# Research Article

# Assessing the Short-Term Efficacy and Safety of Guselkumab for Moderate-to-Severe Plaque Psoriasis: Meta-Analysis of Randomized Controlled Trials

# Jing Yang, Zongming Wang 🗅, and Xilin Zhang

Department of Dermatology and Venereology, Chong Qing Three Gorges Central Hospital, Chongqing 404100, China

Correspondence should be addressed to Zongming Wang; zm09000@126.com

Received 16 April 2020; Accepted 11 June 2020; Published 17 July 2020

Academic Editor: Luis Alberto Ponce-Soto

Copyright © 2020 Jing Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

*Background*. To investigate the efficacy and safety of guselkumab in the treatment of moderate-to-severe plaque psoriasis. *Methods*. A systematic review was undertaken to identify double-blind randomized controlled trials (RCTs). PubMed, Web of Science, Cochrane Library, EMBASE, and Google Scholar databases were searched before 1 March 2020. The odds ratios (ORs) with 95% confidence interval (CI) were calculated. All analyses were conducted with intention-to-treat basis. A range of sensitivity analyses was undertaken. *Results*. A total of 7 articles contained 1206 plaque psoriasis patients with guselkumab, 585 patients with placebo, and 1250 patients with adalimumab were included. The results indicated that guselkumab had better efficacy than placebo or adalimumab for Psoriasis Area and Severity Index score reductions from baseline of 75% (PASI 75) (OR = 61.37, 95% CI = 31.15 to 120.91; OR = 3.08, 95% CI = 2.35 to 4.06), Investigator's Global Assessment scores of 0 or 1 (IGA 0/1) (OR = 65.75, 95% CI = 45.54 to 94.95; OR = 2.79, 95% CI = 2.17 to 3.59), and Dermatology Life Quality Index scores of 0 or 1 (DLQI 0/1) (OR = 29.64, 95% CI = 18.80 to 46.73; OR = 1.86, 95% CI = 1.50 to 2.31). The guselkumab had similar safety with placebo or adalimumab about the incidence of adverse events (AEs) (OR = 1.05, 95% CI = 0.86 to 1.29; OR = 0.97, 95% CI = 0.79 to 1.19) and serious adverse events (SAEs) (OR = 1.03, 95% CI = 0.47 to 2.27; OR = 0.91, 95% CI = 0.44 to 1.87). Meanwhile, there was no statistically significant association of infections and serious infections compared with the placebo or adalimumab was more effective and had the similar tolerance. *Conclusion*. The guselkumab had excellent efficacy and great safety in moderate-to-severe plaque psoriasis, but long-term safety remained to be determined.

## 1. Introduction

Psoriasis is a chronic immune-mediated inflammatory skin disease that manifests in the skin or joint [1]. It affects nearly  $1 \sim 3\%$  of the population worldwide and has brought enormous financial pressure to the patients [2]. The etiology of psoriasis is unknown; it may be associated with the defect in proliferation and differentiation of keratinocytes and inflammatory cell infiltration. The subtypes of psoriasis are diverse; 90% of the total number of patients are plaque psoriasis [3, 4]. The lesions of plaque psoriasis show clear red plaques, which are covered with silvery white scales and accompanied by obviously itching symptoms. The main characteristics of plaque psoriasis are infiltrative plaques and thicker scales with light red to dark red. If the scales

are scraped out, a thin film phenomenon and spotted bleeding could be seen. They usually have a longer course [5].

At present, the main inhibitors for the treatment of psoriasis are IL-23 inhibitors, IL-17 inhibitors, and TNF- $\alpha$  inhibitors. The central role of interleukin-23/interleukin-17 (IL-23/IL-17) axis in the pathogenesis of psoriasis and the effectiveness of its targeted therapy have been confirmed by numerous studies [6, 7]. IL-23 belongs to the IL-12 cytokine family. It is a heterodimer composed of p40 and p19 subunits [8]. Guselkumab is a fully human immunoglobulin G 1 $\lambda$  (IgG 1 $\lambda$ ) monoclonal antibody that blocks the downstream signaling of IL-23 by specifically binding to the p19 subunit of IL-23 [9]. As a proinflammatory factor, TNF- $\alpha$  is produced by a variety of skin immune cells and could regulate the production of IL-23.

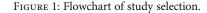
with IL-17 to promote keratinocytes to express various psoriasis-related inflammatory factors. Therefore,  $TNF-\alpha$ inhibitors have shown remarkable effects in the treatment of plaque psoriasis. Adalimumab is the first successfully developed fully human IgG, which has a high affinity for soluble TNF- $\alpha$ , and could effectively counteract the biological function of TNF- $\alpha$  by blocking the interaction between TNF- $\alpha$  and its receptors P55 and P75. Thus, the condition of psoriasis patients has been improved [10]. Currently, the guselkumab was in the phase III clinical trials for the treatment of moderate-to-severe plaque psoriasis and the phase II clinical trials for the treatment of arthritis psoriasis. The adalimumab was in the phase III clinical trial for the treatment of psoriasis. Relevant clinical trials of guselkumab showed that the Psoriasis Area and Severity Index (PASI) scores were decreased significantly after treatment and showed good safety [11-13]. Kim et al. [14] indicated that adalimumab treatment for moderate to severe plaque psoriasis was associated with greater PASI reduction, higher rates of resolution of skin signs and symptoms, and greater improvements in dermatological life quality. The studies showed that the effects of anti-IL-23p19 inhibitors were better than those of the IL-17A inhibitors, and they had a shorter induction period and a lower loading dose [15].

Many studies have proved that guselkumab was effective and safe, but some results showed inconsistent conclusions. Gordon et al. [16]. indicated that the infection rate of guselkumab was higher than that of placebo or adalimumab, which was different from other studies. Additionally, there was no study or analysis comparing the efficacy or safety of guselkumab with placebo or adalimumab. This meta-analysis is the first comprehensive analysis of the efficacy and safety of guselkumab, so as to provide further reliable basis for clinical application.

#### 2. Materials and Methods

2.1. Study Identification. The electronic databases including PubMed, Web of Science, Cochrane Library, EMBASE, and Google Scholar databases were searched from 1 January 2000 to 1 January 2020 for studies published in English. The double-blind randomized controlled trials (RCTs) investigating the efficacy and safety of guselkumab were systematically retrieved. Keywords and search strategy were as follows: "IL-23 inhibitor" or "IL-23" or "IL-23P19" or "anti-IL-23" or "guselkumab" or "CNTO1959" combined with "psoriasis." Comments, editorials, and letters were removed. In addition, the references of these articles were also screened to find other relevant articles. The search strategy is shown in Figure 1.

2.2. Study Selection. Trials were selected based on the following inclusion criteria: (1) the study design was limited to double-blind, randomized, placebo-controlled trials; (2) the patients were all older than 18 years, and they had stable ( $\geq 6$  months) moderate-to-severe chronic plaque at baseline with Body Surface Area (BSA) involvement of 10% or greater; (3) the studies should provide at least one efficacy outcome for short-term treatment: the reduction from baseline in the Psoriasis Area and Severity Index 75 (PASI 75), Investigator's Global Assessment scores of 0 or 1 (IGA 0/1), or Dermatology Life Quality Index scores of 0 or 1 (DLQI 0/1; (4) the studies should provide at least one safety outcome for short-term treatment: one or more adverse events (AEs) and one or more serious adverse events (SAEs); (5) the follow-up time was 16 or 24 weeks. The exclusion criteria were as follows: (1) the patients with psoriasis who were under 18 years of age; (2) the patients of active inflammatory diseases that could have interfered with study assessments who were ineligible, for example, drug-induced psoriasis and guttate, erythrodermic, or pustular psoriasis; (3) the women who were pregnant, breastfeeding, or planning to become pregnant; (4) the patients who had had prior exposure to the study drug or undergone major surgery 12 weeks or less before randomization, and the surgery was planned within 12 months after screening; (5) the patients who had history of allergy or hypersensitivity to a systematically administrated biologic agent; (6) the case-control studies, cohort studies, review articles, conference abstracts, case reports, and unpublished articles.


2.3. Data Abstraction and Quality Assessment. Two researchers independently extracted the following information from each study: study design, baseline patient characteristics, interventions, national clinical trial number, IGA, BSA, PASI, and DLQI. The efficacy parameters were PASI 75, PASI 90, PASI 100, IGA 0/1, and DLQI 0/1. The safety parameters were AEs, SAEs, and infections and serious infections. And the PASI 75, IGA 0/1, and DLQI 0/1 were primary indices; the other parameters were secondary indices. The AEs, SAEs, and infections and serious infections were safety indices. The methodological quality of included studies was assessed by one independent reviewer. Any disagreements were discussed with the third researcher.

2.4. Statistical Analysis. The efficacy and safety of guselkumab were assessed and compared with a placebo or adalimumab. We performed meta-analysis to calculate odds ratios (ORs) and 95% CIs using the *Mantel-Haenszel* statistical method. A random effects model was used to pool the data, and  $I^2$  statistic was evaluated heterogeneity between summary data. Sensitivity analysis was performed by excluding low-quality studies. All meta-analyses were performed using RevMan version 5.3. All tests were 2-tailed, and P < 0.05 was considered statistically significant.

#### 3. Results

3.1. Literature Search and Study Characteristics. From the searches for studies, 5724 potentially eligible records were identified. Titles and abstracts of these articles were screened for inclusion. Finally, 7 articles that contained 1206 plaque psoriasis patients with guselkumab, 585 patients with placebo, and 1250 patients with adalimumab were included. The process of study selection is shown in Figure 1. The characteristics of enrolled studies are represented detailedly in Table 1.

Records identified through database searching (n = 5724) (i) PubMed (*n* = 1829) (ii) Web of Science (n = 1438)(iii) Cochrane Library (n = 270)(iv) EMBASE (n = 641)(v) Google Scholar (n = 1546) l Records after duplicates removed (n = 824) Records screened (n = 248)  $\implies$  Records excluded (n = 576)Records screened (n = 135)Full-text articles assessed for Full-text articles excluded, with eligibility (n = 19) reasons (n = 116)(i) Population out of scope (n = 18)L (ii) Intervention out of scope (n = 29)Articles included (n = 9)(iii) Study design out of scope (n = 21)Trials included (iv) Outcomes out of scope (n = 48)Studies included in quantitative synthesis (n = 7)



*3.2. Risk of Bias.* The methodological quality for the included studies was assessed independently by two researchers based on Cochrane risk-of-bias criteria, and each quality item was graded as low risk, high risk, or unclear risk. The 7 items used to evaluate bias in each trial included (1) random sequence generation, (2) allocation concealment, (3) blinding of participants and personnel, (4) blinding of outcome assessment, (5) incomplete outcome data, (6) selective reporting, and (7) other bias. Overall, the risk of bias for most of the studies was judged to be low (Figure 2).

3.3. Primary Outcomes. All tests were conducted using a random effects model. As shown in Figure 3, there were significant differences in PASI 75 (OR = 61.37, 95% CI = 31.15 to 120.91), IGA 0/1 (OR = 65.75, 95% CI = 45.54 to 94.95), and DLQI 0/1 (OR = 29.64, 95% CI = 18.80 to 46.73) between the guselkumab group and the placebo group. There were significant differences in PASI 75 (OR = 3.08, 95% CI = 2.35 to 4.06), IGA 0/1 (OR = 2.79, 95% CI = 2.17 to 3.59), and DLQI 0/1 (OR = 1.86, 95% CI = 1.50 to 2.31) between the guselkumab group and the adalimumab group.

3.4. Secondary Outcomes. As shown in Figure 4, there were significant differences in PASI 90 (OR = 55.3, 95% CI = 24.74 to 123.61) and PASI 100 (OR = 36.37, 95% CI = 12.46 to 106.21) between the guselkumab group and the placebo group. Meanwhile, there were significant differences in PASI 90 (OR = 2.66, 95% CI = 2.14 to 3.31) and PASI 100 (OR = 2.28, 95% CI = 1.63 to 3.17) between the guselkumab group and the adalimumab group.

3.5. Safety of Guselkumab. As shown in Figure 5, guselkumab was well tolerated and the incidence of AEs (OR = 1.05, 95% CI = 0.86 to 1.29) and serious AEs (OR = 1.03, 95% CI = 0.47 to 2.27) were similar to that of the placebo. There was no statistically significant association of infections (OR = 1.11, 95%

CI = 0.87 to 1.43) and serious infections (OR = 0.70, 95% CI = 0.09 to 5.42) compared with the placebo group. Compared to the adalimumab group, the incidences of AEs (OR = 0.97, 95% CI = 0.79 to 1.19), serious AEs (OR = 0.91, 95% CI = 0.44 to 1.87), and infections (OR = 1.00, 95% CI = 0.78 to 1.27) and serious infections (OR = 0.35, 95% CI = 0.07 to 1.74) in guselkumab group were not significantly different.


#### 4. Discussion

Recently, although TNF inhibitors were been widely used and the traditional treatment strategies of psoriasis were changed, but some refractory patients still might have inhibitor resistance. Meanwhile, studies reported that the intervention of IL-23 in susceptible mice could lead to psoriasis-like lesions, and the expression of IL-23 was elevated in the human psoriasis tissue [17–19], which further testified that IL-23 might be a pathogenic factor of human psoriasis. Blauvelt et al. [19] demonstrated that guselkumab, IL-23p19 inhibitor, was effective in treating plaque psoriasis. In this meta-analysis, the PASI, IGA, and DLQI were used as the main efficacy indicators and AEs and SAEs as the main safety indicators to comprehensively analyze and compare the efficacy and safety of guselkumab.

