14].
The O locus affects the color of brown (irTO) seed

coats, with the recessive o allele giving a red-brown
(irTo) phenotype [6]. The O locus has been suggested to
code the proanthocyanidin (PA, a.k.a. condensed tannin)
biosynthesis gene anthocyanidin reductase (ANR), as the
gene was located between markers that flank the O
locus on the soybean physical map [15]. However mole-
cular genetics analyses have not yet demonstrated the
identity of the O locus gene.
Finally, the R locus controls the presence (R) or

absence (r) of anthocyanins in black (iRT) or brown
(irT) seed coats, respectively [16]. Despite the identifica-
tion of several pigment genes from soybean, only tran-
scripts for anthocyanidin synthase (ANS) genes (ANS23-
1, ANS27-1 and ANS100) have been shown to be over-
expressed in the black (iRT) seed coat compared to the
brown (irT) nearly-isogenic line by northern blot [17].
The upregulation of several ANS genes suggests the R
locus to code a regulatory factor, and raises the possibi-
lity that other isogenes for anthocyanin biosynthesis
may be upregulated.
Recently, a cDNA coding the UDP-glycose:flavonoid-

3-O-glycosyltransferase (UF3GT) gene (UGT78K1) was
isolated from the black (iRT) seed coat and shown to
function in anthocyanin biosynthesis in vitro and by
complementation of a gene mutation in Arabidopsis
[18]. However UGT78K1 expressions have not been
investigated in relation to seed coat color.
The soybean genome sequence Glyma1 was predicted

to code 46,430 protein-coding genes with nearly 75% of
the genes present in multiple copies [19]. This may sug-
gest a relatively high frequency of functional redundancy
and increased difficulty in identifying soybean genes by
traditional approaches. However, using transcriptome
analysis tools such as the Soybean GeneChip equipped
with 37,500 probe sets in combination with broad-cov-
erage metabolite analysis methodologies such as LC-
MS/MS, gene functions could potentially be efficiently
predicted. The combined analysis of transcriptome and
metabolite data has been shown to be a powerful
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approach for the functional identification of unknown
genes [20-22]. Metabolite differences caused by the
overexpression of a transcription factor, the exposure to
a nutritional stress, and by species differences have been
correlated with differences in transcriptome profiles to
successfully predict the functions of unknown genes in
flavonoid, glucosinolate, and alkaloid biosyntheses
[21-23].
In the present study we have employed targeted and

non-targeted metabolite analysis methodologies and
have demonstrated that black (iRT) and brown (irT)
nearly-isogenic soybean seed coats do not just differ in
the presence/absence of anthocyanins, and have exten-
sive differences in procyanidin, (iso)flavonoid and phe-
nylpropanoid compositions. The underlying differences
in gene expressions were then identified by microarray
analysis, and the putative functions of 20 unknown
genes were assigned by comparison to metabolite data.
From the set of differentially regulated genes, two puta-
tive late-stage anthocyanin genes were selected and the
functions of their coded enzymes were validated in vitro.
In addition, a set of gene candidates potentially coded
by the R locus have been provided.

Results
qRT-PCR indicates differential expressions of anthocyanin
and proanthocyanidin genes in nearly-isogenic black (iRT)
and brown (irT) soybean seed coats
Among the flavonoid genes identified from soybean seed
coats, only ANS transcripts were found to be overex-
pressed in the seed coat of black (iRT) soybean com-
pared to the brown (irT) isoline, however no RFLP
difference was observed when probing ANS genes [17].
This suggests that ANS overexpression is not the only
molecular difference between black (iRT) and brown
(irT) seed coats. To examine whether other anthocyanin
genes are upregulated, transcript profiles of the recently
identified UGT78K1 [18] and the DFR1 gene [GenBank:
AF167556] were measured from seed coat cDNA by
quantitative RT-PCR (qRT-PCR) using ANS2/ANS3
transcripts [GenBank:AY382829/GenBank: AY382830]
as a positive control. Phosphenol pyruvate carboxylase
(PEPC) [GenBank: D10717] was used as an endogenous
reference for normalization of the qRT-PCR measure-
ments of target genes across seed coat samples, as PEPC
is expressed at similar levels in a wide range of soybean
tissues and has been used previously as a reference for
gene expressions during soybean seed coat development
[8,24].
qRT-PCR demonstrated UGT78K1 to be significantly

overexpressed in the black (iRT) seed coat at the transi-
tion stage (300 mg - 400 mg FSW) and early maturation
stage (400 - 500 mg FSW) of seed development com-
pared to the brown (irT) isoline, and to be almost

undetectable at earlier stages (Figure 1). Stereomicro-
scopy and photospectroscopic measurements confirmed
these developmental stages to coincide with the stages
of anthocyanin biosynthesis in the black (irT) seed coat
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Figure 1 Transcript profiles from black (iRT) and brown (irT)
seed coats during development measured by qRT-PCR. Black
(iRT) soybean (black bars) and brown (irT) soybean (white bars).
Student’s t test significant at P < 0.01 (**), student’s t test significant
at P < 0.05 (*).

Kovinich et al. BMC Genomics 2011, 12:381
http://www.biomedcentral.com/1471-2164/12/381

Page 3 of 18

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF167556
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY382829
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY382830
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=D10717


(Figure 2). In contrast to UGT78K1, DFR1 was not dif-
ferentially expressed at the stages of anthocyanin bio-
synthesis (Figure 1). ANS2/ANS3 mRNAs were
confirmed to be overexpressed in the black (iRT) seed
coat at most stages (Figure 1) as shown previously [17].
The seed coat palisade cells of black (iRT) soybean are

unusual compared to those of other model plants used
for the study of anthocyanin biosynthesis (e.g. Arabidop-
sis, Maize, and Petunia) because black (iRT) soybean
palisade cells synthesize both anthocyanins and
proanthocyanidins (PAs). ANR and LAR enzymes have
been identified to catalyze the conversion of cyanidin to
epicatechin and leucocyanidin to catechin, respectively,
which are the putative initial biochemical steps of PA
biosynthesis [25,26]. To investigate how a seed tissue
may coordinate the biosynthesis of these parallel pig-
ment pathways, the expressions of putative PA genes
ANR1 [GenBank:JF433915] and LAR1 [GenBank:
JF433916] were examined in relation to anthocyanin
gene expressions. qRT-PCR demonstrated ANR1 expres-
sions to decrease throughout seed coat development in
both genotypes and to be almost undetectable by the
stages of UGT78K1 overexpressions and anthocyanin
biosynthesis (Figure 1). By contrast, LAR1 expressions
were downregulated at the stages of anthocyanin bio-
synthesis in the black (iRT) seed coat (Figure 1).

In conclusion, these results show that the recently
identified UGT78K1 is upregulated in the black (iRT)
seed coat, in addition to ANS2/ANS3, and that there is a
simultaneous downregulation of the PA gene LAR1 at
the stages of anthocyanin biosynthesis. These results
demonstrate that expression differences between black
(iRT) and brown (irT) seed coats are not limited to
anthocyanin genes, and may suggest extensive differ-
ences in gene expressions and phenolic compositions.

Combined analysis of targeted and non-targeted
methodologies indicate overaccumulation of
anthocyanins, altered procyanidin, and reduced flavonol,
benzoic acid, and isoflavone compositions in the seed
coat of black (iRT) soybean
The structures of anthocyanins from only a few (Kor-
ean) black soybean varieties have been described [27,28]
and information regarding other phenolic compositions
may be limited to proanthocyanidins (PAs), where acid-
catalyzed hydrolysis of black (iRT) and brown (irT) seed
coats showed the PAs to be 3’,4’-hydroxylated [5]. A
more extensive analysis of phenolic composition differ-
ences between black (iRT) and brown (irT) seed coats
could greatly improve our understanding of seed pig-
mentation, and may suggest gene activities that function
in pigment biosynthesis. For these reasons, black (iRT)
and brown (irT) Clark seed coat metabolites were
extracted at the transition stage (300 mg - 400 mg
FSW) of seed development with multiple solvents and
analyzed by targeted high performance liquid chromato-
graphy-diode array detection (HPLC-DAD) and non-tar-
geted HPLC-tandem mass spectrometry (HPLC-MS/
MS). To ensure seed coats were at the same stage of
development, the days post anthesis, pod length, pod
color, embryo morphology, and transcript levels of the
developmental marker gene Gm-r1083-1191, a putative
cutin biosynthesis gene [29], and the metabolism gene
DFR1 were ensured to be equivalent between black
(iRT) and brown (irT) tissues (Additional file 1: Table
S1).
For a targeted analysis of anthocyanins, black (iRT)

and brown (irT) Clark seed coats were extracted with
acidified aqueous methanol and metabolites were identi-
fied using HPLC-DAD by measuring the absorbance at
520 nm in comparison to authentic standards. Ten cya-
nic pigments were identified, the most abundant were
the anthocyanins cyanidin-3-O-glucoside (peak 5, 43.6%
total peak area), cyanidin-3-O-galactoside (peak 4, 17.4%
peak area) and petunidin-3-O-glucoside (peak 6, 14.6%
total peak area) with lesser amounts of delphinidin-,
pelargonidin-, and peonidin-3-O-glucosides (peaks 3, 7,
8; 8.9%, 1.2%, and 1.1% peak areas, respectively), the
aglycone cyanidin (peak 9, 3.9% peak area), the 3-deox-
yanthocyanidin diosmetinidin (peak 10, 2.0% peak area),
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Figure 2 Anthocyanin accumulations in black (iRT) and brown
(irT) soybean seed coats during seed development. The fresh
weight stages of seed development are indicated. (A) Seed color
phenotypes during development. (B) Total amounts of anthocyanins
in the seed coat of black (iRT) soybean during seed development.
No anthocyanin absorbance was measured from brown (irT) seed
coat extracts.

Kovinich et al. BMC Genomics 2011, 12:381
http://www.biomedcentral.com/1471-2164/12/381

Page 4 of 18

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=JF433915
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=JF433916


and the two unidentified anthocyanin-like compounds
(peaks 1 and 2, 1.6% and 0.8% peak areas, respectively)
(Table 1). To our knowledge this is the first report of a
3-deoxyanthocyanidin from the soybean seed coat. The
structures of all identified anthocyanins are represented
in Figure 3. By contrast, cyanic pigments were not
detected from the brown (irT) seed coat at any stage of
seed development (not shown).
To compare the structural features of PAs, black (iRT)

and brown (irT) seed coats were extracted with 70% acet-
one and subjected to phloroglucinol cleavage analysis
[30,31]. PA free monomers, polymer subunit composi-
tions, and mean degree of polymerization (mDP) did not
differ significantly between nearly-isogenic black (iRT)
and brown (irT) seed coats. The soluble PA mDP was 4,
and the subunit and monomer compositions consisted
mainly of epicatechin with minor amounts of unidenti-
fied compounds (Additional file 2: Figure S1A - S1C).
Reaction with DMACA reagent demonstrated similar
amounts of soluble PAs from both black (iRT) and
brown (irT) seed coats (P = 0.08) (Additional file 2: Fig-
ure S1F). Further extraction of seed coat residues at 50°C
in the presence of acid and phloroglucinol yielded only
low levels of epicatechin-phloroglucinol adduct, epicate-
chin terminal units, and several unidentified compounds
(Additional file 2: Figure S1B), and acid catalyzed clea-
vage of seed coat residues at 95°C identified relatively
high, but equivalent amounts of 3’,4’-hydroxylated sol-
vent insoluble PAs (Additional file 2: Figure S1E).
For a non-targeted analysis of soluble phenolic meta-

bolites, nearly isogenic black (iRT) and brown (irT)
Clark seed coats were extracted with acidified aqueous
methanol and analyzed by HPLC-MS/MS over a mass
range of 100 amu to 1000 amu. Identities were assigned
to peaks by comparison of retention times and mass
fragmentation patterns to authentic standards. Peaks
with no corresponding authentic standards were identi-
fied by mass fragmentation patterns in comparison to

the literature. A total of 177 peaks were detected, of
which 78 peaks were assigned to 37 compounds (Table
2). Twenty-eight compounds were detected from the
black (iRT) seed coat (Table 2); consisting mainly of
unidentified compounds (35.7%) and anthocyanins
(32.1%), followed by procyanidins (25.0%). By contrast,
23 compounds were detected from the brown (irT) seed
coat (Table 2); consisting mainly of unidentified com-
pounds (56.5%), followed by flavonols (13.0%) and pro-
cyanidins (13.0%). The majority of compounds (62.2% of
all compounds identified by HPLC-MS/MS) were exclu-
sive to the black (iRT) or brown (irT) seed coat, suggest-
ing extensively different biochemical specializations of
these tissues. The distribution of compound classes
from black (iRT) and brown (irT) Clark seed coats is
illustrated in Figure 4.
The 14 compounds exclusive to the black (iRT) seed

coat were anthocyanins (8 compounds), procyanidins (4
compounds), and unknown compounds (2 compounds)
(Table 2). HPLC-MS/MS (Table 2) confirmed the iden-
tity of anthocyanins found by HPLC-DAD (Table 1).
Procyanidin tetramers and larger oligomers were not
detected as they exceeded the mass range (1000 amu)
analyzed by the HPLC-MS/MS experiments, however 3
PA trimers (Procyanidin trimer 1, 2, and 4) and the A-
type procyanidin dimer were exclusive to the black
(iRT) seed coat (Table 2).
The 9 compounds exclusive to the brown (irT) seed

coat consisted of 4 unknown compounds (Unknown
compound 2, 10, 12, and 13), 2 flavonols (Unknown fla-
vonol 1 and 2), 2 benzoic acids (Orcinol O-hexoside and
Unknown benzoic acid 1), and the isoflavone daidzein
O-hexoside malonylated (Table 2).
Taken together, our metabolite analysis experiments

show that nearly-isogenic black (iRT) and brown (irT)
Clark seed coats have compositional differences not lim-
ited to the presence or absence of anthocyanins; with
specific flavonol, isoflavone, and benzoic acids exclusive
to the brown (irT) seed coat and anthocyanins and
unique procyanidin oligomers exclusive to the black
(iRT) seed coat. These results may suggest extensive dif-
ferences in the underlying gene expressions.

3: R= -O-glucoside, R1= -OH, R2= -OH
4: R= -O-galactoside, R1= -OH, R2= -H
5: R= -O-glucoside, R1= -OH, R2= -H
6: R= -O-glucoside, R1= -OCH3, R2= -OH
7: R= -O-glucoside, R1= -H, R2= -H
8: R= -O-glucoside, R1= -OCH3, R2= -H
9: R= -OH, R1= -OH, R2= -H
10: R= -H, R1= -OCH3, R2= -H

B

CA

Figure 3 Anthocyanins from the seed coat of black (iRT)
soybean variety Clark. Numbers correspond to chromatographic
peaks identified by HPLC-DAD (see Table 1).

Table 1 HPLC-DAD analysis of anthocyanins from the
seed coat of black (iRT) soybean variety Clark

Peak Rt (min) Area (%) (520 nm) Identity*

1 1.7 1.6 unidentified compound 1

2 2.6 0.8 unidentified compound 2

3 5.5 8.9 delphinidin-3-O-glucoside

4 6.3 17.4 cyanidin-3-O-galactoside

5 6.7 43.6 cyanidin-3-O-glucoside

6 7.1 14.6 petunidin-3-O-glucoside

7 7.4 1.2 pelargonidin-3-O-glucoside

8 7.7 1.1 peonidin-3-O-glucoside

9 9.5 3.9 Cyaniding

10 9.7 2.0 diosmetinidin

*For chemical structures see Fig. 3.
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Microarray Analysis Indicates Concomitant Upregulation
of Specific Phenylpropanoid, Flavonoid, and Anthocyanin
Isogenes and Downregulation of Other Flavonoid,
Benzoic Acid, and Isoflavone Isogenes in the Black (iRT)
Seed Coat Transcriptome
Nearly 75% of genes in the soybean genome are present
in multiple copies [19], and previously only transcripts
for ANS isogenes were found to be overexpressed in the
black (iRT) seed coat compared to the nearly-isogenic
brown (irT) tissue [17]. For a global analysis of isogene

expressions, black (iRT) and brown (irT) Clark seed
coats were dissected at the transition stage of seed
development (300 - 400 mg FSW) for microarray analy-
sis using the Affymetrix Soybean GeneChip. Seed coats
were ensured to be at the same stage of development as
described above for the metabolite analyses (Additional
file 1: Table S1).
Of the 37,500 probe sets present on the Soybean Gen-

eChip, 80 were found to be upregulated more than 2-
fold in black (iRT) soybean (Additional file 3: Table S2).