In this meta-analysis, there was moderate heterogeneity between the enrolled studies (0% <  $I^2$  < 57%); hence, the random effects model was performed. The reason for heterogeneity might be the sample size. The reports by Howard et al. and Nemoto et al. only included several patients, and they did not adjust for the number of participants, which might have increased the probability of smaller *P* values and narrower CIs between the guselkumab and placebo groups. The results in this study showed that there were significant positive benefits for the guselkumab on the PASI 75,

| Authors (years)               | NCT            | Medications Total (N) | Total $(N)$ | Age (years)       | Male, N (%) | Time of follow-up<br>(week) | Duration of<br>psoriasis (year) | BSA (%)           | ISA                | IOTO             |
|-------------------------------|----------------|-----------------------|-------------|-------------------|-------------|-----------------------------|---------------------------------|-------------------|--------------------|------------------|
| Cofon 2014 [17]               | NT A           | GUS 100 mg            | 5           | NA                | 4(80)       | 71                          | NA                              | NA                | NA                 | NA               |
| 201611 2014 [1/]              | WN             | Placebo               | 4           | NA                | 3 (75)      | 10                          | NA                              | NA                | NA                 | NA               |
|                               |                | GUS 100 mg            | 208         | 44.0              | 149 (72)    |                             | $18.5\pm12.17$                  | $24.6\pm14.48$    | $20.9 \pm 8.05$    | NA               |
| Gordon 2015 [16]              | NCT01483599    | Ada 40 mg             | 43          | 50.0              | 30 (70)     | 16                          | $19.3 \pm 12.79$                | $26.8\pm16.80$    | $20.2 \pm 7.58$    | NA               |
|                               |                | Placebo               | 42          | 46.5              | 28 (67)     |                             | $18.0\pm13.30$                  | $27.5 \pm 19.26$  | $21.8 \pm 9.98$    | NA               |
|                               |                | GUS 100 mg            | 496         | $43.7 \pm 12.2$   | 349 (70.4)  |                             | $17.9 \pm 12.0$                 | $28.5 \pm 16.4$   | $21.9 \pm 8.8$     | $14.7 \pm 6.9$   |
| Reich 2017 [18]               | NCT02207244    | Ada 80 mg             | 248         | $43.2 \pm 11.9$   | 170 (68.5)  | 16                          | $17.6\pm11.7$                   | $29.1 \pm 16.7$   | $21.7 \pm 9.0$     | $15.0 \pm 6.9$   |
|                               |                | Placebo               | 248         | $43.3 \pm 12.4$   | 173 (69.8)  |                             | $17.9 \pm 11.9$                 | $28.0\pm16.5$     | $21.5 \pm 8.0$     | $15.1 \pm 7.2$   |
|                               |                | GUS 100 mg            | 329         | $43.90 \pm 12.74$ | 240 (72.9)  |                             | $17.90 \pm 12.27$               | $28.30 \pm 17.10$ | $22.10\pm9.49$     | $14.00\pm7.48$   |
| Blauvelt 2017 [19]            | NCT02207231    | Ada 80 mg             | 334         | $42.90 \pm 12.58$ | 249 (74.6)  | 16                          | $17.00 \pm 11.27$               | $28.60 \pm 16.66$ | $22.40 \pm 8.97$   | $14.40 \pm 7.29$ |
|                               |                | Placebo               | 174         | $44.90 \pm 12.90$ | 119 (68.4)  |                             | $17.60 \pm 12.44$               | $25.80 \pm 15.93$ | $20.40 \pm 8.74$   | $13.30 \pm 7.12$ |
|                               | LOT 101 LOT OT | GUS 100 mg            | 5           | NA                | 4 (80)      | -                           | $18.4 \pm 13.62$                | $37.8 \pm 25.29$  | $19.6 \pm 8.51$    | NA               |
| Nemolo 2018 [11]              | 10C101404001   | Placebo               | 4           | NA                | 3 (75)      | 10                          | $28.8\pm6.45$                   | $22.0 \pm 12.96$  | $18.7 \pm 4.73$    | NA               |
| Dardhar 2018 [12]             |                | GUS 100 mg            | 100         | $47.4 \pm 12.8$   | 52 (52)     | č                           | $7.0 \pm 7.2$                   | $17.2 \pm 15.6$   | $12.0 \pm 10.5$    | NA               |
| Deounar 2018 [12] NC102319/39 | 60/6107010NI   | Placebo               | 49          | $44.2\pm12.4$     | 24 (49)     | 47                          | $6.9 \pm 7.2$                   | $13.6 \pm 12.5$   | $9.9 \pm 8.0$      | NA               |
| Obtool:: 2010 [12]            | NOT0225210     | GUS 100 mg            | 63          | $47.8\pm11.07$    | 47 (74.6)   | 71                          | $14.39\pm9.227$                 | $37.9 \pm 21.48$  | $26.73 \pm 12.196$ | $10.3 \pm 7.27$  |
| [C1] 0107 IMMS1110            | NU10222219     | Placebo               | 64          | $48.3 \pm 10.56$  | 54(84.4)    | 10                          | $13.66 \pm 10.291$              | $33.6\pm18.39$    | $25.92 \pm 12.341$ | $10.6 \pm 7.74$  |

TABLE 1: Characteristics of RCTs included in this meta-analysis.





| PASI 75                             |                            |               |                 |                       |        |                                   |                    |                        |      | PASI 75                               |                             |                         |                            |        |                                   |         |     |                         |       |     |
|-------------------------------------|----------------------------|---------------|-----------------|-----------------------|--------|-----------------------------------|--------------------|------------------------|------|---------------------------------------|-----------------------------|-------------------------|----------------------------|--------|-----------------------------------|---------|-----|-------------------------|-------|-----|
| Study or subgroup                   | Guselku<br>Events          | mab<br>Total  | Place<br>Events |                       | Weight | Odds ratio<br>M-H, random, 95% CI | Odds<br>M-H, rando |                        |      | Study or subgroup                     | Guselku<br>Events           | mab<br>Total            | Adalimumab<br>Events Total | Weight | Odds ratio<br>M-H, fixed, 95% CI  |         |     | ds ratio<br>ced, 95% CI |       |     |
| Blauvelt 2017                       | 300                        | 329           | 10              | 174                   | 22.3%  | 169.66 [80.66, 356.84]            |                    |                        | -    | Blauvelt 2017                         | 300                         | 329                     | 244 334                    | 36.3%  | 3.82 [2.43, 5.99]                 |         |     |                         |       |     |
| Deodhar 2018                        | 77                         | 98            | 6               | 48                    | 18.6%  | 25.67 [9.61, 68.53]               |                    |                        |      | Gordon 2015                           | 33                          | 42                      | 30 43                      | 10.8%  | 1.59 [0.59, 4.25]                 |         | -+  | -                       |       |     |
| Gordon 2015                         | 33                         | 42            | 2               | 42                    | 11.3%  | 73.33 [14.81, 363.22]             |                    | •                      |      | Reich 2017                            | 428                         | 496                     | 170 248                    | 52.9%  | 2.89 [1.99, 4.18]                 |         |     | -                       |       |     |
| Nemoto 2018                         | 3                          | 5             | 0               | 4                     | 3.6%   | 12.60 [0.45, 356.37]              |                    | -                      | _    |                                       |                             |                         |                            |        |                                   |         |     |                         |       |     |
| Ohtsuki 2018                        | 53                         | 63            | 4               | 64                    | 15.4%  | 79.50 [23.54, 268.47]             |                    |                        |      | Total (95% CI)                        |                             | 867                     | 615                        | 100.0% | 3.08 [2.35, 4.06]                 |         |     | •                       |       |     |
| Reich 2017                          | 428                        | 496           | 20              | 248                   | 25.7%  | 71.75 [42.50, 121.15]             |                    |                        | -    | Total events                          | 761                         |                         | 444                        |        |                                   |         |     |                         |       |     |
| Sofen 2014                          | 1                          | 4             | 0               | 2                     | 3.2%   | 2.14 [0.06, 77.54]                |                    |                        | -    | Heterogeneity: chi <sup>2</sup> = 2.2 |                             | = 0.26); I <sup>2</sup> |                            |        |                                   |         |     |                         |       |     |
| Total (95% CI)                      |                            | 1037          |                 | 582                   | 100.0% | 61.37 [31.15, 120.91]             |                    | •                      |      | Test for overall effect: $Z$          | = 8.06 (P < 0               | .00001)                 |                            |        | 0.0                               | 01 0.1  | 1   | 1                       | D     | 100 |
| Total events                        | 895                        |               | 42              |                       |        |                                   |                    |                        |      |                                       |                             |                         |                            |        |                                   |         |     |                         |       |     |
| Heterogeneity: tau <sup>2</sup> = ( | $39: chi^2 = 1$            | 4 11. df =    |                 | 03): I <sup>2</sup>   | = 57%  |                                   |                    |                        |      |                                       |                             |                         |                            |        |                                   |         |     |                         |       |     |
| Test for overall effect: 2          |                            |               |                 | ,                     |        | 0.001                             | 0.1 1              | 10                     | 1000 |                                       |                             |                         |                            |        |                                   |         |     |                         |       |     |
| IGA 0/1                             |                            |               |                 |                       |        |                                   |                    |                        |      | IGA 0/1                               |                             |                         |                            |        |                                   |         |     |                         |       |     |
|                                     | Guselku                    | mab           | Place           | bo                    |        | Odds ratio                        | Odds               | ratio                  |      | ·                                     | Guselku                     | mah                     | Adalimumab                 |        | Odds ratio                        |         | Ode | ds ratio                |       |     |
| Study or subgroup                   | Events                     | Total         | Events          | Total                 | Weight | M-H, random, 95% CI               | M-H, rando         | m, 95% CI              |      | Study or subgroup                     | Events                      | Total                   | Events Total               | Weight | M-H, random, 95% CI               |         |     | dom, 95% CI             |       |     |
| Blauvelt 2017                       | 280                        | 329           | 12              | 174                   | 31.0%  | 77.14 [39.86, 149.30]             |                    | -8-                    |      | Blauvelt 2017                         | 280                         | 329                     | 220 334                    | 44.6%  | 2.96 [2.03, 4.32]                 |         |     | -                       |       | -   |
| Gordon 2015                         | 36                         | 42            | 3               | 42                    | 6.4%   | 78.00 [18.15, 335.21]             |                    |                        | -    | Gordon 2015                           | 36                          | 42                      | 25 43                      | 5.7%   | 4.32 [1.50, 12.41]                |         |     |                         | -     |     |
| Nemoto 2018                         | 4                          | 5             | 0               | 1                     | 1.0%   | 9.00 [0.22, 362.48]               |                    | -                      |      | Reich 2017                            | 417                         | 496                     | 168 248                    | 49.7%  | 2.51 [1.76, 3.60]                 |         |     | -                       |       |     |
| Ohtsuki 2018                        | 56                         | 63            | 5               | 64                    | 9.3%   | 94.40 [28.31, 314.83]             |                    |                        | -    |                                       |                             |                         |                            |        |                                   |         |     |                         |       |     |
| Reich 2017                          | 417                        | 496           | 21              | 248                   | 52.4%  | 57.06 [34.34, 94.79]              | _                  |                        | -    | Total (95% CI)                        |                             | 867                     | 615                        | 100.0% | 2.79 [2.17, 3.59]                 |         |     | •                       |       |     |
|                                     |                            |               |                 |                       |        |                                   |                    | •                      |      | Total events                          | 733                         |                         | 413                        |        |                                   |         |     |                         |       |     |
| Total (95% CI)                      |                            | 935           |                 | 529                   | 100.0% | 65.75 [45.54, 94.95]              |                    | •                      |      | Heterogeneity: tau <sup>2</sup> = 0.0 | 00; chi <sup>2</sup> = 1.08 | , df = 2 (1             | $P = 0.58$ ; $I^2 = 0\%$   |        |                                   | · · · · |     |                         |       |     |
| Total events                        | 793                        |               | 41              |                       |        |                                   |                    |                        |      | Test for overall effect: Z            | = 7.95 (P < 0               | .00001)                 |                            |        | 0.                                | 01 0.1  | 1   | 1 1                     | 0     | 100 |
| Heterogeneity: tau <sup>2</sup> = 0 | 0.00; chi <sup>2</sup> = 2 | .04, df = 4   | 4(P = 0.        | 73); I <sup>2</sup> = | 0%     |                                   |                    |                        |      | -                                     |                             |                         |                            |        |                                   |         |     |                         |       |     |
| Test for overall effect: 2          | Z = 22.33 (P               | < 0.0000      | 1)              |                       |        | 0.001                             | 0.1 1              | 10                     | 1000 |                                       |                             |                         |                            |        |                                   |         |     |                         |       |     |
| DLQI 0/1                            |                            |               |                 |                       |        |                                   |                    |                        |      | DLQI 0/1                              |                             |                         |                            |        |                                   |         |     |                         |       |     |
| Study or subgroup                   | Guselki<br>Events          | ımab<br>Total | Plac            |                       | Weight | Odds ratio<br>M-H. random, 95% CI |                    | s ratio<br>lom. 95% CI |      | Study or subgroup                     | Guselku<br>Events           | mab<br>Total            | Adalimumab<br>Events Total | Weight | Odds ratio<br>M-H. random. 95% CI |         |     | ds ratio<br>dom. 95% CI |       |     |
| Blauvelt 2017                       | 180                        | 322           | 7               | 170                   | 33.4%  | 29.52 [13.42, 64.90]              |                    |                        |      | Blauvelt 2017                         | 180                         | 322                     | 123 328                    | 46.6%  | 2.11 [1.54, 2.89]                 |         |     |                         |       |     |
| Gordon 2015                         | 25                         | 40            | 3               | 42                    | 11.6%  | 21.67 [5.69, 82.53]               |                    | <b>→</b> —             |      | Gordon 2015                           | 25                          | 40                      | 125 528                    | 5.7%   | 1.75 [0.72, 4.30]                 |         | -   | <u> </u>                |       |     |
| Ohtsuki 2018                        | 41                         | 60            | 4               | 64                    | 15.7%  | 32.37 [10.26, 102.13]             |                    |                        |      | Reich 2017                            | 25                          | 496                     | 96 248                     | 47.7%  | 1.66 [1.22, 2.27]                 |         |     |                         |       |     |
| Reich 2017                          | 254                        | 496           | 8               | 248                   | 39.3%  | 31.49 [15.23, 65.08]              |                    |                        |      | Acres 2017                            | 2.54                        | -30                     | 56 246                     |        | 1.00 [1.22, 2.27]                 |         |     |                         |       |     |
| Total (95% CI)                      |                            | 918           |                 | 524                   | 100.09 |                                   |                    | •                      |      | Total (95% CI)                        |                             | 858                     | 615                        | 100.0% | 1.86 [1.50, 2.31]                 |         |     | •                       |       |     |
| Total events                        | 500                        | 210           | 22              | 524                   | 100.07 |                                   |                    | 1                      |      | Total events                          | 459                         |                         | 238                        |        |                                   |         |     |                         |       |     |
| Heterogeneity: tau <sup>2</sup> = 0 | 0.00; $chi^2 = 0$          |               | 3 (P = 0.       | 97); I <sup>2</sup> = | 0%     | 0.01                              | 0.1                | 1 10                   | 100  | Heterogeneity: tau <sup>2</sup> = 0.  |                             |                         | $P = 0.56$ ; $I^2 = 0\%$   |        | ,                                 | .001 0. | 1   | 1                       | 10    | 100 |
| Test for overall effect: 2          |                            |               |                 |                       |        |                                   |                    |                        |      | Test for overall effect: Z            |                             |                         |                            |        |                                   |         |     |                         | • • · | 100 |

FIGURE 3: Primary efficacy outcomes of guselkumab in the treatment of plaque psoriasis versus placebo or adalimumab. PASI: Psoriasis Area and Severity Index; IGA: Investigator's Global Assessment; DLQI: Dermatology Life Quality Index.