Table 2 HPLC-MS/MS analysis of seed coat extracts of black (iRT) and brown (irT) soybean

Compound Identity [M+] (m/z) Major fragment(s) Rt (min) Genotypea

1 Unknown 1 413 183, 115 1.4 B

2 Unknown 2 381 184, 125 1.6 irT

3 Unknown 3 183 - 1.7 iRT

4 Unknown 4 162 - 1.9 B

5 Unknown 5 409 303 1.9 B

6 Unknown 6 437 273 2.3 B

7 Unknown 7 416 - 2.3 B

8 Unknown 8 580 182, 265, 437 2.5 B

9 Unknown 9 507 485, 323, 132 2.9 B

10 Orcinol O-hexoside 305 287 4.0 irT

11 Unknown 10 331 248 4.2 irT

12 Procyanidin trimer 1 867 579, 309, 299 4.7 iRT

13 Procyanidin B2* 579 291 5.5 B

14 Unknown 11 607 409, 455 6.0 B

15 Procyanidin trimer 2 867 577, 407 6.4 B

16 Delphinidin-3-O-glucoside* 465 303 6.6 iRT

17 Procyanidin trimer 3 867 579 6.6 iRT

18 Epicatechin* 291 - 6.9 B

19 Cyanidin-3-O-galactoside* 449 287 7.1 iRT

20 Daidzein O-hexoside malonylated 503 417 7.4 irT

21 Unknown 12 481 319 7.4 irT

22 Cyanidin-3-O-glucoside* 449 287 7.5 iRT

23 Petunidin-3-O-glucoside* 479 319, 303 8.0 iRT

24 Unknown 13 341 278, 111 8.1 irT

25 Pelargonidin-3-O-glucoside* 433 - 8.3 iRT

26 Peonidin-3-O-glucoside* 463 301, 286 8.7 iRT

27 Procyanidin dimer 2 579 409, 291 9.2 B

28 Unknown flavonol 1 331 - 9.0 irT

29 Procyanidin trimer 4 867 579, 699 9.2 iRT

30 A-type procyanidin dimer 593 - 9.7 iRT

31 Unknown anthocyanin 1 317 - 9.6 iRT

32 Unknown flavonol 2 615 - 9.6 irT

33 Cyanidin* 287 - 10.0 iRT

34 Unknown 14 487 - 10.8 B

35 Diosmetinidin* 285 - 10.3 iRT

36 Unknown benzoic acid 1 633 331, 315 11.0 irT

37 Quercetin-3-O-glucoside* 465 303 11.0 Bb

*Based on co-chromatographic and MS fragamentation comparison to an authentic standard.
aBlack soybean (iRT), brown soybean (irT), both (B).
bTrace amounts in iRT.
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Classification using the Gene-Bins ontology tool (http://
bioinfoserver.rsbs.anu.edu.au/utils/GeneBins/index.php)
demonstrated the majority of upregulated genes to be
“unclassified without homology” (28.7%) or “unclassified

with homology” (24.8%), followed by “biosynthesis of
secondary metabolites” (7.9%) (Additional file 4: Figure
S2). This latter class consisted exclusively of putative
(and some characterized) phenylpropanoid, flavonoid,
and anthocyanin isogenes. Interestingly, putative iso-
genes of the phenylpropanoid pathway (4CL-like and
4CL2), the flavonoid pathway (CHS4/5, F3H-like, DFR2,
ANS2/ANS3), and the late-stage anthocyanin pathway
(UGT78K1, UGT78K2, OMT-like, OMT5, GST21 and
GST26) were all upregulated more than 2-fold in the
black (iRT) seed coat, more than 234-fold in the case of
the GST26 probe set (Table 3).
A BLASTP search of the soybean genome sequence
Glyma1 (http://www.phytozome.net/soybean) using the
conserved plant secondary product glycosyltransferase
signature sequence (PSPG box) [32] identified 214 anno-
tated Family 1 glycosyltransferases (UGTs)(Additional
file 5: Table S3). Of the 214 UGTs, only 2 were found
to be upregulated more than 2-fold from the black (iRT)
seed coat; the recently identified UF3GT gene
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Table 3 Putative phenylpropanoid/flavonoid gene sets upregulated more than 2-fold in the seed coats of black (iRT)
soybean compared to the brown (irT) isolinea,b

SAM

Gene Family Probe Sets Name Target Description Black/brown
fold change

P-value d-score

Phenyl-propanoid/
Flavonoid pathway

GmaAffx.80720.1.
S1_at

DFR2* Dihydroflavonol-4-reductase 62.45 0.000002 24.70

GmaAffx.42116.1.
S1_at

CHS4*/
CHS5*

Chalcone synthase (LOC732575) 10.99 0.000020 8.45

GmaAffx.42116.1.
S1_x_at

8.06 0.000026 7.124398

Gma.1163.1.
S1_at

ANS2*/
ANS3*

Anthocyanidin synthase 6.77 0.000018 8.77

Gma.17141.1.
S1_at

F3H-like Moderately similar to A. thaliana putative flavonone 3-
b-hydroxylase clone U20744 (74%)

6.43 0.004849 2.03

Gma.7423.2.
S1_a_at

4CL-like 4-coumarate-CoA ligase-like protein 2.80 0.005815 1.96

Gma.5621.1.
S1_at

G4DT* Pterocarpan 4-dimethylallyltransferase 2.36 0.009232 1.80

Gma.8472.1.
S1_at

4CL2* 4-Coumarate-CoA ligase 2 2.27 0.000108 4.60

Glycosyl-transferase GmaAffx.71999.1.
S1_at

UGT78K2 Glycosyltransferase 3.09 0.000124 4.50

Gma.1002.2.
S1_at

UGT78K1* UDP-glucose:flavonoid 3-O-glucosyltransferase 2.81 0.000229 4.03

O-methyl-transferase Gma.9647.1.
S1_at

OMT-like O-methyltransferase, putative 2.58 0.000098 4.74

GmaAffx.57777.1.
S1_at

OMT5 Caffeoyl-CoA O-methyltransferase 5 2.48 0.000157 4.33

Glutathione S-
transferase

GmaAffx.71212.1.
A1_at

GST26 Glutathione S-transferase 234.11 0.000003 21.22

Gma.5139.1.
S1_at

GST21 Glutathione S-transferase 2.05 0.000656 3.09

aExpression values were obtained using RMA (Irizarry et al., 2003).
bSee Table S2 for the complete list of upregulated genes.

*Previously characterized flavonoid biosynthesis genes.
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UGT78K1 [18] was upregulated more than 2.8-fold and
a second uncharacterized glycosyltransferase, which we
named UGT78K2 in accordance with UGT nomencla-
ture [33], was upregulated more than 3-fold (Table 3).
A search of the soybean genome sequence with the

conserved OMT-domain sequence (PLN02589; NCBI)
and the ontology ‘O-methyltransferase’, identified 84
annotated OMTs (Additional file 6: Table S4). Of the 84
OMT genes, only probe sets for OMT-like and OMT5
were upregulated in the black (iRT) seed coat, more
than 2.4-fold and 2.5-fold, respectively (Table 3).
A total of 52 probe sets were downregulated more

than 2-fold in the black (iRT) seed coat (i.e. black/
brown < 0.5 fold); among these, 2 probe sets by more
than 10-fold, 12 probe sets by more than 3-fold, with
the remainder between 2- and 3-fold (Table 4; Addi-
tional file 7: Table S5). Classification of down-regulated
genes using the Gene-Bins ontology tool demonstrated
the majority to be “unclassified without homology”
(45.5%) or “unclassified with homology” (12.1%), fol-
lowed by “biosynthesis of secondary metabolites” (9.1%)
(Additional file 8: Figure S3). The latter class consisted
primarily of characterized and putative (iso)flavonoid
isogenes. Isogenes for common flavonoid biosynthesis
(CHS1, CHS9, F3’H), PA biosynthesis (LAR1), and iso-
flavone biosynthesis (IFR1-like) were all down-regulated
more than 2-fold in the black (iRT) seed coat, more