PASI 90, PASI 100, IGA 0/1, and DLQI 0/1 compared with placebo or adalimumab. It was consistent with the conclusions of several reviews [20–22]. The incidences of AEs, serious AEs, and infections and serious infections were not significantly different between the groups. The result of infections was inconsistent with some studies. The study of Xu et al. [23] showed that guselkumab might increase the incidence of infections compared with placebo, but there were not existing research reports that the infections had evolved into a serious infection or other SAEs. It was consistent with this meta-analysis. Therefore, the results showed that guselkumab was likely the very efficacious treatment. In previous studies, guselkumab had not been

directly investigation, and the results of this study might provide some indirect evidence for clinical application. But the conclusions still needed to be verified by RCTs with a lager sample size. Recent researches by Ohtsuki et al. [24] and Reich et al. [25] showed that guselkumab was effective and safety for the treatment of moderate-tosevere plaque psoriasis. It was to be regretted that the studies were not included, because they had very serious heterogeneous.

Adalimumab is a biological agent targeted at TNF- $\alpha$ , which has been proved to have good efficacy in other autoimmune diseases [26]. Although its efficacy in psoriasis was better than placebo, it was unknown compared

| PASI 90                                                                                                                       |                                                          |                                        |                            |                                              |                                                     |                                                                                                                                              |                  |                     | PASI 90                                                                                                                |                                                                |                                                    |                                     |                                                                                                                               |                                                                                                         |     |                         |        |     |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------|----------------------------|----------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----|-------------------------|--------|-----|
| Study or subgroup                                                                                                             | Guselku<br>Events                                        | umab<br>Total                          | Place<br>Events            |                                              | Weight                                              | Odds ratio<br>M-H, random, 95% CI                                                                                                            |                  | ratio<br>om, 95% CI | Study or subgroup                                                                                                      | Guselk<br>Events                                               |                                                    | Adalimum<br>vents T                 |                                                                                                                               | Odds ratio<br>M-H, random, 95% CI                                                                       | M-I | Odds rat<br>I, random,  |        |     |
| Blauvelt 2017                                                                                                                 | 241                                                      | 329                                    | 10                         | 174                                          | 25.7%                                               | 92.57 [36.80, 232.81]                                                                                                                        |                  |                     | Blauvelt 2017                                                                                                          | 241                                                            | 329                                                | 166                                 | 34 45.3%                                                                                                                      | 2.77 [2.00, 3.84]                                                                                       |     |                         | -      |     |
| Deodhar 2018                                                                                                                  | 65                                                       | 98                                     | 5                          | 48                                           | 20.2%                                               | 29.55 [8.54, 102.25]                                                                                                                         |                  |                     | Gordon 2015                                                                                                            | 26                                                             | 42                                                 | 19                                  | 3 6.4%                                                                                                                        | 2.05 [0.86, 4.88]                                                                                       |     | - +                     |        |     |
| Gordon 2015                                                                                                                   | 26                                                       | 42                                     | 1                          | 42                                           | 10.8%                                               | 66.63 [8.33, 532.86]                                                                                                                         |                  |                     | Reich 2017                                                                                                             | 347                                                            | 496                                                |                                     | 48.3%                                                                                                                         | 2.65 [1.93, 3.63]                                                                                       |     | -   -                   | -      |     |
| Nemoto 2018                                                                                                                   | 1                                                        | 5                                      | 0                          | 4                                            | 4.8%                                                | 3.00 [0.09, 97.17]                                                                                                                           |                  |                     | Reich 2017                                                                                                             | 347                                                            | 490                                                | 110 .                               | 10 40.370                                                                                                                     | 2.05 [1.95, 5.05]                                                                                       |     |                         |        |     |
| Ohtsuki 2018                                                                                                                  | 347                                                      | 496                                    | 6                          | 248                                          | 27.4%                                               | 93.93 [40.86, 215.94]                                                                                                                        |                  |                     | →                                                                                                                      |                                                                | 867                                                |                                     | 25 100.0%                                                                                                                     | 0.0000000000000000000000000000000000000                                                                 |     |                         | ٠      |     |
| Reich 2017                                                                                                                    | 44                                                       | 63                                     | 0                          | 64                                           | 6.7%                                                | 294.38 [17.32, 5003.39]                                                                                                                      |                  |                     | Total (95% CI)                                                                                                         |                                                                | 867                                                |                                     | 25 100.0%                                                                                                                     | 2.66 [2.14, 3.31]                                                                                       |     |                         | •      |     |
| Sofen 2014                                                                                                                    | 1                                                        | 4                                      | 0                          | 2                                            | 4.4%                                                | 2.14 [0.06, 77.54]                                                                                                                           |                  |                     | Total events                                                                                                           | 614                                                            |                                                    | 301                                 |                                                                                                                               |                                                                                                         |     |                         |        |     |
| Total (95% CI)                                                                                                                |                                                          | 1037                                   |                            | 582                                          | 100.0%                                              | 55.30 [24.74, 123.61]                                                                                                                        |                  | •                   | Heterogeneity: tau <sup>2</sup> = 0                                                                                    | $0.00; chi^2 = 0$                                              | 0.41, df = 2                                       | (P = 0.82);                         | $f^2 = 0\%$                                                                                                                   |                                                                                                         |     |                         | 10     | 100 |
| Total events                                                                                                                  | 725                                                      |                                        | 15                         |                                              |                                                     |                                                                                                                                              |                  |                     | Test for overall effect: 2                                                                                             | Z = 8.77 (P - 100)                                             | < 0.00001)                                         |                                     |                                                                                                                               | 0.01                                                                                                    | 0.1 | 1                       | 10     | 100 |
| Heterogeneity: tau <sup>2</sup> = 0                                                                                           |                                                          | 56. df = 6                             | (P = 0.10                  | ); $I^2 = 4$                                 | 3%                                                  | · · · · ·                                                                                                                                    |                  | · · · · ·           |                                                                                                                        |                                                                |                                                    |                                     |                                                                                                                               |                                                                                                         |     |                         |        |     |
|                                                                                                                               |                                                          |                                        |                            | ,,                                           |                                                     | 0.001                                                                                                                                        | 0.1              | 1 10                | 1000                                                                                                                   |                                                                |                                                    |                                     |                                                                                                                               |                                                                                                         |     |                         |        |     |
| Test for overall effect: 2                                                                                                    |                                                          |                                        |                            |                                              |                                                     |                                                                                                                                              |                  |                     |                                                                                                                        |                                                                |                                                    |                                     |                                                                                                                               |                                                                                                         |     |                         |        |     |
| Test for overall effect: 2                                                                                                    | 2 = 9.78 (P < 0                                          | 0.00001)                               |                            |                                              |                                                     |                                                                                                                                              |                  |                     |                                                                                                                        |                                                                |                                                    |                                     |                                                                                                                               |                                                                                                         |     |                         |        |     |
| PASI 100                                                                                                                      | 2 = 9.78 (P < 0                                          | 0.00001)                               |                            |                                              |                                                     |                                                                                                                                              |                  |                     | PASI 100                                                                                                               |                                                                |                                                    |                                     |                                                                                                                               |                                                                                                         |     |                         |        |     |
| -                                                                                                                             | C = 9.78 (P < 0<br>Guselku<br>Events                     |                                        | Place<br>Events            |                                              | Weight                                              | Odds ratio<br>M-H, random, 95% CI                                                                                                            | Odd<br>M-H, rand | ratio<br>om, 95% CI | PASI 100<br>Study or subgroup                                                                                          | Guselku<br>Events                                              |                                                    | Adalimum<br>vents To                |                                                                                                                               | Odds ratio<br>M-H, random, 95% CI                                                                       | M-H | Odds rati<br>I, random, |        |     |
| PASI 100                                                                                                                      | Guselki                                                  | umab                                   |                            |                                              | Weight<br>18.9%                                     |                                                                                                                                              |                  |                     |                                                                                                                        |                                                                |                                                    | vents To                            |                                                                                                                               |                                                                                                         | M-F | I, random,              |        |     |
| PASI 100<br>Study or subgroup                                                                                                 | Guselku<br>Events                                        | umab<br>Total                          |                            | Total                                        | 0                                                   | M-H, random, 95% CI                                                                                                                          |                  |                     | Study or subgroup                                                                                                      | Events                                                         | Total E                                            | vents To<br>57 3                    | al Weight                                                                                                                     | M-H, random, 95% CI                                                                                     | M-H | I, random,              | 95% CI |     |
| PASI 100<br>Study or subgroup<br>Blauvelt 2017                                                                                | Guselku<br>Events<br>123                                 | umab<br>Total<br>329                   |                            | Total<br>174                                 | 18.9%                                               | M-H, random, 95% CI<br>103.30 [14.29, 746.85]                                                                                                |                  | om, 95% CI          | Study or subgroup<br>Blauvelt 2017<br>Gordon 2015                                                                      | Events<br>123<br>14                                            | Total E<br>329<br>42                               | vents To<br>57 3<br>11              | Weight<br>4 44.3%<br>3 11.0%                                                                                                  | M-H, random, 95% CI<br>2.90 [2.02, 4.17]<br>1.45 [0.57, 3.72]                                           | M-F | I, random,              | 95% CI |     |
| PASI 100<br>Study or subgroup<br>Blauvelt 2017<br>Deodhar 2018<br>Gordon 2015                                                 | Guselka<br>Events<br>123<br>39<br>14                     | 11111111111111111111111111111111111111 | Events<br>1<br>3<br>0      | Total<br>174<br>48<br>42                     | 18.9%<br>31.0%<br>11.1%                             | M-H, random, 95% CI<br>103.30 [14.29, 746.85]<br>9.92 [2.88, 34.15]<br>43.25 [2.48, 754.27]                                                  |                  | om, 95% CI          | Study or subgroup<br>Blauvelt 2017                                                                                     | Events<br>123                                                  | Total E<br>329                                     | vents To<br>57 3<br>11              | Weight<br>4 44.3%                                                                                                             | M-H, random, 95% CI<br>2.90 [2.02, 4.17]                                                                | M-E | I, random,              | 95% CI |     |
| PASI 100<br>Study or subgroup<br>Blauvelt 2017<br>Deodhar 2018<br>Gordon 2015<br>Ohtsuki 2018                                 | Guselka<br>Events<br>123<br>39<br>14<br>17               | amab<br>Total<br>329<br>98<br>42<br>63 | Events<br>1<br>3<br>0<br>0 | Total<br>174<br>48<br>42<br>64               | 18.9%<br>31.0%<br>11.1%<br>11.2%                    | M-H, random, 95% CI<br>103.30 [14.29, 746.85]<br>9.92 [2.88, 34.15]<br>43.25 [2.48, 754.27]<br>48.55 [2.85, 827.87]                          |                  | om, 95% CI          | Study or subgroup<br>Blauvelt 2017<br>Gordon 2015<br>Reich 2017                                                        | Events<br>123<br>14                                            | Total E<br>329<br>42<br>496                        | vents To<br>57 3<br>11<br>51 2      | Weight<br>44 44.3%<br>3 11.0%<br>18 44.6%                                                                                     | M-H, random, 95% CI<br>2.90 [2.02, 4.17]<br>1.45 [0.57, 3.72]<br>2.00 [1.39, 2.86]                      | M-E | I, random,              | 95% CI |     |
| PASI 100<br>Study or subgroup<br>Blauvelt 2017<br>Deodhar 2018<br>Gordon 2015                                                 | Guselka<br>Events<br>123<br>39<br>14                     | 11111111111111111111111111111111111111 | Events<br>1<br>3<br>0      | Total<br>174<br>48<br>42                     | 18.9%<br>31.0%<br>11.1%                             | M-H, random, 95% CI<br>103.30 [14.29, 746.85]<br>9.92 [2.88, 34.15]<br>43.25 [2.48, 754.27]                                                  |                  | om, 95% CI          | Study or subgroup<br>Blauvelt 2017<br>Gordon 2015<br>Reich 2017<br>Total (95% CI)                                      | Events<br>123<br>14<br>169                                     | Total E<br>329<br>42<br>496<br>867                 | vents To<br>57 3<br>11<br>51 2<br>6 | Weight<br>4 44.3%<br>3 11.0%                                                                                                  | M-H, random, 95% CI<br>2.90 [2.02, 4.17]<br>1.45 [0.57, 3.72]                                           | M-E | I, random,              | 95% CI |     |
| PASI 100<br>Study or subgroup<br>Blauvelt 2017<br>Deodhar 2018<br>Gordon 2015<br>Ohtsuki 2018<br>Reich 2017                   | Guselka<br>Events<br>123<br>39<br>14<br>17               | 11111111111111111111111111111111111111 | Events<br>1<br>3<br>0<br>0 | Total<br>174<br>48<br>42<br>64<br>248        | 18.9%<br>31.0%<br>11.1%<br>11.2%<br>27.7%           | M-H, random, 95% CI<br>103.30 [14.29, 746.85]<br>9.92 [2.88, 34.15]<br>43.25 [2.48, 754.27]<br>48.55 [2.85, 827.87]<br>63.57 [15.62, 258.78] |                  | om, 95% CI          | Study or subgroup Blauvelt 2017 Gordon 2015 Reich 2017 Total (95% CI) Total events                                     | Events<br>123<br>14<br>169<br>614                              | Total E<br>329<br>42<br>496<br>867                 | vents To<br>57 3<br>11 51 2<br>301  | al         Weight           44         44.3%           3         11.0%           18         44.6%           25         100.0% | M-H, random, 95% CI<br>2.90 [2.02, 4.17]<br>1.45 [0.57, 3.72]<br>2.00 [1.39, 2.86]                      | M-H | I, random,              | 95% CI |     |
| PASI 100<br>Study or subgroup<br>Blauvelt 2017<br>Deodhar 2018<br>Gordon 2015<br>Ohtsuki 2018                                 | Guselka<br>Events<br>123<br>39<br>14<br>17               | amab<br>Total<br>329<br>98<br>42<br>63 | Events<br>1<br>3<br>0<br>0 | Total<br>174<br>48<br>42<br>64               | 18.9%<br>31.0%<br>11.1%<br>11.2%<br>27.7%           | M-H, random, 95% CI<br>103.30 [14.29, 746.85]<br>9.92 [2.88, 34.15]<br>43.25 [2.48, 754.27]<br>48.55 [2.85, 827.87]                          |                  | om, 95% CI          | Study or subgroup Blauvelt 2017 Gordon 2015 Reich 2017 Total (95% C1) Total events Heterogeneity: tau <sup>2</sup> = 0 | Events<br>123<br>14<br>169<br>614<br>.00; chi <sup>2</sup> = 0 | Total E<br>329<br>42<br>496<br>867<br>0.41, df = 2 | vents To<br>57 3<br>11 51 2<br>301  | al         Weight           44         44.3%           3         11.0%           18         44.6%           25         100.0% | M-H, random, 95% CI<br>2.90 [2.02, 4.17]<br>1.45 [0.57, 3.72]<br>2.00 [1.39, 2.86]<br>2.28 [1.63, 3.17] |     | I, random,              | 95% CI |     |
| PASI 100<br>Study or subgroup<br>Blauvelt 2017<br>Deodhar 2018<br>Gordon 2015<br>Ohtsuki 2018<br>Reich 2017                   | Guselka<br>Events<br>123<br>39<br>14<br>17               | 11111111111111111111111111111111111111 | Events<br>1<br>3<br>0<br>0 | Total<br>174<br>48<br>42<br>64<br>248        | 18.9%<br>31.0%<br>11.1%<br>11.2%<br>27.7%           | M-H, random, 95% CI<br>103.30 [14.29, 746.85]<br>9.92 [2.88, 34.15]<br>43.25 [2.48, 754.27]<br>48.55 [2.85, 827.87]<br>63.57 [15.62, 258.78] |                  | om, 95% CI          | Study or subgroup Blauvelt 2017 Gordon 2015 Reich 2017 Total (95% CI) Total events                                     | Events<br>123<br>14<br>169<br>614<br>.00; chi <sup>2</sup> = 0 | Total E<br>329<br>42<br>496<br>867<br>0.41, df = 2 | vents To<br>57 3<br>11 51 2<br>301  | al         Weight           44         44.3%           3         11.0%           18         44.6%           25         100.0% | M-H, random, 95% CI<br>2.90 [2.02, 4.17]<br>1.45 [0.57, 3.72]<br>2.00 [1.39, 2.86]                      | M-F | I, random,              | 95% CI |     |
| PASI 100<br>Study or subgroup<br>Blauvelt 2017<br>Deodhar 2018<br>Gordon 2015<br>Ohtsuki 2018<br>Reich 2017<br>Total (95% CI) | Guselka<br>Events<br>123<br>39<br>14<br>17<br>169<br>362 | 1028<br>1028                           | Events 1 3 0 0 2 6         | Total<br>174<br>48<br>42<br>64<br>248<br>576 | 18.9%<br>31.0%<br>11.1%<br>11.2%<br>27.7%<br>100.0% | M-H, random, 95% CI<br>103.30 [14.29, 746.85]<br>9.92 [2.88, 34.15]<br>43.25 [2.48, 754.27]<br>48.55 [2.85, 827.87]<br>63.57 [15.62, 258.78] |                  | om, 95% CI          | Study or subgroup Blauvelt 2017 Gordon 2015 Reich 2017 Total (95% C1) Total events Heterogeneity: tau <sup>2</sup> = 0 | Events<br>123<br>14<br>169<br>614<br>.00; chi <sup>2</sup> = 0 | Total E<br>329<br>42<br>496<br>867<br>0.41, df = 2 | vents To<br>57 3<br>11 51 2<br>301  | al         Weight           44         44.3%           3         11.0%           18         44.6%           25         100.0% | M-H, random, 95% CI<br>2.90 [2.02, 4.17]<br>1.45 [0.57, 3.72]<br>2.00 [1.39, 2.86]<br>2.28 [1.63, 3.17] |     | I, random,              | 95% CI |     |

FIGURE 4: Secondary efficacy outcomes of guselkumab in the treatment of plaque psoriasis versus placebo or adalimumab. PASI: Psoriasis Area and Severity Index.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Guselk                                                                                                                                                                        | umab                                                                                                                                           | Pla                                                                                                                                                                                                   | cebo                                                                                                                                                   |                                                                                                  | Odds ratio                                                                                                                                                                                                                                                                                               | Odds ratio                        |                                                                                                                                                                                                                                                                                                                                                                                                                                    | Guselku                                                                                                  | imab ∆d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | alimumab                                                                                                                          |                                                                             | Odds ratio                                                                                                                                                                                    |              | 0       | dds ratio              |           |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|------------------------|-----------|---|
| Study or subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Events                                                                                                                                                                        | Total                                                                                                                                          | Events                                                                                                                                                                                                | Total                                                                                                                                                  | Weight                                                                                           | M-H, random, 95% CI                                                                                                                                                                                                                                                                                      | M-H, random, 95% CI               | Study or subgroup                                                                                                                                                                                                                                                                                                                                                                                                                  | Events                                                                                                   | Total Eve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                   | Weight                                                                      | M-H, random, 95% CI                                                                                                                                                                           | 1            |         | ndom, 95%              | CI        |   |
| Blauvelt 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 170                                                                                                                                                                           | 329                                                                                                                                            | 86                                                                                                                                                                                                    | 174                                                                                                                                                    | 30.0%                                                                                            | 1.09 [0.76, 1.58]                                                                                                                                                                                                                                                                                        | <b>†</b>                          | Blauvelt 2017                                                                                                                                                                                                                                                                                                                                                                                                                      | 170                                                                                                      | 329 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 333                                                                                                                             | 45.3%                                                                       | 1.03 [0.76, 1.39]                                                                                                                                                                             |              |         | +                      |           |   |
| Deodhar 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36                                                                                                                                                                            | 100                                                                                                                                            | 16                                                                                                                                                                                                    | 49                                                                                                                                                     | 7.8%                                                                                             | 1.16 [0.56, 2.39]                                                                                                                                                                                                                                                                                        |                                   | Gordon 2015                                                                                                                                                                                                                                                                                                                                                                                                                        | 103                                                                                                      | 207 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                   | 9.6%                                                                        | 0.78 [0.40, 1.52]                                                                                                                                                                             |              | _       | T                      |           |   |
| Gordon 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 103                                                                                                                                                                           | 207                                                                                                                                            | 22                                                                                                                                                                                                    | 42                                                                                                                                                     | 9.2%                                                                                             | 0.90 [0.46, 1.75]                                                                                                                                                                                                                                                                                        |                                   | Reich 2017                                                                                                                                                                                                                                                                                                                                                                                                                         | 235                                                                                                      | 494 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 248                                                                                                                             | 45.1%                                                                       | 0.97 [0.71, 1.31]                                                                                                                                                                             |              |         | T                      |           |   |
| Nemoto 2018<br>Ohtsuki 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                             | 5                                                                                                                                              | 2                                                                                                                                                                                                     | 4                                                                                                                                                      | 0.6%<br>8.3%                                                                                     | 1.50 [0.11, 21.31]                                                                                                                                                                                                                                                                                       | 1                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                                             |                                                                                                                                                                                               |              |         | 1                      |           |   |
| Ohtsuki 2018<br>Reich 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29<br>235                                                                                                                                                                     | 63<br>494                                                                                                                                      | 36<br>111                                                                                                                                                                                             | 64<br>248                                                                                                                                              | 8.3%<br>43.3%                                                                                    | 0.66 [0.33, 1.34]<br>1.12 [0.82, 1.52]                                                                                                                                                                                                                                                                   | F                                 | Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                          | 1030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 624                                                                                                                               | 100.0%                                                                      | 0.97 [0.79, 1.19]                                                                                                                                                                             |              |         | T                      |           |   |
| Sofen 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13                                                                                                                                                                            | 20                                                                                                                                             | 2                                                                                                                                                                                                     | 4                                                                                                                                                      | 45.5%                                                                                            | 1.86 [0.21, 16.18]                                                                                                                                                                                                                                                                                       |                                   | Total events<br>Heterogeneity: tau <sup>2</sup> = 0.                                                                                                                                                                                                                                                                                                                                                                               | 508<br>00. chi² = 0.5                                                                                    | 31<br>df = 2 (P =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                   | 194                                                                         |                                                                                                                                                                                               |              |         |                        |           |   |
| Joich 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15                                                                                                                                                                            | 20                                                                                                                                             | -                                                                                                                                                                                                     |                                                                                                                                                        | 0.070                                                                                            | 1.00 [0.21, 10.10]                                                                                                                                                                                                                                                                                       |                                   | Test for overall effect: Z                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.77), 1 = 0                                                                                                                      | 7,0                                                                         | 0                                                                                                                                                                                             | 0.01 0       | ).1     | 1                      | 10        | 1 |
| otal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                               | 1037                                                                                                                                           |                                                                                                                                                                                                       | 582                                                                                                                                                    | 100.0%                                                                                           | 1.05 [0.86, 1.29]                                                                                                                                                                                                                                                                                        | +                                 | Test for overall effect. 2                                                                                                                                                                                                                                                                                                                                                                                                         | 2 = 0.20 (F = 0                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                                             |                                                                                                                                                                                               |              |         |                        |           |   |
| otal events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 589                                                                                                                                                                           |                                                                                                                                                | 275                                                                                                                                                                                                   |                                                                                                                                                        |                                                                                                  |                                                                                                                                                                                                                                                                                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                                             |                                                                                                                                                                                               |              |         |                        |           |   |
| Heterogeneity: tau <sup>2</sup> = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                               |                                                                                                                                                | (P = 0.8)                                                                                                                                                                                             | (7); I <sup>2</sup> = (                                                                                                                                | 0%                                                                                               | 0.001                                                                                                                                                                                                                                                                                                    | 0.1 1 10                          | 1000                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                                             |                                                                                                                                                                                               |              |         |                        |           |   |
| est for overall effect: Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C = 0.50 (P =                                                                                                                                                                 | 0.62)                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                        |                                                                                                  | 0.001                                                                                                                                                                                                                                                                                                    | 0.1 1 10                          | 1000                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                                             |                                                                                                                                                                                               |              |         |                        |           |   |
| erious AEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                               |                                                                                                                                                |                                                                                                                                                                                                       |                                                                                                                                                        |                                                                                                  |                                                                                                                                                                                                                                                                                                          |                                   | Serious AEs                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                                             |                                                                                                                                                                                               |              |         |                        |           |   |