than 35-fold in the case of the CHS1 (Table 4). The fla-
vonoid genes CHS9 and F3’H were down-regulated
more than 21-fold and 2.5-fold, respectively, the putative
isoflavone gene IFR1-like by more than 3.6-fold, and the
putative PA gene LAR1 by more than 2.2-fold (Table 4).
Of the differentially regulated probe sets, 12 repre-

sented transcription factor genes, 8 were upregulated
and 4 downregulated (Additional file 3: Table S2 and
Additional file 7 Table S5, respectively), however none
of these genes clustered with known flavonoid transcrip-
tion factor orthologs by phylogenetic analysis (not
shown).
A previous study mapped the R locus between mar-

kers A668_1 and K387_1 on MLG K (Chromosome 9)
[34]. Nineteen differentially-regulated probe sets were
associated with genes located on chromosome 9 of the
soybean genome sequence Glyma1 (Additional file 9:
Table S6). Interestingly, all genes were located in a 5.16
Mb region of the distal arm of chromosome 9, and only
the downregulated AP2/ERF (Glyma09g36840) and ser-
ine carboxypeptidase-like protein (Glyma09g36080) and
the upregulated polyamine oxidase (Glyma09g36150)
were located between markers (BARC-025669-04989
and Sat_293) that flank the putative position of the R
locus (http://soybeanphysicalmap.org) (Figure 5).
To validate the microarray results, 28 differentially-regu-
lated genes were selected and their relative expression

Table 4 Putative phenylpropanoid/flavonoid gene probe sets downregulated more than 2- fold in the black (iRT)
compared to the brown (irT) soybean seed coata,b

Gene
Family

SAM

Probe Sets Name Target Description Black/brown
fold change

P-value d-
score

Phenyl-
propanoid/

Gma.17605.1.
S1_at

CHS1* Chalcone synthase 0.028 0.000007 -16.45

Flavonoid GmaAffx.92491.1.
S1_s_at

CHS9* Chalcone synthase 0.047 0.000005 -19.36

pathway GmaAffx.89828.1.
S1_s_at

IFR1-
like

Highly similar to isoflavone reductase homolog 1 (IFR1) (93%) 0.272 0.000132 -4.46

Gma.8455.1.
S1_at

sf3’h1* Flavonoid 3’-hydroxylase 0.400 0.000646 -3.10

GmaAffx.93221.1.
S1_s_at

OOMT-
like

Moderately similar to Rosa rugosa orcinol O-methyltransferase (OOMT-A)
(72%)

0.410 0.003428 -2.17

GmaAffx.34868.1.
A1_at

LAR1 Highly similar to Phaseolus coccineus leucoanthocyanidin reductase (LAR)
(88%)

0.443 0.000016 -9.02

Gma.4340.2.
S1_a_at

Moderately similar to P. trichocarpa flavonoid O-methyltransferase-related
(73.9%)

0.462 0.004180 -2.08

Gma.10949.1.
S1_s_at

Moderately similar to A. thaliana 3-chloroallyl aldehyde dehydrogenase/
aldehyde dehydrogenase (NAD)/coniferyl-aldehyde dehydrogenase
(ALDH2C4) (75.5%)

0.495 0.000273 -3.92

Transport GmaAffx.39265.1.
S1_at

MATE1 Weakly similar to A. thaliana antiporter/drug transporter MATE family
protein (69.8%)

0.414 0.000265 -3.95

aExpression values were obtained using RMA (Irizarry et al., 2003).
bSee Table S5 for the complete list of up-regulated genes.

*Previously characterized flavonoid biosynthesis genes.
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profiles were measured by semi-quantitative RT-PCR
(semi-qRT-PCR) using black (iRT) and brown (irT) seed
coat cDNA as templates. Phosphenol pyruvate carboxy-
lase (PEPC) was used as the endogenous control to
ensure equal loading and the flavonoid genes CHS7/
CHS8 and the putative PA gene ANR1 were used as
negative controls as they were not found to be differen-
tially expressed in the microarray analysis. Semi-qRT-
PCR confirmed the differential-expressions of all 28
genes and demonstrated similar expressions for CHS7/
CHS8 and ANR1 (Additional file 10: Figure S4). Further-
more, as the upregulated probe set GmaAffx.42116.1.S1
did not distinguish between CHS4 and CHS5 expres-
sions, semi-qRT-PCR was performed with gene specific
primers to show the CHS4 gene, and not the CHS5 gene
to be upregulated in the black (iRT) seed coat (Addi-
tional file 10: Figure S4).
In summary, these results show that numerous speci-

fic anthocyanin, flavonoid and phenylpropanoid isogenes
are upregulated and other flavonoid, benzoic acid, and
isoflavone isogenes are downregulated in the black (iRT)
seed coat transcriptome relative to that of the nearly-
isogenic brown (irT) tissue.

Putative Assignment of Function to Genes Differentially-
Regulated between Black (iRT) and Brown (irT) Seed Coats
Gene functions can be successfully predicted based on a
combined analysis of transcriptome and metabolite data

[21]. We compared differences in gene expressions
determined by microarray to differences in metabolite
compositions to assign putative functions to genes from
the black (iRT) and brown (irT) seed coats (Figure 6). In
addition to 7 previously characterized soybean flavonoid
genes, several uncharacterized genes belonging to large
multi-gene families with possible roles in anthocyanin
biosynthesis and transport were upregulated; including
one glycosyltransferase (UGT78K2), two O-methyltrans-
ferases (OMT5 and OMT-like) and two glutathione S-
transferases (GST21 and GST26) (Table 3). Considering
the accumulation of metabolites with specific molecular
structures in the black (iRT) seed coat, putative func-
tions of the differentially-expressed genes were assigned
to specific structural modifications and transport func-
tions (Figure 6).
Anthocyanins in the seed coat of black (iRT) soybean

are glycosylated at the 3-position of the C-ring (Figure
3). The glycosyltransferase UGT78K2 is assigned to
code a UDP-glycose:flavonoid 3-O-glycosyltransferase
(UF3GT) protein (Figure 6) and may have functional
redundancies in anthocyanin biosynthesis with the pre-
viously characterized UGT78K1 [18], which was also
upregulated in the black (iRT) seed coat (Table 3).
Two anthocyanins (petunidin-3-O-glucoside and peoni-
din-3-O-glucoside) and one deoxyanthocyanidin (dios-
metinidin) from the black (iRT) seed coat are
methylated at the 3-position of the B-ring (the 3’-posi-
tion) (Figure 3). The two upregulated O-methyltrans-
ferases were assigned to code anthocyanin 3 ’-O-
methyltransferase (AOMT) proteins (Figure 6) and
may have redundant function in anthocyanin biosynth-
esis this tissue.