| tudy or subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Guselk                                                                                                                                                                        |                                                                                                                                                |                                                                                                                                                                                                       | cebo                                                                                                                                                   | Weight                                                                                           | Odds ratio                                                                                                                                                                                                                                                                                               | Odds ratio                        | Study or subgroup                                                                                                                                                                                                                                                                                                                                                                                                                  | Guselku                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | alimumab                                                                                                                          | Weight                                                                      | Odds ratio                                                                                                                                                                                    |              |         | dds ratio              |           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Events                                                                                                                                                                        | Total                                                                                                                                          | Events                                                                                                                                                                                                |                                                                                                                                                        |                                                                                                  | M-H, random, 95% CI                                                                                                                                                                                                                                                                                      | M-H, random, 95% CI               |                                                                                                                                                                                                                                                                                                                                                                                                                                    | Events                                                                                                   | Total Eve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                   |                                                                             | M-H, random, 95% CI                                                                                                                                                                           |              | M-H, ra | ndom, 95%              | CI .      |   |
| Blauvelt 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8                                                                                                                                                                             | 329                                                                                                                                            | 3                                                                                                                                                                                                     | 174                                                                                                                                                    | 34.7%                                                                                            | 1.42 [0.37, 5.42]                                                                                                                                                                                                                                                                                        |                                   | Blauvelt 2017                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                                                                                                        | 329 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                   | 45.1%                                                                       | 1.36 [0.47, 3.96]                                                                                                                                                                             |              |         |                        | _         |   |
| Deodhar 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                             | 100                                                                                                                                            | 1                                                                                                                                                                                                     | 49                                                                                                                                                     | 8.0%                                                                                             | 0.48 [0.03, 7.92]                                                                                                                                                                                                                                                                                        |                                   | Gordon 2015                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                        | 207 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                   | 9.9%                                                                        | 0.62 [0.06, 6.08]                                                                                                                                                                             |              |         | <u> </u>               |           |   |
| Gordon 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                             | 207                                                                                                                                            | 1                                                                                                                                                                                                     | 42                                                                                                                                                     | 11.9%                                                                                            | 0.60 [0.06, 5.94]                                                                                                                                                                                                                                                                                        | <u> </u>                          | Reich 2017                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                        | 494 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 248                                                                                                                               | 45.1%                                                                       | 0.66 [0.23, 1.93]                                                                                                                                                                             |              |         | -1                     |           |   |
| Ohtsuki 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                             | 64                                                                                                                                             | 2                                                                                                                                                                                                     | 64                                                                                                                                                     | 10.6%                                                                                            | 0.49 [0.04, 5.57]                                                                                                                                                                                                                                                                                        |                                   | Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                          | 1030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 624                                                                                                                               | 100.0%                                                                      | 0.91 [0.44, 1.87]                                                                                                                                                                             |              |         | •                      |           |   |
| Reich 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                                                                                                                                                             | 494                                                                                                                                            | 3                                                                                                                                                                                                     | 248                                                                                                                                                    | 34.9%                                                                                            | 1.34 [0.35, 5.11]                                                                                                                                                                                                                                                                                        |                                   | Total events                                                                                                                                                                                                                                                                                                                                                                                                                       | 19                                                                                                       | 1050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                   | 100.070                                                                     | 0.51 [0.14, 1.07]                                                                                                                                                                             |              |         | 1                      |           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                               |                                                                                                                                                |                                                                                                                                                                                                       |                                                                                                                                                        |                                                                                                  |                                                                                                                                                                                                                                                                                                          | 1                                 | Heterogeneity: tau <sup>2</sup> = 0.                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   | 0%                                                                          |                                                                                                                                                                                               |              |         | -                      |           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                               | 1194                                                                                                                                           |                                                                                                                                                                                                       | 577                                                                                                                                                    | 100.0%                                                                                           | 1.03 [0.47, 2.27]                                                                                                                                                                                                                                                                                        |                                   | Test for overall effect: Z                                                                                                                                                                                                                                                                                                                                                                                                         | - 0.26 (P - 0                                                                                            | (00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                   |                                                                             | 0                                                                                                                                                                                             | 0.01 0       | ).1     | 1                      | 10        |   |
| otal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                               |                                                                                                                                                |                                                                                                                                                                                                       |                                                                                                                                                        |                                                                                                  |                                                                                                                                                                                                                                                                                                          |                                   | rest for overall effect: z.                                                                                                                                                                                                                                                                                                                                                                                                        | 2 = 0.20 (r = 0)                                                                                         | .80)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                   |                                                                             |                                                                                                                                                                                               |              |         |                        |           |   |
| otal events<br>eterogeneity: tau <sup>2</sup> = 0.<br>est for overall effect: Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                               | 2, df = 4                                                                                                                                      | 10<br>(P = 0.8                                                                                                                                                                                        | (7); I <sup>2</sup> = (                                                                                                                                | 0%                                                                                               | 0.001                                                                                                                                                                                                                                                                                                    | 0.1 1 10                          | 1000                                                                                                                                                                                                                                                                                                                                                                                                                               | . – 0.20 (P – 0                                                                                          | .80)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                   |                                                                             |                                                                                                                                                                                               |              |         |                        |           |   |
| otal events<br>ieterogeneity: tau <sup>2</sup> = 0.<br>est for overall effect: Z<br>nfections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .00; $chi^2 = 1.2$                                                                                                                                                            | 22, df = 4<br>0.94)                                                                                                                            | (P = 0.8                                                                                                                                                                                              | 7); I <sup>2</sup> = 0                                                                                                                                 |                                                                                                  | 0.001<br>Odds ratio                                                                                                                                                                                                                                                                                      | Odds ratio                        | 1000<br>Infections                                                                                                                                                                                                                                                                                                                                                                                                                 | Guselku                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | alimumab                                                                                                                          | Weiche                                                                      | Odds ratio                                                                                                                                                                                    |              |         | dds ratio              |           |   |
| iotal (95% CI)<br>iotal events<br>Heterogeneity: tau <sup>2</sup> = 0.<br>lest for overall effect: Z<br>nfections<br>itudy or subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .00; chi <sup>2</sup> = 1.2<br>5 = 0.08 (P =                                                                                                                                  | 22, df = 4<br>0.94)                                                                                                                            | (P = 0.8                                                                                                                                                                                              | cebo                                                                                                                                                   | 0%<br>Weight                                                                                     | 0.001                                                                                                                                                                                                                                                                                                    |                                   | 1000<br>Infections<br>Study or subgroup                                                                                                                                                                                                                                                                                                                                                                                            | Guselku<br>Events                                                                                        | mab Ad<br>Total Eve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nts Total                                                                                                                         | Weight                                                                      | M-H, random, 95% CI                                                                                                                                                                           | [            |         | dds ratio<br>ndom, 95% | CI        |   |
| otal events<br>ieterogeneity: tau <sup>2</sup> = 0.<br>est for overall effect: Z<br>nfections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .00; chi <sup>2</sup> = 1.2<br>5 = 0.08 (P =<br>Guselk                                                                                                                        | 22, df = 4<br>0.94)<br>umab                                                                                                                    | (P = 0.8                                                                                                                                                                                              | zebo                                                                                                                                                   |                                                                                                  | 0.001<br>Odds ratio                                                                                                                                                                                                                                                                                      | Odds ratio                        | 1000<br>Infections<br>Study or subgroup<br>Blauvelt 2017                                                                                                                                                                                                                                                                                                                                                                           | Guselku<br>Events<br>85                                                                                  | imab Ad<br><u>Total Eve</u><br>329 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nts Total<br>5 333                                                                                                                | 49.0%                                                                       | M-H, random, 95% CI<br>1.02 [0.72, 1.44]                                                                                                                                                      | I            |         |                        | CI        |   |
| otal events<br>eterogeneity: tau <sup>2</sup> = 0.<br>est for overall effect: Z<br>effections<br>udy or subgroup<br>Blauvelt 2017<br>Deodhar 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00; chi <sup>2</sup> = 1.2<br><i>z</i> = 0.08 ( <i>P</i> =<br>Guselk<br>Events<br>85<br>16                                                                                    | 22, df = 4<br>0.94)<br>umab<br>Total<br>329<br>100                                                                                             | (P = 0.8<br>Plaa<br>Events<br>44<br>10                                                                                                                                                                | cebo<br>Total<br>174<br>49                                                                                                                             | Weight<br>35.3%<br>9.3%                                                                          | 0.001<br>Odds ratio<br>M-H; random, 95% CI<br>1.03 [0.68, 1.57]<br>0.74 [0.31, 1.78]                                                                                                                                                                                                                     | Odds ratio                        | 1000<br>Infections<br>Study or subgroup<br>Blauvel: 2017<br>Gordon 2015                                                                                                                                                                                                                                                                                                                                                            | Guselku<br>Events<br>85<br>41                                                                            | mab Ad<br>Total Eve<br>329 8<br>207 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nts Total<br>5 333<br>43                                                                                                          | 49.0%<br>6.0%                                                               | M-H, random, 95% CI<br>1.02 [0.72, 1.44]<br>1.88 [0.70, 5.07]                                                                                                                                 | [            |         |                        | CI        |   |
| otal events<br>Reterogeneity: tau <sup>2</sup> = 0.<br>est for overall effect: Z<br>nfections<br>tudy or subgroup<br>Blauvelt 2017<br>Deodhar 2018<br>Gordon 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00; chi <sup>2</sup> = 1.2<br><i>C</i> = 0.08 ( <i>P</i> =<br>Guselk<br>Events<br>85<br>16<br>41                                                                              | 22, df = 4<br>0.94)<br>umab<br>Total<br>329<br>100<br>207                                                                                      | (P = 0.8<br>Plaa<br>Events<br>44<br>10<br>6                                                                                                                                                           | tebo<br>Total<br>174<br>49<br>42                                                                                                                       | Weight<br>35.3%<br>9.3%<br>6.6%                                                                  | 0.001<br>0.001<br>M-H, random, 95% CI<br>1.03 [0.68, 1.57]<br>0.74 [0.31, 1.78]<br>1.48 [0.59, 3.75]                                                                                                                                                                                                     | Odds ratio                        | 1000<br>Infections<br>Study or subgroup<br>Blauvelt 2017                                                                                                                                                                                                                                                                                                                                                                           | Guselku<br>Events<br>85                                                                                  | imab Ad<br>Total Eve<br>329 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nts Total<br>5 333<br>43                                                                                                          | 49.0%                                                                       | M-H, random, 95% CI<br>1.02 [0.72, 1.44]                                                                                                                                                      | [            |         |                        | . CI      |   |
| otal events<br>eterogeneity: tau <sup>2</sup> = 0.<br>est for overall effect: 2<br>ifections<br>udy or subgroup<br>Blauvelt 2017<br>Deodhar 2018<br>Gordon 2015<br>Nemoto 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00; chi <sup>2</sup> = 1.2<br>C = 0.08 (P =<br>Guselk<br>Events<br>85<br>16<br>41<br>1                                                                                        | 22, df = 4<br>0.94)<br>umab<br>Total<br>329<br>100<br>207<br>5                                                                                 | (P = 0.8<br>Play<br>Events<br>44<br>10<br>6<br>0                                                                                                                                                      | tebo<br>Total<br>174<br>49<br>42<br>4                                                                                                                  | Weight<br>35.3%<br>9.3%<br>6.6%<br>0.3%                                                          | 0.001<br>0.001<br>M-H, random, 95% CI<br>1.03 [0.68, 1.57]<br>0.74 [0.31, 1.78]<br>1.48 [0.59, 3.75]<br>3.00 [0.09, 95.17]                                                                                                                                                                               | Odds ratio                        | 1000<br>Infections<br>Study or subgroup<br>Blauvelt 2017<br>Gordon 2015<br>Reich 2017                                                                                                                                                                                                                                                                                                                                              | Guselku<br>Events<br>85<br>41                                                                            | mab Ad<br><u>Total Eve</u><br>329 8<br>207 5<br>494 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nts Total<br>5 333<br>6 43<br>8 248                                                                                               | 49.0%<br>6.0%<br>45.0%                                                      | M-H, random, 95% CI<br>1.02 [0.72, 1.44]<br>1.88 [0.70, 5.07]<br>0.89 [0.62, 1.29]                                                                                                            | 1            |         |                        | . CI      |   |
| stal events<br>eterogeneity: tau <sup>2</sup> = 0.<br>st for overall effect: Z<br>fections<br>udy or subgroup<br>Blauvelt 2017<br>Deodhar 2018<br>Gordon 2015<br>Nemoto 2018<br>Ohtsuki 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00; chi <sup>2</sup> = 1.2<br>2 = 0.08 (P =<br>Guselk<br>Events<br>85<br>16<br>41<br>1<br>15                                                                                  | 22, df = 4<br>0.94)<br>umab<br>Total<br>329<br>100<br>207<br>5<br>63                                                                           | (P = 0.8<br>Play<br>Events<br>44<br>10<br>6<br>0<br>14                                                                                                                                                | Total<br>174<br>49<br>42<br>4<br>64                                                                                                                    | Weight<br>35.3%<br>9.3%<br>6.6%<br>0.3%<br>8.7%                                                  | 0.001<br>Odds ratio<br>M-H, random, 95% CI<br>1.03 (0.68, 1.57)<br>0.74 (0.31, 1.78]<br>1.48 (0.59, 3.75]<br>3.00 (0.09, 95.17]<br>1.12 (0.49, 2.56]                                                                                                                                                     | Odds ratio                        | 1000<br>Infections<br>Study or subgroup<br>Blauvel: 2017<br>Gordon 2015<br>Reich 2017<br>Total (95% CI)                                                                                                                                                                                                                                                                                                                            | Guselku<br>Events<br>85<br>41<br>106                                                                     | mab Ad<br><u>Total Eve</u><br>329 8<br>207 5<br>494 5<br>1030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nts Total<br>5 333<br>6 43<br>8 248<br>624                                                                                        | 49.0%<br>6.0%                                                               | M-H, random, 95% CI<br>1.02 [0.72, 1.44]<br>1.88 [0.70, 5.07]                                                                                                                                 | <u>I</u>     |         |                        | . CI      |   |
| otal events<br>leterogeneity: tau <sup>2</sup> = 0.<br>est for overall effect: 2<br>nfections<br>tudy or subgroup<br>Blauvelt 2017<br>Deodhar 2018<br>Gordon 2015<br>Nemoto 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00; chi <sup>2</sup> = 1.2<br>C = 0.08 (P =<br>Guselk<br>Events<br>85<br>16<br>41<br>1                                                                                        | 22, df = 4<br>0.94)<br>umab<br>Total<br>329<br>100<br>207<br>5                                                                                 | (P = 0.8<br>Play<br>Events<br>44<br>10<br>6<br>0                                                                                                                                                      | tebo<br>Total<br>174<br>49<br>42<br>4                                                                                                                  | Weight<br>35.3%<br>9.3%<br>6.6%<br>0.3%                                                          | 0.001<br>0.001<br>M-H, random, 95% CI<br>1.03 [0.68, 1.57]<br>0.74 [0.31, 1.78]<br>1.48 [0.59, 3.75]<br>3.00 [0.09, 95.17]                                                                                                                                                                               | Odds ratio                        | 1000<br>Infections<br>Study or subgroup<br>Blauvelt 2017<br>Gordon 2015<br>Reich 2017                                                                                                                                                                                                                                                                                                                                              | Guselku<br>Events<br>85<br>41<br>106<br>232                                                              | mab Að<br>Total Eve<br>329 8<br>207 5<br>494 5<br>1030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nts Total<br>5 333<br>6 43<br>8 248<br>624<br>8                                                                                   | 49.0%<br>6.0%<br>45.0%<br>100.0%                                            | M-H, random, 95% CI<br>1.02 [0.72, 1.44]<br>1.88 [0.70, 5.07]<br>0.89 [0.62, 1.29]<br>1.00 [0.78, 1.27]                                                                                       |              | M-H, ra | ndom, 95%              |           |   |
| otal events<br>ieterogeneity: tau <sup>2</sup> = 0.<br>est for overall effect: 2<br>ifections<br>Blauvelt 2017<br>Deodhar 2018<br>Gordon 2015<br>Nemoto 2018<br>Ohtsuki 2018<br>Reich 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00; chi <sup>2</sup> = 1.2<br>2 = 0.08 (P =<br>Guselk<br>Events<br>85<br>16<br>41<br>1<br>15                                                                                  | 22, df = 4<br>0.94)<br>umab<br>Total<br>329<br>100<br>207<br>5<br>63                                                                           | (P = 0.8<br>Play<br>Events<br>44<br>10<br>6<br>0<br>14                                                                                                                                                | Total<br>174<br>49<br>42<br>4<br>64                                                                                                                    | Weight<br>35.3%<br>9.3%<br>6.6%<br>0.3%<br>8.7%                                                  | 0.001<br>Odds ratio<br>M-H, random, 95% CI<br>1.03 (0.68, 1.57)<br>0.74 (0.31, 1.78]<br>1.48 (0.59, 3.75]<br>3.00 (0.09, 95.17]<br>1.12 (0.49, 2.56]                                                                                                                                                     | Odds ratio                        | 1000<br>Infections<br>Study or subgroup<br>Blauvelt 2017<br>Gordon 2015<br>Reich 2017<br>Total (95% CI)<br>Total events                                                                                                                                                                                                                                                                                                            | Guselku<br>Events<br>85<br>41<br>106<br>232<br>232<br>00; chi <sup>2</sup> = 1,91                        | 1030 International Internation | nts Total<br>5 333<br>6 43<br>8 248<br>624<br>8                                                                                   | 49.0%<br>6.0%<br>45.0%<br>100.0%                                            | M-H, random, 95% CI<br>1.02 [0.72, 1.44]<br>1.88 [0.70, 5.07]<br>0.89 [0.62, 1.29]<br>1.00 [0.78, 1.27]                                                                                       | <u>.</u><br> | M-H, ra |                        | - CI<br>- |   |
| otal events<br>leterogeneity: tau <sup>2</sup> = 0.<br>est for overall effect: 2<br>infections<br>tudy or subgroup<br>Blauvelt 2017<br>Deodhar 2018<br>Gordon 2015<br>Nemoto 2018<br>Ohtsuki 2018<br>Reich 2017<br>otal (95% CI)<br>otal events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00; chi <sup>2</sup> = 1.2.<br>Z = 0.08 (P =<br>Guselk<br>Events<br>85<br>16<br>41<br>1<br>15<br>106<br>264                                                                   | 22, df = 4<br>0.94)<br>Total<br>329<br>100<br>207<br>5<br>63<br>494<br>1198                                                                    | (P = 0.8<br>Plaa<br>Events<br>44<br>10<br>6<br>0<br>14<br>46<br>120                                                                                                                                   | tebo<br>Total<br>174<br>49<br>42<br>4<br>64<br>248                                                                                                     | Weight<br>35.3%<br>9.3%<br>6.6%<br>0.3%<br>8.7%<br>39.7%                                         | 0.001<br>Odds ratio<br>M-H, random, 95% CI<br>1.03 (0.68, 1.57)<br>0.74 (0.31, 1.78)<br>1.48 (0.59, 3.75]<br>3.00 (0.09, 95.17)<br>1.12 (0.49, 2.56)<br>1.20 (0.82, 1.76)                                                                                                                                | Odds ratio                        | 1000<br>Infections<br>Study or subgroup<br>Blauvel 2017<br>Gordon 2015<br>Reich 2017<br>Total (95% C1)<br>Total (95% C1)<br>Total vents<br>Heteropenity: tau² = 0.                                                                                                                                                                                                                                                                 | Guselku<br>Events<br>85<br>41<br>106<br>232<br>232<br>00; chi <sup>2</sup> = 1,91                        | 1030 International Internation | nts Total<br>5 333<br>6 43<br>8 248<br>624<br>8                                                                                   | 49.0%<br>6.0%<br>45.0%<br>100.0%                                            | M-H, random, 95% CI<br>1.02 [0.72, 1.44]<br>1.88 [0.70, 5.07]<br>0.89 [0.62, 1.29]<br>1.00 [0.78, 1.27]                                                                                       |              | M-H, ra | ndom, 95%              |           |   |
| otal events<br>leterogeneity: tau <sup>2</sup> = 0.<br>ess for overall effect: Z<br>infections<br>tudy or subgroup<br>Blauvelt 2017<br>Deodhar 2018<br>Gordon 2015<br>Nemoto 2018<br>Reich 2017<br>otal (95% CI)<br>otal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00; chi <sup>2</sup> = 1.2.<br>z = 0.08 (P =<br>Guselk<br>Events<br>85<br>16<br>41<br>1<br>15<br>106<br>264<br>78, df = 6 (P                                                  | 22, df = 4<br>0.94)<br>umab<br>Total<br>329<br>100<br>207<br>5<br>63<br>494<br>1198<br>= 0.88);                                                | (P = 0.8<br>Plaa<br>Events<br>44<br>10<br>6<br>0<br>14<br>46<br>120                                                                                                                                   | tebo<br>Total<br>174<br>49<br>42<br>4<br>64<br>248                                                                                                     | Weight<br>35.3%<br>9.3%<br>6.6%<br>0.3%<br>8.7%<br>39.7%                                         | 0.001<br>Odds ratio<br>M-H, random, 95% CI<br>1.03 [0.68, 1.57]<br>0.74 [0.31, 1.78]<br>1.48 [0.39, 3.75]<br>3.00 [0.09, 95, 17]<br>1.12 [0.49, 2.56]<br>1.20 [0.82, 1.76]<br>1.11 [0.87, 1.43]                                                                                                          | Odds ratio<br>M-H, random, 95% CI | 1000<br>Infections<br>Study or subgroup<br>Blauvelt 2017<br>Gordon 2015<br>Reich 2017<br>Total (95% C1)<br>Total versts<br>Heterogeneity: tau² = 0<br>Test for overall effect. Z                                                                                                                                                                                                                                                   | Guselku<br>Events<br>85<br>41<br>106<br>232<br>232<br>00; chi <sup>2</sup> = 1,91                        | 1030 International Internation | nts Total<br>5 333<br>6 43<br>8 248<br>624<br>8                                                                                   | 49.0%<br>6.0%<br>45.0%<br>100.0%                                            | M-H, random, 95% CI<br>1.02 [0.72, 1.44]<br>1.88 [0.70, 5.07]<br>0.89 [0.62, 1.29]<br>1.00 [0.78, 1.27]                                                                                       |              | M-H, ra | ndom, 95%              |           |   |
| otal events<br>leterogeneity: tau <sup>2</sup> = 0.<br>ess for overall effect: Z<br>infections<br>tudy or subgroup<br>Blauvelt 2017<br>Deodhar 2018<br>Gordon 2015<br>Nemoto 2018<br>Reich 2017<br>otal (95% CI)<br>otal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00; chi <sup>2</sup> = 1.2.<br>z = 0.08 (P =<br>Guselk<br>Events<br>85<br>16<br>41<br>1<br>15<br>106<br>264<br>78, df = 6 (P                                                  | 22, df = 4<br>0.94)<br>umab<br>Total<br>329<br>100<br>207<br>5<br>63<br>494<br>1198<br>= 0.88);                                                | (P = 0.8<br>Plaa<br>Events<br>44<br>10<br>6<br>0<br>14<br>46<br>120                                                                                                                                   | tebo<br>Total<br>174<br>49<br>42<br>4<br>64<br>248                                                                                                     | Weight<br>35.3%<br>9.3%<br>6.6%<br>0.3%<br>8.7%<br>39.7%                                         | 0.001<br>Odds ratio<br>M-H, random, 95% CI<br>1.03 (0.68, 1.57)<br>0.74 (0.31, 1.78)<br>1.48 (0.59, 3.75]<br>3.00 (0.09, 95.17)<br>1.12 (0.49, 2.56)<br>1.20 (0.82, 1.76)                                                                                                                                | Odds ratio<br>M-H, random, 95% CI | 1000<br>Infections<br>Study or subgroup<br>Blauvel 2017<br>Gordon 2015<br>Reich 2017<br>Total (95% C1)<br>Total (95% C1)<br>Total vents<br>Heteropenity: tau² = 0.                                                                                                                                                                                                                                                                 | Guselku<br>Events<br>85<br>41<br>106<br>232<br>232<br>00; chi <sup>2</sup> = 1,91                        | 1030 International Internation | nts Total<br>5 333<br>6 43<br>8 248<br>624<br>8                                                                                   | 49.0%<br>6.0%<br>45.0%<br>100.0%                                            | M-H, random, 95% CI<br>1.02 [0.72, 1.44]<br>1.88 [0.70, 5.07]<br>0.89 [0.62, 1.29]<br>1.00 [0.78, 1.27]                                                                                       |              | M-H, ra | ndom, 95%              |           | 1 |