UGT78K2 and OMT5 Code UDP-Glycose:Flavonoid 3-O-
Glycosyltransferase and Anthocyanin 3’-O-
Methyltransferase Proteins, Respectively
Reducing the expressions of late-stage anthocyanin
genes by RNA interference (RNAi) in the seed coat of
black soybean may be an effective strategy to engineer
seed coat color while minimizing unintended effects on
other flavonoid subpathways. However, functional
redundancies may require that multiple genes be
silenced in order to reduce enzyme activity enough to
reduce pigment levels. Two glycosyltransferases
(UGT78K1 and UGT78K2) were upregulated in the
black (iRT) seed coat relative to the nearly-isogenic
brown (irT) tissue (Table 3) and the upregulation paral-
leled the accumulation of anthocyanins with 3-O-glyco-
sylated structures (Figure 2), suggesting the function of
these genes as UDP-glycose:flavonoid 3-O-glycosyltrans-
ferases (UF3GTs). We have characterized UGT78K1
previously and shown it to possess UF3GT activity
towards anthocyanidins in vitro and in vivo [18]. To
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determine the catalytic function of UGT78K2 [GenBank:
HM591298], the ORF was cloned into an N-terminal
hexahistidine fusion tag vector and expressed in E. coli
for analysis of the coded recombinant protein in vitro.
The recombinant protein (rUGT78K2) was purified by
ion-metal-affinity chromatography (IMAC) had an
apparent mass of 50.9 kDa that matched well with the
calculated mass of the native UGT78K2 protein (49.04
kDa) in addition to the 2.04 kDa N-terminal hexahisti-
dine fusion tag encoded by the pET-14b vector (Figure
7A). In assays containing UDP-glucose as the sugar
donor and cyanidin as the acceptor, the recombinant
enzyme transferred glucose to the 3-position of cyanidin

to form cyanidin-3-O-glucoside (Figure 7B, C), whereas
the boiled enzyme and bacteria expressing the corre-
sponding empty vector could not catalyze this reaction
(not shown). Similarly, in assays containing UDP-galac-
tose as the sugar donor and cyanidin as the acceptor,
the recombinant enzyme transferred galactose to the 3-
position of cyanidin to form cyanidin-3-O-galactoside
(not shown). Cyanidin-3-O-glucoside and cyanidin-3-O-
galactoside from recombinant enzyme assays were iden-
tified by HPLC-DAD in comparison to the authentic
standards, and confirmed by HPLC-MS/MS with the
characteristic parent ions 449.0 [cyanidin-3-O-glucoside
or cyanidin-3-O-galactoside]+1 and the MS/MS fragment
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Figure 6 Summary of flavonoid/phenylpropanoid gene and metabolite accumulations from black and brown soybean seed coats*.
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287.3 [cyanidin]+1 corresponding to the loss of glucose
(-162 amu).
As we have performed the kinetics analysis for recom-

binant UGT78K1, we were able to employ the same
experimental conditions to test the kinetics of
UGT78K2. Interestingly, UGT78K2 converted cyanidin-
3-O-glucoside with greater velocity than UGT78K1 and
higher concentrations of cyanidin were required to inhi-
bit its activity (Figure 7D) despite the enzymes having
93% amino acid similarity (Additional file 11: Figure S5).
Methylation of the B-ring of anthocyanins has a red-

dening effect on flower color (reviewed by [35]) and
thus engineering the expression of 3’-O-methyltrans-
ferases could change the redness of seed color. However,
despite the identification of several flavonoid OMTs
from soybean, none have been shown to accept antho-
cyanins as substrates. Our microarray analysis identified
two O-methyltransferases (OMT5 and OMT-like) to be
upregulated in the black (iRT) seed coat (Table 3) and
the upregulation paralleled the accumulation of 3’-O-
methylated anthocyanins in this tissue (Figure 2), sug-
gesting the function of these genes as anthocyanin 3’-O-
methyltransferases (AOMTs). Following the approach
described above, the ORF of OMT5 [GenBank:
HQ856048] was cloned for expression and functional
characterization of the corresponding recombinant pro-
tein in vitro. The purified recombinant protein had an
apparent mass of 30.0 kDa that matched well with the
calculated mass (27.78 kDa) in addition to the 2.04 kDa
N-terminal hexahistidine fusion tag encoded by the
pET-14b vector (Figure 8A). In assays containing S-ade-
nosyl-L-methionine (SAM) as the methyl donor and
cyanidin-3-O-glucoside as the acceptor, the recombinant
enzyme transferred a methyl group to the 3’-position of
the acceptor to form peonidin-3-O-glucoside (Figure 8B,
C), whereas the boiled enzyme and bacteria expressing
the corresponding empty vector could not catalyze this
reaction (not shown). Peonidin-3-O-glucoside from
recombinant enzyme assays was identified by HPLC-
DAD in comparison to the authentic standard, and con-
firmed by HPLC-MS/MS with the characteristic parent
ion 463.1 [peonidin-3-O-glucoside]+1 and the MS/MS
fragment 301.0 [peonidin]+1 corresponding to the loss of
glucose (-162 amu).
To further investigate the function these genes,

UGT78K2 and OMT5 expression profiles were measured
from seed coat cDNA throughout black (iRT) and
brown (irT) soybean seed development by quantitative
RT-PCR (qRT-PCR) (Figure 9) and expressions were
compared to anthocyanin accumulation profiles
throughout seed development (Figure 2). Similar to
UGT78K1, UGT78K2 and OMT5 expressions peaked at
the transition and early maturation stages of seed devel-
opment (300 mg - 400 mg FSW, 400 mg - 500 mg
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FSW) in the black (iRT) seed coat (Figure 9), the stages
at which anthocyanins accumulate (Figure 2), and were
low or almost undetectable at early stages of seed devel-
opment in the black (iRT) seed coat and at all stages in
the brown (irT) seed coat.

Together the qRT-PCR and recombinant enzyme
assays suggest that UGT78K2 and OMT5 code UF3GT
and AOMT proteins, respectively, that function in
anthocyanin pigment biosynthesis in the seed of black
(iRT) soybean.

Discussion
The seed coat compositions of black (iRT) and brown
(irT) soybean (Glycine max) were known to differ only
by the presence/absence of anthocyanins, however our
metabolite analysis demonstrated these nearly-isogenic
tissues to have extensive differences in anthocyanin,
proanthocyanidin (PA), (iso)flavonoid, and phenylpropa-
noid content (Table 2). Of the 37 compounds detected,
24 compounds (62.2% of all compounds identified by
HPLC-MS/MS) were exclusive to either the black (iRT)
or the brown (irT) seed coat. Analysis of the distribu-
tions of compound classes between seed coats demon-
strated the black (iRT) to a have a greater proportion of
anthocyanins and PAs, and the brown (irT) to have a
greater proportion of flavonol, benzoic acid, isoflavone,
and unknown metabolite compositions (Figure 4). Meta-
bolites exclusive to the black (iRT) seed coat included
PA trimers (Procyanidin trimer 1, 2, and 4) and an A-
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reaction as revealed by HPLC-DAD chromatograms at 520 nm (C).
HPLC retention times: cyanidin 3-O-glucoside (Rt: 7.3 min); peonidin
3-O-glucoside (Rt: 8.6 min).
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type procyanidin dimer in addition to various anthocya-
nins (Table 2).
The anthocyanins identified from variety Clark were

mainly similar to those reported previously from various
Korean varieties [27,28] however Clark was the first
shown to contain a 3-deoxyanthocyanidin (diosmetini-
din) in the seed coat (Table 2). 3-deoxyanthocyanidins
are relatively rare intensely coloured pigments found in
Sorghum bicolour in response to fungal attack [36], and
from the cotyledons of yellow soybean in response to
UV-C treatment [37]. The biosynthesis of 3-deoxyantho-
cyanidins from flavonones has been shown to be a
minor activity of a DFR isogene in Sorghum [38]. It
would be interesting to determine whether the DFR
gene that was highly overexpressed in the black Clark
seed coat (DFR2) had similar catalytic activity, and
whether the Korean varieties contain genetic alterations
related to DFR2.
Analysis of the black (iRT) seed coat transcriptome

compared to that of the nearly-isogenic brown (irT) tis-
sue identified 80 probe sets to be upregulated (Table 3).
This is almost double the number of probe sets upregu-
lated by overexpression of the MYB transcription factor
PAP1 in Arabidopsis (38 probe sets) [21], similar to the
number upregulated by overexpression of the anthocya-
nin factor LAP1 in M. truncatula (61 probe sets), and
less than half the number upregulated by overexpression
of LAP1 in M. sativa (270 probe sets) [39]. The higher
numbers of genes upregulated in anthocyanin-overaccu-
mulating tissues of black soybean, M. truncatula and M.
sativa likely reflect the fact that legumes have under-
gone genome duplication and that genes with multiple
copies are frequently retained [19]. Our data supported
this hypothesis as duplicate copies of several genes were
upregulated in the black (iRT) seed coat (e.g. 4CL2 and
4CL-like, UGT78K2 and UGT78K1, OMT5 and OMT-
like, and GST21 and GST26).
Functional redundancies can complicate gene identifi-