| otal events<br>leterogeneity: tat" = 0.<br>est for overall effect: 2<br>infections<br>tudy or subgroup<br>Blauvel 2017<br>Deodhar 2018<br>Gordon 2015<br>Nemoto 2018<br>Ohtsuki 2018<br>Nemoto 2018<br>Ohtsuki 2018<br>Reich 2017<br>otal 95% (I)<br>otal events<br>leterogeneity: chi" = 1.<br>est for overall effect: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00; chi <sup>2</sup> = 1.2.<br>z = 0.08 (P =<br>Guselk<br>Events<br>85<br>16<br>41<br>1<br>15<br>106<br>264<br>78, df = 6 (P                                                  | 22, df = 4<br>0.94)<br>umab<br>Total<br>329<br>100<br>207<br>5<br>63<br>494<br>1198<br>= 0.88);                                                | (P = 0.8<br>Plaa<br>Events<br>44<br>10<br>6<br>0<br>14<br>46<br>120                                                                                                                                   | tebo<br>Total<br>174<br>49<br>42<br>4<br>64<br>248                                                                                                     | Weight<br>35.3%<br>9.3%<br>6.6%<br>0.3%<br>8.7%<br>39.7%                                         | 0.001<br>Odds ratio<br>M-H, random, 95% CI<br>1.03 [0.68, 1.57]<br>0.74 [0.31, 1.78]<br>1.48 [0.39, 3.75]<br>3.00 [0.09, 95, 17]<br>1.12 [0.49, 2.56]<br>1.20 [0.82, 1.76]<br>1.11 [0.87, 1.43]                                                                                                          | Odds ratio<br>M-H, random, 95% CI | 1000<br>Infections<br>Study or subgroup<br>Blauvelt 2017<br>Gordon 2015<br>Reich 2017<br>Total (95% C1)<br>Total versts<br>Heterogeneity: tau² = 0<br>Test for overall effect. Z                                                                                                                                                                                                                                                   | Guselkt<br>Events<br>85<br>41<br>106<br>232<br>200; chi <sup>2</sup> = 1.91<br>= 0.03 (P = 0             | imab         Ad           Total         Eve           329         8           207         5           1030         14           14, df = 2 (P = 198)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nts Total<br>5 333<br>6 43<br>8 248<br>624<br>8<br>0.38); I <sup>2</sup> = 0                                                      | 49.0%<br>6.0%<br>45.0%<br>100.0%                                            | M-H, random, 95% CI<br>1.02 [0.72, 1.44]<br>1.88 [0.70, 5.07]<br>0.89 [0.62, 1.29]<br>1.00 [0.78, 1.27]<br>0                                                                                  |              | M-H, ra | ndom, 95%              |           | 1 |
| stal events<br>teterogeneity: tat <sup>2</sup> = 0,<br>st for overall effect: 2<br>dections<br>udy or subgroup<br>Blauvelt 2017<br>Deodhar 2018<br>Gordon 2015<br>Nemoto 2018<br>Ohrstaki 2017<br>stal (95% CJ)<br>stal (95% CJ)<br>stal (95% CJ)<br>stal for overall effect: 2<br>rious Infections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00; chi <sup>2</sup> = 1.2.<br>z = 0.08 (P =<br>Guselk<br>Events<br>85<br>16<br>41<br>1<br>15<br>106<br>264<br>78, df = 6 (P                                                  | 22, df = 4<br>0.94)<br>Total<br>329<br>100<br>207<br>5<br>63<br>494<br>1198<br>= 0.88);<br>0.39)                                               | (P = 0.8<br>Plaa<br>Events<br>44<br>10<br>6<br>0<br>14<br>46<br>120<br>1 <sup>2</sup> = 0%                                                                                                            | Total<br>174<br>49<br>42<br>4<br>64<br>248<br>581<br>581                                                                                               | Weight<br>35.3%<br>9.3%<br>6.6%<br>0.3%<br>8.7%<br>39.7%                                         | 0.001<br>Odds ratio<br>M-H, random, 95% CI<br>1.03 [0.68, 1.57]<br>0.74 [0.31, 1.78]<br>1.48 [0.39, 3.75]<br>3.00 [0.09, 95, 17]<br>1.12 [0.49, 2.56]<br>1.20 [0.82, 1.76]<br>1.11 [0.87, 1.43]                                                                                                          | Odds ratio<br>M-H, random, 95% CI | 1000<br>Infections<br>Study or subgroup<br>Blauvelt 2017<br>Gordon 2015<br>Reich 2017<br>Total (95% C1)<br>Total (95% C1)<br>Total (95% C1)<br>Total events<br>Heterogeneity: tuu² = 0<br>Test for overall effect: 2<br>1000                                                                                                                                                                                                       | Guselku<br>85<br>41<br>106<br>232<br>200; chP = 1.91<br>Z = 0.03 (P = 0<br>Guselku                       | imab         Ad           Total         Eve           329         8           207         5           1030         14           14, df = 2 (P = 198)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nts Total<br>5 333<br>43<br>8 248<br>624<br>8<br>0.38); I <sup>2</sup> = 0<br>alimumab                                            | 49.0%<br>6.0%<br>45.0%<br>100.0%                                            | M-H, random, 95% CI<br>1.02 [0.72, 1.44]<br>1.88 [0.70, 5.07]<br>0.89 [0.62, 1.29]<br>1.00 [0.78, 1.27]                                                                                       | 0.01 0       | M-H, ra | ndom, 95%              | 10        |   |
| otal events<br>leterogeneity: tat" = 0.<br>est for overall effect: 2<br>afections<br>tudy or subgroup<br>Blauveh 2017<br>Deodhar 2018<br>Gordon 2015<br>Nemoto 2018<br>Ohtsuki 2018<br>Nemoto 2018<br>Ohtsuki 2018<br>ohtsuki 2018<br>otal (95% CJ)<br>otal events<br>teterogeneity: chi" = 1,<br>est for overall effect: 2<br>erious Infections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00; chi <sup>2</sup> = 1.2<br>Z = 0.08 (P =<br>Guselk<br>Events<br>85<br>16<br>41<br>15<br>106<br>264<br>78, df = 6 (P<br>=<br>0.86 (P =<br>Guselk                            | 22, df = 4<br>0.94)<br>umab<br>Total<br>329<br>100<br>207<br>5<br>63<br>494<br>1198<br>= 0.88);<br>0.39)<br>umab<br>Total                      | (P = 0.8<br>Plas<br>Events<br>44<br>10<br>6<br>0<br>14<br>46<br>120<br>1 <sup>2</sup> = 0%                                                                                                            | rebo<br>Total<br>174<br>49<br>42<br>4<br>64<br>248<br>581<br>581                                                                                       | Weight<br>35.3%<br>9.3%<br>6.6%<br>0.3%<br>8.7%<br>39.7%<br>100.0%                               | 0.001<br>Odds ratio<br>M-H, random, 95% CI<br>103 [0.88, 1.57]<br>0.74 [0.31, 1.78]<br>1.48 [0.59, 3.75]<br>3.00 [0.09, 95,17]<br>1.12 [0.49, 2.56]<br>1.20 [0.82, 1.76]<br>1.11 [0.87, 1.43]<br>0.001<br>Odds ratio<br>M-H, random, 95% CI                                                              | Odds ratio<br>M-H, random, 95% CI | 1000 Infections Study or subgroup Blauvel: 2017 Gordon 2015 Reich 2017 Total (95% C1) Total (95% C1) Total events Heteropeneity: na² = 0 Test for overall effect: 2 1000 Serious Infections Study or subgroup Blauvel: 2017                                                                                                                                                                                                        | Guselk<br>Events<br>85<br>41<br>106<br>232<br>5 = 0.03 (P = 0<br>Guselku<br>Events<br>0                  | imab         Ad           Total         Eve           329         8           207         2           494         5           1030         14           1, df = 2 (P = 19.8)         98           imab         Ad           Total         Eve           329         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nts Total<br>5 333<br>6 43<br>8 248<br>624<br>18<br>0.38); I <sup>2</sup> = 0<br>alimumab<br>nts Total<br>: 333                   | 49.0%<br>6.0%<br>45.0%<br>100.0%<br>9%<br>Weight<br>27.9%                   | M-H, random, 95% CI<br>1.02 [0.72, 1.44]<br>1.88 [0.70, 544]<br>1.88 [0.70, 542]<br>1.00 [0.78, 1.27]<br>0.00 [0.78, 1.27]<br>0.00 [0.78, 1.27]<br>0.00 [0.78, 1.27]                          | 0.01 0       | M-H, ra | ndom, 95%              | 10        |   |
| otal events<br>leterogeneity: tat" = 0.<br>est for overall effect: 2<br>afections<br>tudy or subgroup<br>Blauvel 2017<br>Deodhar 2018<br>Gordon 2015<br>Nemoto 2018<br>Ohtsuki 2018<br>Reich 2017<br>otal (95% CI)<br>otal ( | 00; chi <sup>2</sup> = 1.2<br>Z = 0.08 (P =<br>Guselk<br>Events<br>85<br>16<br>41<br>1<br>15<br>106<br>264<br>78, df = 6 (P<br>Z = 0.86 (P =<br>Guselk<br>Events              | 22, df = 4<br>0.94)<br>umab<br>Total<br>329<br>100<br>207<br>5<br>63<br>494<br>1198<br>= 0.88);<br>0.39)                                       | (P = 0.8<br>Plaa<br>Events<br>44<br>10<br>6<br>0<br>14<br>46<br>120<br>1 <sup>2</sup> = 0%<br>Plaa<br>Events                                                                                          | Tebo<br>Total<br>174<br>49<br>42<br>4<br>64<br>248<br>581<br>581                                                                                       | Weight<br>35.3%<br>9.3%<br>6.6%<br>0.3%<br>8.7%<br>39.7%<br>100.0%                               | 0.001<br>Odds ratio<br>M-H, random, 95% CI<br>1.03 [0.68, 1.57]<br>0.74 [0.31, 1.78]<br>1.48 [0.59, 3.75]<br>3.00 [0.09, 95, 17]<br>1.12 [0.48, 2.56]<br>1.20 [0.82, 1.76]<br>1.11 [0.87, 1.43]<br>0.001<br>Odds ratio                                                                                   | Odds ratio<br>M-H, random, 95% CI | 1000         Infections           Study or subgroup         Blauvelt 2017           Gondon 2015         Reich 2017           Total (95% C1)         Total (95% C1)           Total events         Hetrogeneity: tuu² = 0           Hetrogeneity: tuu² = 0         Test for overall effect: 2           1000         Serious Infections           Study or subgroup         Blauvelt 2017           Gondon 2015         Gondon 2015 | Guselku<br>Events<br>85<br>41<br>106<br>232<br>00; chř = 1.9]<br>Z = 0.03 (P = 0<br>Guselku<br>Events    | imab         Ad           Total         Eve           329         8           207         5           494         5           1030         14           1, df = 2 (P =           98)         207           mab         Ad           Total         Eve           329         2           329         2           207         2           207         2           207         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nts Total<br>5 333<br>4 43<br>8 248<br>624<br>8 0.38); I <sup>2</sup> = 0<br>alimumab<br>nts Total<br>5 333<br>4 3                | 49.0%<br>6.0%<br>45.0%<br>100.0%<br>9%<br>Weight<br>27.9%<br>27.6%          | M-H, random, 95% CI<br>1.02 [0.72, 1.44]<br>1.88 [0.70, 5.07]<br>0.89 [0.62, 1.29]<br>1.00 [0.78, 1.27]<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                      | 0.01 0       | M-H, ra | ndom, 95%              | 10        | 1 |
| otal events<br>eterogeneity: tau" = 0.<br>sts for overall effect: Z<br>afections<br>laudy or subgroup<br>Blauvelt 2017<br>Deodhar 2018<br>Gordon 2015<br>Nemoto 2018<br>Gordon 2015<br>Nemoto 2018<br>Ohtsuki 2018<br>Reich 2017<br>otal (95% CI)<br>otal events<br>eterogeneity: ch" = 1.<br>est for overall effect: Z<br>erious Infections<br>tudy or subgroup<br>Blauvelt 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00; chi <sup>2</sup> = 1.2;<br>z = 0.08 (P =<br>Guselk<br>Events<br>85<br>16<br>41<br>1<br>15<br>106<br>264<br>78, df = 6 (P<br>z = 0.86 (P =<br>Guselk<br>Events<br>0        | 22, df = 4<br>umab<br>Total<br>329<br>100<br>207<br>5<br>63<br>494<br>1198<br>= 0.88);<br>0.39)<br>umab<br>Total<br>329<br>329<br>3494<br>1198 | (P = 0.8<br>Plaa<br>Events<br>44<br>10<br>6<br>0<br>14<br>46<br>12<br>0<br>1 <sup>2</sup> = 0%<br>Plaa<br>Events<br>0                                                                                 | zebo<br>Total<br>174<br>49<br>42<br>4<br>64<br>248<br>581<br>581<br>581                                                                                | Weight<br>35.3%<br>9.3%<br>6.6%<br>0.3%<br>8.7%<br>39.7%<br>100.0%<br>Weight                     | 0.001<br>Odds ratio<br>M-H, random, 95% CI<br>1.03 (0.68, 1.57)<br>0.74 (0.31, 1.78)<br>1.48 (0.59, 3.75]<br>3.00 (0.09, 95.17)<br>1.12 (0.49, 2.56]<br>1.20 (0.82, 1.76]<br>1.11 (0.87, 1.43]<br>0.001<br>Odds ratio<br>M-H, random, 95% CI<br>Not estimable                                            | Odds ratio<br>M-H, random, 95% CI | 1000 Infections Study or subgroup Blauvel: 2017 Gordon 2015 Reich 2017 Total (95% C1) Total (95% C1) Total events Heteropeneity: na² = 0 Test for overall effect: 2 1000 Serious Infections Study or subgroup Blauvel: 2017                                                                                                                                                                                                        | Guselk<br>Events<br>85<br>41<br>106<br>232<br>5 = 0.03 (P = 0<br>Guselku<br><u>Events</u><br>0           | imab         Ad           Total         Eve           329         8           207         2           494         5           1030         14           1, df = 2 (P = 19.8)         98           imab         Ad           Total         Eve           329         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nts Total<br>5 333<br>4 43<br>8 248<br>624<br>8 0.38); I <sup>2</sup> = 0<br>alimumab<br>nts Total<br>5 333<br>4 3                | 49.0%<br>6.0%<br>45.0%<br>100.0%<br>9%<br>Weight<br>27.9%                   | M-H, random, 95% CI<br>1.02 [0.72, 1.44]<br>1.88 [0.70, 544]<br>1.88 [0.70, 542]<br>1.00 [0.78, 1.27]<br>0.00 [0.78, 1.27]<br>0.00 [0.78, 1.27]<br>0.00 [0.78, 1.27]                          | 0.01 0       | M-H, ra | ndom, 95%              | 10        |   |
| otal events<br>eterogeneity: tat" = 0.<br>sts for overall effect: 2<br>effections<br>tudy or subgroup<br>Blauvek 2017<br>Deodhar 2018<br>Gordon 2015<br>Nemoto 2018<br>Ohtsuki 2018<br>Ohtsuki 2018<br>ohtsuki 2018<br>otal (95% CI)<br>otal events<br>eterogeneity: ch <sup>2</sup> = 1.<br>erious Infections<br>tudy or subgroup<br>Blauvek 2017<br>ord subgroup<br>Blauvek 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00; chi <sup>2</sup> = 1.2;<br>z = 0.08 (P =<br>Guselk<br>Events<br>85<br>16<br>41<br>1<br>15<br>106<br>264<br>78, df = 6 (P<br>z = 0.86 (P =<br>Guselk<br>Events<br>0<br>2   | 22, df = 4<br>0.94)<br>Total<br>329<br>100<br>207<br>5<br>63<br>494<br>1198<br>= 0.88);<br>0.39)<br>umab<br>Total<br>329<br>207                | (P = 0.8<br>Plaa<br>44<br>10<br>6<br>0<br>14<br>46<br>120<br>1 <sup>2</sup> = 0%<br>Plaa<br>Events<br>0<br>0                                                                                          | cebo<br>Total<br>174<br>49<br>42<br>4<br>64<br>248<br>581<br>581<br>cebo<br>Total<br>174<br>42                                                         | Weight<br>35.3%<br>9.3%<br>6.6%<br>0.3%<br>8.7%<br>39.7%<br>100.0%<br>Weight<br>45.2%            | 0.001<br>Odds ratio<br>M-H, random, 95% CI<br>1.03 (0.88, 1.57)<br>0.74 (0.31, 1.78)<br>1.48 (0.59, 3.75)<br>3.00 (0.09, 95.17)<br>1.12 (0.49, 2.56)<br>1.20 (0.82, 1.76)<br>1.11 (0.87, 1.43)<br>0.001<br>Odds ratio<br>M-H, random, 95% CI<br>Not estimable<br>1.03 (0.05, 21.93]                      | Odds ratio<br>M-H, random, 95% CI | 1000 Infections Study or subgroup Blauvel 2017 Gordon 2015 Reich 2017 Total (95% C1) Total (95% C1) Total events Heterogeneity: tau" = 0. Test for overall effect: 2 1000 Serious Infections Study or subgroup Blauvel 2017 Gordon 2015 Reich 2017                                                                                                                                                                                 | Guselk<br>Events<br>85<br>41<br>106<br>232<br>5 = 0.03 (P = 0<br>Guselku<br><u>Events</u><br>0           | imab         Ad           Total         Eve           329         8           207         5           494         5           1030         14           1, df = 2 (P =           98)         207           mab         Ad           Total         Eve           329         2           207         2           207         2           207         1           494         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nts Total<br>5 333<br>4 43<br>8 248<br>624<br>8 0.38); I <sup>2</sup> = 0<br>alimumab<br>nts Total<br>5 333<br>4 3<br>248         | 49.0%<br>6.0%<br>45.0%<br>100.0%<br>%<br>Weight<br>27.9%<br>27.6%<br>44.5%  | M-H, random, 95% CI<br>1.02 [0.72, 1.44]<br>1.88 [0.70, 5.47]<br>1.88 [0.70, 5.47]<br>1.00 [0.78, 1.27]<br>0.00 [0.78, 1.27]<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0.01 0       | M-H, ra | ndom, 95%              | 10        |   |
| otal events<br>leterogeneity: tau" = 0.<br>set for overall effect: Z<br>afections<br>Blauvelt 2017<br>Deodhar 2018<br>Gordon 2015<br>Nemoto 2018<br>Ohtsuki 2018<br>Reich 2017<br>otal (95% CI)<br>otal events<br>leterogeneity: ch" = 1.<br>est for overall effect: Z<br>erious Infections<br>tudy or subgroup<br>Blauvelt 2017<br>Gordon 2015<br>Reich 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00; chi <sup>2</sup> = 1.2;<br>z = 0.08 (P =<br>Guselk<br>Events<br>85<br>16<br>41<br>1<br>15<br>106<br>264<br>78, df = 6 (P<br>z = 0.86 (P =<br>Guselk<br>Events<br>0<br>2   | 22, df = 4<br>0.94)<br>Total<br>329<br>100<br>207<br>5<br>63<br>494<br>1198<br>= 0.88);<br>0.39)<br>Total<br>329<br>207<br>5<br>494            | (P = 0.8<br>Plaa<br>44<br>10<br>6<br>0<br>14<br>46<br>120<br>1 <sup>2</sup> = 0%<br>Plaa<br>Events<br>0<br>0                                                                                          | rebo<br>Total<br>174<br>49<br>42<br>4<br>64<br>248<br>581<br>581<br>581<br>cebo<br>Total<br>174<br>42<br>248                                           | Weight<br>35.3%<br>9.3%<br>6.6%<br>8.7%<br>39.7%<br>100.0%<br>Weight<br>45.2%<br>54.8%           | 0.001<br>Odds ratio<br>M-H, random, 95% CI<br>1.03 (0.68, 1.57)<br>0.74 (0.31, 1.78)<br>1.48 (0.59, 3.75]<br>3.00 (0.09, 95.17)<br>1.12 (0.49, 2.56]<br>1.20 (0.82, 1.76]<br>1.11 (0.87, 1.43]<br>0.001<br>Odds ratio<br>M-H, random, 95% CI<br>Not estimable<br>1.03 (0.05, 21.93)<br>0.50 (0.03, 8.04] | Odds ratio<br>M-H, random, 95% CI | 1000 Infections Study or subgroup Blauvel: 2017 Gordon: 2015 Reich 2017 Total (95% C1) Total (95% C1) Total vents Heteropenity: tau <sup>2</sup> = 0 Test for overall effect: 2 1000 Serious Infections Study or subgroup Blauvel: 2017 Gordon: 2015 Reich 2017 Total (95% C1) Total (95% C1)                                                                                                                                      | Guselk<br>Events<br>85<br>41<br>106<br>232<br>5 = 0.03 (P = 0<br>Guselku<br><u>Events</u><br>0           | Imab         Adt           Total         Eve           329         8           207         5           494         5           1030         14           4, df = 2 (P = 98)         98           329         2           329         2           329         2           207         C           494         1           1030         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nts Total<br>5 333<br>6 43<br>8 248<br>624<br>8 0.038); $P = 0$<br>alimumab<br>nts Total<br>6 333<br>43<br>248<br>624             | 49.0%<br>6.0%<br>45.0%<br>100.0%<br>9%<br>Weight<br>27.9%<br>27.6%          | M-H, random, 95% CI<br>1.02 [0.72, 1.44]<br>1.88 [0.70, 5.07]<br>0.89 [0.62, 1.29]<br>1.00 [0.78, 1.27]<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                      | 0.01 0       | M-H, ra | ndom, 95%              | 10        |   |
| otal events<br>leterogeneity: tat" = 0.<br>est for overall effect: 2<br>afections<br>tudy or subgroup<br>Blauvel 2017<br>Deodhar 2018<br>Gordon 2015<br>Nemoto 2018<br>Ohtsuki 2018<br>Ohtsuki 2018<br>Ohtsuki 2018<br>Ohtsuki 2018<br>ohtsuki 2018<br>eriou 2018<br>eriou 2018<br>eriou 2018<br>erious Infections<br>tudy or subgroup<br>Blauvel 2017<br>Gordon 2015<br>Reich 2017<br>otal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00; chi <sup>2</sup> = 1.2<br>= 0.08 (P =<br>Guselk<br>Events<br>85<br>16<br>41<br>1<br>15<br>106<br>264<br>78, df = 6 (P<br>z = 0.86 (P =<br>Guselk<br>Events<br>0<br>2<br>1 | 22, df = 4<br>0.94)<br>Total<br>329<br>100<br>207<br>5<br>63<br>494<br>1198<br>= 0.88);<br>0.39)<br>umab<br>Total<br>329<br>207                | (P = 0.8)<br>Plau<br>Events<br>44<br>10<br>6<br>0<br>14<br>46<br>120<br>1 <sup>2</sup> = 0%<br>Plau<br>Events<br>0<br>0<br>1                                                                          | cebo<br>Total<br>174<br>49<br>42<br>4<br>64<br>248<br>581<br>581<br>cebo<br>Total<br>174<br>42                                                         | Weight<br>35.3%<br>9.3%<br>6.6%<br>0.3%<br>8.7%<br>39.7%<br>100.0%<br>Weight<br>45.2%            | 0.001<br>Odds ratio<br>M-H, random, 95% CI<br>1.03 (0.88, 1.57)<br>0.74 (0.31, 1.78)<br>1.48 (0.59, 3.75)<br>3.00 (0.09, 95.17)<br>1.12 (0.49, 2.56)<br>1.20 (0.82, 1.76)<br>1.11 (0.87, 1.43)<br>0.001<br>Odds ratio<br>M-H, random, 95% CI<br>Not estimable<br>1.03 (0.05, 21.93]                      | Odds ratio<br>M-H, random, 95% CI | 1000 Infections Study or subgroup Blauvel 2017 Gordon 2015 Reich 2017 Total (95% C1) Total (95% C1) Total events Heterogeneity: tau" = 0. Test for overall effect: 2 1000 Serious Infections Study or subgroup Blauvel 2017 Gordon 2015 Reich 2017                                                                                                                                                                                 | Guselku<br>Events<br>85<br>41<br>106<br>232<br>25 = 0.03 (P = 0<br>Guselku<br>Events<br>0<br>2<br>1<br>3 | Imab         Ad           Total         Eve           329         8           207         2           494         5           1030         14           indef = 2 (P =           98)         2           329         2           329         2           207         2           207         2           207         4           1030         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nts Total<br>5 333<br>4 43<br>8 248<br>624<br>18 0.38); I <sup>2</sup> = 0<br>alimumab<br>nts Total<br>3 33<br>4 43<br>248<br>624 | 49.0%<br>6.0%<br>45.0%<br>100.0%<br>9%<br>Weight<br>27.9%<br>27.6%<br>44.5% | M-H, random, 95% CI<br>1.02 [0.72, 1.44]<br>1.88 [0.70, 5.07]<br>0.89 [0.62, 1.29]<br>1.00 [0.78, 1.27]<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                      |              | M-H, ra | dds ratio              | 10<br>CI  |   |
| otal events<br>leterogeneity: tat' = 0.<br>est for overall effect: 2<br>infections<br>tudy or subgroup<br>Blauvel 2017<br>Deodhar 2018<br>Gordon 2015<br>Nemoto 2018<br>Ohtsuki 2018<br>Ohtsuki 2018<br>Ohtsuki 2018<br>otal (95% CI)<br>otal events<br>leterogeneity: ch <sup>2</sup> = 1.<br>erious Infections<br>tudy or subgroup<br>Blauvel 2017<br>Blauvel 2017<br>Gordon 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00; chi <sup>2</sup> = 1.2<br>= 0.08 (P =<br>Guselk<br>Events<br>85<br>16<br>41<br>1<br>15<br>106<br>264<br>78, df = 6 (P =<br>Guselk<br>Events<br>0<br>2<br>1<br>3           | 22, df = 4<br>0.94)<br>Total<br>329<br>100<br>207<br>5<br>63<br>494<br>1198<br>= 0.88);<br>0.39)<br>umab<br>Total<br>329<br>207<br>494<br>1030 | (P = 0.8<br>Plas<br>Events<br>44<br>10<br>6<br>0<br>14<br>46<br>120<br>12 = 0%<br>Plas<br>6<br>0<br>14<br>46<br>120<br>12 = 0%<br>13<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | cebo<br>Total<br>174<br>49<br>42<br>4<br>64<br>248<br>581<br>cebo<br>Total<br>174<br>42<br>248<br>464<br>424<br>424<br>424<br>424<br>424<br>424<br>424 | Weight<br>35.3%<br>9.3%<br>6.6%<br>8.7%<br>39.7%<br>100.0%<br>Weight<br>45.2%<br>54.8%<br>100.0% | 0.001<br>Odds ratio<br>M-H, random, 95% CI<br>1.03 (0.68, 1.57)<br>0.74 (0.31, 1.78)<br>1.48 (0.59, 3.75]<br>3.00 (0.09, 95.17)<br>1.12 (0.49, 2.56]<br>1.20 (0.82, 1.76]<br>1.11 (0.87, 1.43]<br>0.001<br>Odds ratio<br>M-H, random, 95% CI<br>Not estimable<br>1.03 (0.05, 21.93)<br>0.50 (0.03, 8.04] | Odds ratio<br>M-H, random, 95% CI | 1000 Infections Study or subgroup Blauvel 2017 Gondon 2015 Reich 2017 Total (95% C1) Total (95% C1) Total events Heterogeneity: tuu² = 0 Test for overall effect: 2 1000 Serious Infections Study or subgroup Blauvel 2017 Gondon 2015 Reich 2017 Total (95% C1) Total events                                                                                                                                                      | Guselka<br>Events<br>85<br>41<br>106<br>232<br>z = 0.03 ( $P = 0z = 0.03$ ( $P = 0021300; ch2 = 0.7]$    | mab         Ad           Total         Eve           329         8           207         2           494         5           1030         14           4, df = 2 (P = 9)         9           329         2           207         C           494         5           1030         4           1030         4           494         1           1030         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nts Total<br>5 333<br>4 43<br>8 248<br>624<br>18 0.38); I <sup>2</sup> = 0<br>alimumab<br>nts Total<br>3 33<br>4 43<br>248<br>624 | 49.0%<br>6.0%<br>45.0%<br>100.0%<br>9%<br>Weight<br>27.9%<br>27.6%<br>44.5% | M-H, random, 95% CI<br>1.02 [0.72, 1.44]<br>1.88 [0.70, 5.07]<br>0.89 [0.62, 1.29]<br>1.00 [0.78, 1.27]<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                      |              | M-H, ra | ndom, 95%              | 10        | 1 |