cation by traditional approaches. Previous to the present
study, genes for only 5 flavonoid enzymes (CHS, F3H,
F3’H, F3’5’H, and UF3GT) were identified to be involved
in pigment biosynthesis in the soybean seed coat
[7,11-14,18]. In the present study, 20 isogenes for 14
proteins were identified to have putative roles in flavo-
noid biosynthesis in black (iRT) or brown (irT) seed
coats using a combined analysis of microarray and
metabolite data (Figure 6).
Transcriptome analysis has previously demonstrated a

critical role of CHS7 and CHS8 genes for isoflavonoid
biosynthesis in developing embryos of soybean [40].
However, our microarray and semi-quantitative RT-PCR
data demonstrated that CHS7 and CHS8 were not differ-
entially regulated in black (iRT) and brown (irT) seed
coats (Table 3). Interestingly, it was CHS4 that was

upregulated and CHS1 and CHS9 that were downregula-
tedin the black (iRT) seed coat (Table 3 and Table 4
respectively). As CHS4 is upregulated with anthocyanin
genes, it likely has a role in anthocyanin biosynthesis in
this tissue. Consistent with this, spontaneous mutations
of the dominant ii allele to the recessive i allele have
been shown to affect the promoter region of the CHS4
gene [7]. By contrast, the downregulation of CHS1 and
CHS9 may suggest that they have a role in the parallel
downregulated biochemical pathways, such as flavonol
and isoflavonoid biosynthesis, as these metabolites, and
transcript levels of genes for their biosynthesis, were
reduced or not present in the black (iRT) seed coat (Fig-
ure 6). These results emphasize the complexity of iso-
gene expressions that exist to achieve a single enzyme
function in soybean.
Microarray analysis identified differentially regulated

probe sets for only 3 gene functions (LAR, GST, and
MATE) that have been previously shown to be involved
in PA biosynthesis and transport. Recombinant LAR
enzymes from several legume species have been shown
to convert leucocyanidin to (+)-catechin in vitro
[25,26,41,42]. However, the in vivo role of LAR in PA
biosynthesis remains questionable as endogenous
expression has been shown not to correlate with PA
levels in M. truncatula and heterologous expression has
failed to increase PA accumulations [41]. Similarly, our
metabolite data showed that soybean PAs lack catechin
subunits (Additional file 2: Figure S1) and that LAR1
expressions (Figure 1) do not parallel PA accumulations
during seed development (not shown). Interestingly, 4
PAs were found to be exclusive to the black (iRT) seed
coat (Table 2) however the total subunit compositions,
the mean degree of polymerization (mDP), and the total
amounts of soluble and solvent-insoluble PAs were not
different compared to the brown (irT) seed coat (Addi-
tional file 2: Figure S1). These results suggest the PA
oligomers of black (iRT) and brown (irT) seed coats
may differ only in their subunit linkages. However, the
potential influence of LAR or other PA genes on PA
subunit linkages (if any) remains to be determined.
From the set of differentially regulated genes identified

by microarray, two putative late-stage anthocyanin genes
were selected and the functions of their coded enzymes
were determined in vitro. UGT78K2 was found to code
a UF3GT enzyme for anthocyanin biosynthesis (Figure
7). A UF3GT cDNA (UGT78K1) has recently been iso-
lated from the black seed coat and functionally charac-
terized [18]. UGT78K2 was 93% similar to UGT78K1
but possessed increased catalytic activity towards cyani-
din (Figure 7D). The identification gene redundancy has
important implications for seed coat color engineering
by RNA interference, as both copies of the gene may
have to be silenced to achieve a significant reduction in

Kovinich et al. BMC Genomics 2011, 12:381
http://www.biomedcentral.com/1471-2164/12/381

Page 13 of 18



UF3GT activity. Similarly, two OMT genes (OMT5 and
OMT-like) were found to be overexpressed in the black
seed coat (Table 3). OMT5 was cloned and found to
code an AOMT enzyme in vitro (Figure 8). UF3GT and
OMT genes may be ideal candidates for seed coat color
engineering as suppression of UF3GT genes (UGT78K1
and UGT78K2) may result in a reduction in anthocyanin
levels similar to that caused by a T-DNA insertion in
the Arabidopsis UF3GT [21] and upregulation of an
AOMT may result in a more red seed coat, as methyla-
tion of the B-ring of anthocyanins has a reddening effect
on flower color (reviewed by [35]). However, it remains
to be determined whether altering the expressions of
these genes could be use to modify seed coat color with-
out causing unintended effects on alternative biochem-
ical pathways.
Prior to the present study, currently known soybean

genes did not map between markers A668_1 and
K387_1 on chromosome 9 of the soybean physical geno-
mic map, where the R locus is located, leaving no
obvious candidates for the R locus gene [15]. In our
study, 14 genes identified to be differentially regulated
in the black (iRT) soybean seed coat transcriptome were
found to be located on chromosome 9 of the soybean
genome sequence Glyma1 (Figure 5). Among the gene
families represented, only WD40 and MYB have known
roles in flavonoid regulation. However the genes demon-
strated did not cluster with known flavonoid regulators
by phylogenetic analysis (not shown). A Mob1/phocein
gene was commonly upregulated in the black (iRT) soy-
bean seed coat and Arabidopsis seedlings overexpressing
PAP1 [21]. Other regulatory gene families represented
on chromosome 9 were AP2/ERF, serine/threonine pro-
tein kinase, calcium/calmodulin-dependent protein
kinase, and ethylene-responsive element-binding protein.
Interestingly, all upregulated and downregulated genes
on chromosome 9 were located in 5.16 Mb region that
includes the nearest sequence markers to the R locus.
Only the downregulated AP2/ERF transcription factor,
the serine carboxypeptidase gene, and the gene moder-
ately similar to the A. thaliana polyamine oxidase
ATPAO1 were located between these sequence markers
(Figure 5). As a result our study provides a short list of
gene candidates that may serve as the focus of future
efforts to identify the R locus gene.

Conclusion
Metabolite composition and gene expression differences
between black (iRT) and brown (irT) seed coats are far
more extensive than previously thought. Putative antho-
cyanin, proanthocyanidin, (iso)flavonoid, and phenylpro-
panoid isogenes were differentially-expressed between
black (iRT) and brown (irT) seed coats, and UGT78K2
and OMT5 were validated to code UDP-glycose:

flavonoid-3-O-glycosyltransferase and anthocyanin 3’-O-
methyltransferase proteins in vitro, respectively. Dupli-
cate gene copies for several enzymes were overexpressed
in the black (iRT) seed coat suggesting more than one
isogene may have to be silenced to engineer seed coat
color using RNA interference.

Methods
Chemicals
Cyanidin was purchased from Indofine (Somerville, NJ,
USA) UDP-glucose and SAM from Sigma-Aldrich (Oak-
ville, ON, CA), the 3-O-glucosides of delphinidin and
petunidin from Polyphenols (Hanaveien, NO), and all
other phytochemicals were purchased from Extrasynth-
ese (Lyon, FR). All solvents for LC-MS/MS and HPLC-
DAD analyses were of HPLC grade purchased from
Fisher Scientific (Ottawa, ON, Canada).

Plant Materials and Growth Conditions
Black (iRT) soybean (G. max (L.) Merr.) variety Clark
(PI547438) and the nearly isogenic brown (irT) soybean
(PI 547475) were obtained from the U.S. Department of
Agriculture Soybean Germplasm Collection (Agricul-
tural Research Service, University of Illinois at Cham-
paign-Urbana). Seeds were surface-sterilized in 2%
triton/70% EtOH-H2O (7:3, v/v) for 5 min on a mixer
wheel, rinsed three times with EtOH, dried, and germi-
nated in autoclaved vermiculite in a Conviron E15 cabi-
net with a photoperiod of 16 h light (590 μE m2 s) at
25°C, and 8 h dark at 20°C. Plants were fertilized twice
weekly with N:P:K 35-5-10 (1% w/v). After 12 days,
seedlings were transplanted to autoclaved soil and 34
days later the photoperiod was changed to 12 h light/12
h dark to encourage reproductive development. For
RNA isolation, seed coats were dissected from plants,
immediately frozen in liquid N2, lyophilized, and stored
at -80°C. Seed coats for comparative analyses were har-
vested on the same days, 4 h after the initiation of the
light cycle to minimize for potential differences in tran-
script and metabolite accumulations that may be influ-
enced by circadian rhythm.

Seed Coat Metabolite Analyses
Lyophilized seed coats (~40 mg) from each developmen-
tal stage were pulverized in HCO2H-MeOH-H2O (400
μL, 15:80:5, v/v) using a FastPrep FP120 Homogenizer
(Savant) and incubated at 4°C for 2 h. The slurry was
centrifuged at 20,000 g for 10 min, and 5 μl of superna-
tant from each sample was measured by photospectro-
scopy using a NANODROP 2000 (Thermo Scientific)
according to the formula A530-0.25A657 to compensate
for chlorophyll absorption at 530 nm (Mancinelli, 1990).
The quantity of anthocyanins was determined by com-
parison to a standard curve and expressed as cyanidin
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3-O-glucoside equivalents. For HPLC-DAD and LC-
QTRAP analyses samples were extracted for an addi-
tional 24 h and 200 μl of supernatant was vortexed with
HCO2H-MeOH (1 mL, 15:85, v/v) for 20 sec, centri-
fuged at 20,000 g for 10 min, and the supernatant was
evaporated under a stream of nitrogen gas (to 50 μL),
filtered through PVDF (0.45 μm; Millipore), and 20 μl
and 5 μl aliquots were analyzed by HPLC-DAD and
HPLC-MS/MS respectively, as described below.
For analysis of proanthocyanidins (PAs), lyophilized

seed coats were ground to a powder, extracted with 70%
acetone (1 mg mL-1) and analyzed as described pre-
viously [30,31] with (-)-epicatechin, (+)-catechin, and
(-)-epicatechin gallate used as standards for the identifi-
cation of free monomers, and procyanidin B2 used as a
standard for the analysis of soluble and insoluble PA oli-
gomer compositions. Quantitation of soluble PAs by
reaction with DMACA reagent and insoluble PAs by
acid-catalyzed cleavage was performed as described [43]
using procyanidin B2 and cyanidin as standards for the
respective assays.

Microarray Analysis, Semi-qRT-PCR, and qRT-PCR
Total RNA was isolated from pigmented soybean seed
coats as described previously (Wang and Vodkin, 1994).
The quantity and purity of RNA samples were deter-
mined by spectrophotometry using a NANODROP 2000
(Thermo Scientific). RNA integrity was confirmed by
microfluidics using a Bioanalyser 2100 equipped with an
RNA 6000 Nano Chip (Agilent Technologies Inc., Mon-
treal, QC, Canada).
Microarray was performed on RNA isolated from

three plants of each genotype. Briefly, 100 ng of total
RNA was in vitro transcribed for 16 h using the Gene-
Chip 3’IVT Express Kit (Affymetrix, http://www.affy-
metrix.com). Labelled RNA was hybridized to
GeneChip Soybean Genome Arrays as described by the
manufacturer (Affymetrix). Statistical analyses of data
for the identification of differentially regulated genes
were performed using FlexArray software (M. Blazejc-
zyk and associates; Genome Quebec, Montreal) that
uses R and Bio-Conductor [44]. The raw data was
adjusted for background signal, and normalized across
all GeneChips using the Robust Multi-array Average
(RMA) method [45]. To identify differentially
expressed genes, the SAM algorithm, which minimizes
variation across arrays and incorporates an estimate of
false discovery rate (FDR) [46], was used. Only genes
with a fold change > 2 or < 0.5 and a P value < 0.01
were considered to be differentially expressed. All
materials and procedures comply with the MIAME
standards for array data [47]. The full dataset has been
deposited in the Gene Expression Omnibus [GEO:
GSE26208].

For semi-quantitative RT-PCR (semi-qRT-PCR), RNA
samples (3 μg) were treated with DNase I (Amplification
grade, Invitrogen) at 37°C for 15 min to remove con-
taminating DNA. Reactions (20 μl) were terminated by
heating (65°C for 10 min) in the presence of 1 ul of 25
mM EDTA. First-strand cDNA was synthesized using
SuperScript III Reverse Transcriptase (Invitrogen)
according to the manufacturer’s instructions. Parallel
reactions were performed in the absence of Superscript
III to test for genomic DNA contamination. Gene
expressions from each cDNA sample were normalized
to the endogenous reference PEPC16. Semi-quantitative
RT-PCR (semi-qRT-PCR) reactions (20 μl) consisted of
2 μl of first-strand cDNA (or untreated RNA), 400 nM
primers, 200 μM dNTPs, 1.5 mM MgCl2, 1X Taq Buffer,
2.5 units Taq polymerase (Fermentas). PCR cycling was
94°C for 2 min, followed by 23, 25, and 27 cycles for
CHS7/CHS8 or 27, 30, 33 cycles for all other genes, 94°
C for 15 sec, 58°C for 1 min, and 72°C 1 min.
For quantitative RT-PCR (qRT-PCR), cDNA template

was prepared as described above. Reactions (25 μl) con-
sisted of 2 μl of first-strand cDNA (or untreated RNA),
250 nM of forward and reverse primers, and 12.5 μl of
the iQ SYBR Green Supermix (BioRad). qRT-PCR of
each target gene for each seed coat sample was per-
formed in triplicate on cDNA samples or untreated
RNA samples using an PTC-200 Peltier thermal cycler
equipped with a Chromo4 continuous fluorescence
detector (MJ research). PCR cycling was 95°C for 10
min, followed by 40 cycles of 95°C for 30 sec, 58°C for 1
min, and 72°C 1 min. qRT-PCR data and PCR efficien-
cies were analyzed using the Opticon Monitor 3 soft-
ware (BioRad). To verify the specificity of the RT-PCR
reactions, melting curves were performed subsequent to
each reaction in addition to fractionation of RT-PCR
products on agarose gels. Semi-qRT-PCR and qRT-PCR
experiments were performed in triplicate. Primers used
in this study can be found in Additional file 12: Table
S7.

Cloning of UGT78K2 and OMT5 cDNAs from the Seed
Coat of Black Soybean
To clone the full-length coding sequences (CDSs) of
UGT78K2 and OMT5, PCR primers were designed
based on the transcript sequence predicted for Gly-
ma08g07130 (http://www.phytozome.net/soybean) and
based on the mRNA sequence of BT098523, respec-
tively. Full-length CDSs for UGT78K2 and OMT5 were
amplified from black (iRT) seed coat cDNA by end-to-
end PCR using primers UHF/UAR and HO5F/HO5R,
respectively (Additional file 12: Table S7) and a high-
fidelity DNA polymerase (Invitrogen). The resulting
UGT78K2 and OMT5 amplicons (1466 bp and 836 bp,
respectively) were cloned into NdeI and BamHI sites,
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and NdeI and XhoI sites of the pET-14b vector (Nova-
gen), respectively, and sequenced to confirm their
identities.

Expression of Recombinant Proteins in E. coli
The full-length CDSs of UGT78K2 and OMT5 were
independently fused in-frame to the N-terminal hexahis-
tidine tag encoded by the pET-14b vector (above). Plas-
mids were transformed into the expression host E. coli
BL21(DE3) pLysS (Novagen) and a single colony for
each plasmid was selected for production of recombi-
nant proteins. Soluble recombinant proteins were iso-
lated following growth and induction of E. coli BL21
(DE3) pLysS at 16°C. Recombinant proteins were puri-
fied by ion metal-affinity chromatography (IMAC) using
a kit (Novagen). To confirm the purity of the recombi-
nant enzyme, the eluted fractions were visualized on
12.5% acrylamide gel stained with 0.25% Coomassie
Blue. The amount of purified recombinant enzyme was
determined using the BioRad reagent.