FIGURE 5: Safety outcomes of guselkumab in the treatment of plaque psoriasis versus placebo or adalimumab. AEs: adverse events; SAEs: serious adverse events.

with guselkumab. The results of this meta-analysis showed guselkumab had superior efficacy to adalimumab in the achievements of PASI 75, PASI 90, PASI 100, IGA 0/1,

and DLQI 0/1, but there were no significant differences in incidence rates of safety indicators. They might have similar tolerances. Sensitivity analyses that excluded low-quality trials and studies that exclusively enrolled patients with particular medical conditions did not alter these results. It was indicated that our results were statistically robust. Publication bias was not reported because the number of trials was less than 10 for each comparison. There were several limitations in this study. First, some comparisons and analyses could not be done, because the RCTs about them have not been done or published. Second, long-term safety needed to be further confirmed by long-term clinical trials. Finally, the quantity and sample size of the literatures were not perfect; the data were deficiency. Accordingly, the efficacy and safety of guselkumab needed to be discussed later.

In this meta-analysis, data were updated compared with prior reports. The subgroup analysis was not performed in this meta-analysis because the included trials were limited. This meta-analysis showed that guselkumab had good efficacy and safety in patients with moderate-to-severe plaque psoriasis and had a better efficacy than adalimumab without other adverse events. But long-term safety and the maintenance of efficacy remained to be determined; future studies should focus more on long-term follow-up.

#### Data Availability

This article does not involve any basic experiments and clinical investigations. It only requires a database search, and these data are public and free.

## **Conflicts of Interest**

All authors declare no conflicts of interest.

#### References

- [1] R. Talaee, Z. Hajheydari, A. Y. Moghaddam, S. A. Moraveji, and B. F. Ravandi, "Prevalence of oral mucosal lesions and their association with severity of psoriasis among psoriatic patients referred to dermatology clinic: a cross-sectional study in Kashan/Iran," *Open Access Macedonian Journal of Medical Sciences*, vol. 5, no. 7, pp. 978–982, 2017.
- [2] D. Kumar, J. P. Rajguru, D. Maya, P. Suri, S. Bhardwaj, and N. D. Patel, "Update on psoriasis: a review," *Journal of Family Medicine and Primary Care*, vol. 9, no. 1, pp. 20–24, 2020.
- [3] K. L. Goff, C. Karimkhani, L. N. Boyers et al., "The global burden of psoriatic skin disease," *The British Journal of Dermatol*ogy, vol. 172, no. 6, pp. 1665–1668, 2015.
- [4] G. E. Fragoulis, S. Siebert, and I. B. McInnes, "Therapeutic targeting of IL-17 and IL-23 cytokines in immune-mediated diseases," *Annual Review of Medicine*, vol. 67, no. 1, pp. 337–353, 2016.
- [5] V. Oji and T. A. Luger, "The skin in psoriasis: assessment and challenges," *Clinical and Experimental Rheumatology*, vol. 33, no. 5, Supplement 93, pp. S14–S19, 2015.
- [6] A. Nadeem, S. F. Ahmad, N. O. Al-Harbi et al., "Bruton's tyrosine kinase inhibitor suppresses imiquimod-induced psoriasislike inflammation in mice through regulation of IL-23/IL-17A in innate immune cells," *International Immunopharmacology*, vol. 80, p. 106215, 2020.

- [7] M. Marovt, P. B. Marko, M. Pirnat, and R. Ekart, "Effect of biologics targeting interleukin-23/-17 axis on subclinical atherosclerosis: results of a pilot study," *Clinical and Experimental Dermatology*, vol. 45, no. 5, pp. 560–564, 2020.
- [8] B. Filiz, M. Yildirim, K. H. Öztürk et al., "Evaluation of interleukin-23 receptor (IL-23R) gene polymorphisms and serum IL-23 levels in patients with psoriasis," *Turkish Journal Of Medical Sciences*, vol. 49, no. 5, pp. 1386–1394, 2019.
- [9] J. J. Crowley, R. B. Warren, and J. C. Cather, "Safety of selective IL-23p19 inhibitors for the treatment of psoriasis," *Journal of the European Academy of Dermatology and Venereology*, vol. 33, no. 9, pp. 1676–1684, 2019.
- [10] J. J. Wu and W. C. Valdecantos, "Adalimumab in chronic plaque psoriasis: a clinical guide," *Journal of Drugs in Dermatol*ogy, vol. 16, no. 8, pp. 779–790, 2017.
- [11] O. Nemoto, K. Hirose, S. Shibata, K. Li, and H. Kubo, "Safety and efficacy of guselkumab in Japanese patients with moderate-to-severe plaque psoriasis: a randomized, placebocontrolled, ascending-dose study," *The British Journal of Dermatology*, vol. 178, no. 3, pp. 689–696, 2018.
- [12] A. Deodhar, A. B. Gottlieb, W. H. Boehncke et al., "Efficacy and safety of guselkumab in patients with active psoriatic arthritis: a randomised, double-blind, placebo-controlled, phase 2 study," *The Lancet*, vol. 391, no. 10136, pp. 2213– 2224, 2018.
- [13] M. Ohtsuki, H. Kubo, H. Morishima, R. Goto, R. Zheng, and H. Nakagawa, "Guselkumab, an anti-interleukin-23 monoclonal antibody, for the treatment of moderate to severe plaquetype psoriasis in Japanese patients: efficacy and safety results from a phase 3, randomized, double-blind, placebocontrolled study," *The Journal of Dermatology*, vol. 45, no. 9, pp. 1053–1062, 2018.
- [14] K. A. Papp, M. Yang, M. Sundaram et al., "Comparison of adalimumab and etanercept for the treatment of moderate to severe psoriasis: an indirect comparison using individual patient data from randomized trials," *Value in Health*, vol. 21, no. 1, pp. 1–8, 2018.
- [15] L. M. Sawyer, K. Malottki, C. Sabry-Grant et al., "Assessing the relative efficacy of interleukin-17 and interleukin-23 targeted treatments for moderate-to-severe plaque psoriasis: a systematic review and network meta-analysis of PASI response," *PLoS One*, vol. 14, no. 8, article e0220868, 2019.
- [16] K. B. Gordon, K. C. Duffin, R. Bissonnette et al., "A phase 2 trial of guselkumab versus adalimumab for plaque psoriasis," *The New England Journal of Medicine*, vol. 373, no. 2, pp. 136–144, 2015.
- [17] H. Sofen, S. Smith, R. T. Matheson et al., "Guselkumab (an IL-23-specific mAb) demonstrates clinical and molecular response in patients with moderate-to-severe psoriasis," *The Journal of Allergy and Clinical Immunology*, vol. 133, no. 4, pp. 1032–1040, 2014.
- [18] K. Reich, A. W. Armstrong, P. Foley et al., "Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the treatment of patients with moderate to severe psoriasis with randomized withdrawal and retreatment: results from the phase III, double-blind, placeboand active comparator-controlled VOYAGE 2 trial," *Journal of the American Academy of Dermatology*, vol. 76, no. 3, pp. 418– 431, 2017.
- [19] A. Blauvelt, K. A. Papp, C. E. Griffiths et al., "Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the continuous

treatment of patients with moderate to severe psoriasis: results from the phase III, double-blinded, placebo- and active comparator-controlled VOYAGE 1 trial," *Journal of the American Academy of Dermatology*, vol. 76, no. 3, pp. 405–417, 2017.

- [20] J. R. Chan, W. Blumenschein, E. Murphy et al., "IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis," *The Journal of Experimental Medicine*, vol. 203, no. 12, pp. 2577–2587, 2006.
- [21] M. Elliott, J. Benson, M. Blank et al., "Ustekinumab: lessons learned from targeting interleukin-12/23p40 in immunemediated diseases," *Annals of the New York Academy of Sciences*, vol. 1182, no. 1, pp. 97–110, 2009.
- [22] A. A. Levin and A. B. Gottlieb, "Specific targeting of interleukin-23p19 as effective treatment for psoriasis," *Journal* of the American Academy of Dermatology, vol. 70, no. 3, pp. 555–561, 2014.
- [23] S. Xu, X. Zhang, M. Pan, Z. Shuai, S. Xu, and F. Pan, "Treatment of plaque psoriasis with IL-23p19 blockers: a systematic review and meta-analysis," *International Immunopharmacol*ogy, vol. 75, p. 105841, 2019.
- [24] M. Ohtsuki, H. Fujita, M. Watanabe et al., "Efficacy and safety of risankizumab in Japanese patients with moderate to severe plaque psoriasis: results from the SustaIMMphase 2/3 trial," *The Journal of Dermatology*, vol. 46, no. 8, pp. 686–694, 2019.
- [25] K. Reich, M. Gooderham, D. Thaçi et al., "Risankizumab compared with adalimumab in patients with moderate-to-severe plaque psoriasis (IMMvent): a randomised, double-blind, active-comparator-controlled phase 3 trial," *The Lancet*, vol. 394, no. 10198, pp. 576–586, 2019.
- [26] K. Papp, D. Thaçi, D. Marcoux et al., "Efficacy and safety of adalimumab every other week versus methotrexate once weekly in children and adolescents with severe chronic plaque psoriasis: a randomised, double-blind, phase 3 trial," *The Lancet*, vol. 390, no. 10089, pp. 40–49, 2017.