Recombinant Enzyme Assays
The UGT78K2 assay (total volume 100 μl) was per-
formed as described previously [18] and consisted of
recombinant enzyme (2 μg), cyanidin (20 μM), and
UDPG (5 mM) in assay solution. The OMT 5 assay (total
volume 200 μl) consisted of recombinant enzyme (3 μg),
SAM (100 μM), MgCl2 (150 μM), Tris pH 7.5 (50 mM),
and 2-mercaptoethanol (14 mM). UGT78K2 and OMT 5
assays were incubated for 5 min at 30°C and 1 h at 35°C,
respectively. Reactions were stopped by vortexing in
MeOH (500 μl) for 20 s. Reaction products were identi-
fied by comparison to commercial standards dissolved in
MeOH. Reactions were prepared for HPLC by centrifuga-
tion (21,000 g for 4 min at 4°C) followed by concentra-
tion of the supernatant to final volume of 50 μl under a
stream of N2 gas. All reactions were filtered through
PTFE (0.45 μm; Millipore, MA USA) and 20 μl aliquots
were analyzed by HPLC-DAD. Assays were performed in
triplicate and experiments repeated thrice.

HPLC-DAD and HPLC-MS/MS Analyses
HPLC-DAD analysis of anthocyanins was performed as
described previously [18]. Briefly, separations were
achieved at 45°C on a Luna C18(2), 4.6 × 150 mm, par-
ticle size 5 μm fitted with a corresponding guard-col-
umn (Phenonenex Inc, Santa Ana, CA) using an Agilent
1100 series (Agilent Technologies Inc., Montreal, QC,
Canada) equipped with an autosampler with a 100 μL
loop, a quaternary pump (maximum pressure, 400 bars),
a column thermostat, and a diode array detector (DAD).
The mobile phase consisted of 5% HCO2H in H2O (sol-
vent A) and MeOH (solvent B). Optimized elution con-
ditions were a linear gradient of 10-100% B in 25 min

with a flow rate of 1 ml min-1, the column was washed
for 10 min with 100% B, brought back to starting mobile
phase composition in 0.1 min and equilibrated for 5 min
prior to the next injection. The HPLC separations were
monitored at 520, 476, 350, 280, and 254 nm. The rela-
tive quantities of anthocyanins were calculated based on
percent area of each peak eluting at specific retention
times.
The HPLC-ESI-MS/MS system consisted of an Agilent

1200 series (Agilent Technologies Inc., Montreal, QC,
Canada) connected directly to a 3200QTRAP (ABI
Sciex, Toronto, Canada). The software used for data
acquisition and analysis is Analyst 1.4.2. The chromato-
graphic conditions were the same as described for the
HPLC-DAD analysis anthocyanins. The mobile phase
was split 50/50 post-column. For enhanced mass scan
(EMS), the MS was operated in positive polarity at a
scan rate of 4000 amu s-1 within the mass range of 100
- 1000 amu. The optimal source conditions of the mass
spectrometer were: collision gas high, curtain gas (N2)
25 L min-1, ion spray voltage 4500 V, source tempera-
ture 500°C, source gas 1 (at 50 psig), source gas 2 (at 55
psig). The optimal compound parameters were declus-
tering potential (DP) +20 V, entrance potential (EP) +10
V, collision energy (CE) 10 V, ionization energy 1.0 eV
and detector 2800. For enhanced product ion scan the
information dependant acquisition (IDA) criteria was as
follows: select 1 - 2 most intense peaks which exceeds
10,000 cps, exclude targeted ions after 3 occurrences for
12 s. Product ions were scanned within the mass range
of 100 - 1000 amu. All source parameters were the
same as for EMS. The optimal compound parameters
were DP +70 V, EP +10 V, CE 65 V, and collision
energy spread 40 V.

Additional material

Additional file 1: Supplementary Table S1. Developmental properties
of black (iRT) and brown (irT) soybean seed coats at the 400 mg fresh
seed weight stage.

Additional file 2: Supplementary Figure S1. Proanthocyanidin (PA)
subunit compositions, degree of polymerizations, and amounts from the
seed coats of black (iRT) and brown (irT) soybean Clark isolines. (A, B, C)
iRT top panels, irT bottom panels. (A) Phloroglucinol cleavage products of
soluble PA polymers. HPLC retention times: ascorbic acid (1) (Rt: 2.0 min);
phloroglucinol (2) (Rt: 3.1 min); epicatechin-phloroglucinol adduct (Rt: 5.5
min); epicatechin (4) (Rt: 9.4 min). (B) Phloroglucinol cleavage products of
solvent insoluble PA polymers. HPLC retention times: ascorbic acid (1) (Rt:
2.0 min); phloroglucinol (2) (Rt: 3.1 min); epicatechin-phloroglucinol (Rt:
6.2 min); epicatechin (4) (Rt: 11.0 min). (C) Free monomers. HPLC
retention times: epicatechin (1) (Rt: 12.5 min). (D) Mean degree of
polymerization (mDP) of soluble PAs. (E) Total insoluble PAs. (E) Total
soluble PAs. (D, E, F) iRT black bars, irT white bars. (E, D) Amounts are
represented as milligrams procyanidin B2 equivalents per gram
lyophilized seed coat (LSC).

Additional file 3: Supplementary Table S2. Gene probe sets up-
regulated more than 2-fold in the seed coat of black (iRT) soybean
compared to the brown (irT) isolinea.
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Additional file 4: Supplementary Figure S2. Distribution of gene
function categories of probe sets that were up-regulated more than 2-
fold in the seed coat of black (iRT) soybean relative to the seed coat of
brown (irT) soybean.

Additional file 5: Supplementary Table S3. Glycine max UGTsa,b.

Additional file 6: Supplementary Table S4. Glycine max OMTsa,b.

Additional file 7: Supplementary Table S5. Gene probe sets
downregulated more than 2-fold in the seed coats of black (iRT) soybean
compared to the seed coats of brown (irT) soybean at the 300 - 400 mg
fresh seed weight stage of developmenta.

Additional file 8: Supplementary Figure S3. Distribution of gene
function categories of probe sets that were down-regulated more than
2-fold in the seed coat of black (iRT) soybean relative to the seed coat of
brown (irT) soybean.

Additional file 9: Supplementary Table S6. Genes located on
chromosome 9 of the soybean genome sequence Glyma1 that are
associated with probe sets differentially-regulated more than 2-fold in
the seed coat of black (iRT) soybean variety Clarka.

Additional file 10: Supplementary Figure S4. Semi-qRT-PCR validation
of the expressions of select genes found to be differentially expressed in
black (iRT) and brown (irT) seed coats by microarray analysis. An asterix
(*) represents genes located on Chromosome Gm09 of the soybean
Glyma1 genome sequence. Genes and corresponding differentially
regulated probe sets: 4CL-L, Gma.7423.2.S1_a_at; 4CL-2, Gma.8472.1.S1_at;
CHS4 and CHS5, GmaAffx.42116.1.S1_at; LAR1, GmaAffx.34868.1.A1_at;
DFR2, GmaAffx.80720.1.S1_at; ANS2/ANS3, Gma.1163.1.S1_at; UGT78K1,
Gma.1002.2.S1_at; UGT78K2, GmaAffx.71999.1.S1_at; OMT-like, Gma.9647.1.
S1_at; OMT5, GmaAffx.57777.1.S1_at; GST26, GmaAffx.71212.1.A1_at;
GST21, Gma.5139.1.S1_at; MYB50, GmaAffx.81605.1.S1_at; MYB159,
GmaAffx.39483.1.A1_at; C2H2 ZF, Gma.17736.1.S1_at; WD40,
GmaAffx.45454.1.S1_at; SCOF-1, Gma.235.1.S1_at; AP2, GmaAffx.2469.1.
S1_at; EF-hand, Gma.15972.1.A1_at; ProtK, GmaAffx.90491.1.A1_s_at; LRR,
GmaAffx.12723.1.A1_at; G4DT, Gma.5621.1.S1_at; PAO1-L, Gma.3745.1.
S1_at; Am Oxy, Gma.3745.1.S1_at; PCT, GmaAffx.78720.2.S1_at; PUB22,
Gma.4530.1.A1_s_at; 9O12a, Gma.2605.1.S1_at; 9012b, Gma.2605.2.S1_at;
Lipase, GmaAffx.90450.1.S1_at.

Additional file 11: Supplementary Figure S5. Alignment of G. max
UF3GT proteins UGT78K2 and UGT78K1 from variety Clark using the
ClustalW program with default parameters. Amino acid differences are
shown with grey background.

Additional file 12: Supplementary Table S7. Primers.
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