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Abstract

Objective—We determined the effects of fructose and glucose consumption on plasma acylation 

stimulating protein (ASP), adiponectin, and leptin concentrations relative to energy intake, body 

weight, adiposity, circulating triglycerides, and insulin sensitivity.

Design and Methods—32 overweight/obese adults consumed glucose- or fructose-sweetened 

beverages (25% energy requirement) with their ad libitum diets for 8 weeks, followed by 

sweetened beverage consumption for 2 weeks with a standardized, energy-balanced diet. Plasma 

variables were measured at baseline, 2, 8 and 10 weeks, and body adiposity and insulin sensitivity 

at baseline and 10 weeks.

Results—Fasting and postprandial ASP concentrations increased at 2 and/or 8 weeks. ASP 

increases correlated with changes in late-evening triglyceride concentrations. At 10 weeks, fasting 

adiponectin levels decreased in both groups, and decreases were inversely associated with baseline 

intra-abdominal fat volume. Sugar consumption increased fasting leptin concentrations; increases 

were associated with body weight changes. 24-h leptin profiles increased during glucose 
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consumption and decreased during fructose consumption. These changes correlated with changes 

of 24-h insulin levels.

Conclusions—The consumption of fructose and glucose beverages induced changes in plasma 

concentrations of ASP, adiponectin and leptin. Further study is required to determine if these 

changes contribute to the metabolic dysfunction observed during fructose consumption.
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Introduction

Consumption of fructose at 25% of energy requirement for 10 weeks increased de novo 

lipogenesis (DNL), increased visceral adipose deposition, promoted lipid dysregulation, and 

decreased insulin sensitivity in older, overweight/obese men and women (1). These adverse 

effects were not observed in subjects consuming glucose, even though they gained the same 

amount of weight as the subjects consuming fructose (~1.4 kg) (1). These results are 

important because they illustrate that the major dietary sugars, fructose and glucose, have 

markedly different metabolic effects in humans, and that the differences are independent of 

weight gain.

It is well known that the circulating concentrations of acylation stimulating hormone (ASP), 

leptin and adiponectin; adipocyte hormones which are regulators of lipid metabolism and/or 

insulin sensitivity; are affected by changes in body weight and by body fat mass and 

distribution (2,3). Less is known about their modulation in response to the macronutrient 

content of the diet, and sugars in particular. The primary objective of this study was to 

determine the effects of fructose and glucose consumption on circulating ASP, adiponectin, 

and leptin levels in the same subjects who consumed 25% of energy requirement as 

fructose- or glucose-sweetened beverages for 10 weeks (1). As a secondary objective, we 

also investigated how the effects of fructose and glucose on these hormones related to the 

previously reported (1) changes in energy balance, body adiposity, circulating lipids, and 

insulin sensitivity in these subjects.

ASP is identical to the immune complement pathway cleavage product C3a-des-Arg, and is 

produced through interaction of three proteins of the alternate complement system; C3, 

factor B, and adipsin (factor D); all of which are synthesized and secreted by adipocytes (3). 

ASP increases triglyceride (TG) synthesis in adipose tissue through (i) increasing glucose 

transport via translocation of glucose transporters Glut 1, 2, and 3 (4); (ii) stimulating fatty 

acid uptake and esterification (3); (iii) increasing the activity of enzymes related to fat 

storage, such as diacylglycerol-acyltransferase (5), (iv) inhibiting hormone sensitive lipase 

(6) and thereby (v) enhancing the efficiency of lipoprotein lipase (LPL) (7,8) by reducing 

fatty acid inhibition. Adiposity is an important determinant of circulating ASP levels, which 

are elevated in obese subjects (9) and decrease with weight loss (10). However, this is not 

the only determinant as patients with metabolic dysfunction, such as type 2 diabetes, 

cardiovascular disease or polycystic ovary disease, have increased ASP even in the absence 

of obesity (11,12,13). We hypothesize that, because subjects consuming fructose exhibited 
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both increased weight gain and increased metabolic dysfunction, consumption of fructose 

will increase levels of ASP more than consumption of glucose. As there is little information 

available regarding the responses to of ASP to macronutrients, both fasting and postprandial 

states were evaluated.

Adiponectin has insulin-sensitizing properties that appear to be mediated in part by its 

effects to activate AMP kinase, increase fatty acid oxidation and decrease ectopic fat 

accumulation (14). Adiponectin has also been described as having anti-atherogenic and anti-

inflammatory properties (15). It prevents obesity-induced endothelial dysfunction by 

promoting nitric oxide production, suppresses activation and promotes repair of endothelial 

cells, and inhibits reactive oxygen species and apoptosis (16). Unlike ASP, circulating 

adiponectin concentrations are lowered in obese animals and humans, and are inversely 

correlated with visceral adipose tissue, but change little over the course of a day (17,14). We 

hypothesize that, because consumption of fructose increased accumulation of visceral 

adipose, subjects consuming fructose will have greater decreases of adiponectin than 

subjects consuming glucose.

Leptin is a key regulator of energy homeostasis (18,19) that, along with insulin, acts in the 

hypothalamus and other areas of the brain to reduce energy intake and increase energy 

expenditure. Leptin can affect insulin sensitivity and this may be mediated by its effects to 

stimulate fatty acid oxidation, thus attenuating lipid accumulation in peripheral tissue (2). 

Like ASP, circulating leptin concentrations are positively associated with increased body 

adiposity (18). However, in vitro studies in isolated adipocytes (20) and in vivo studies in 

humans (21,22) have demonstrated that production of the adipocyte hormone leptin is 

strongly regulated by insulin-mediated glucose metabolism. Consumption of fructose 

compared to glucose results in lowered postprandial glucose and insulin excursions, 

therefore in short term studies, the 24-hour leptin area under the curve (AUC) was reduced 

by 25–30% when normal weight women (23) and overweight men and women (24) 

consumed meals accompanied with fructose-compared with glucose-sweetened beverages. 

Thus, we hypothesize that sustained fructose consumption will lower 24-h circulating leptin 

profiles compared with sustained glucose consumption. However, because both groups of 

subjects gained comparable amounts of body fat, we expect that they will have comparably 

increased fasting leptin concentrations.

Methods and Procedures

Study design

The study design and methodology have been previously described (1) and are detailed on 

the online supplement. Briefly, during the baseline phase of the study, subjects resided in the 

UCD Clinical and Translational Science Center's Clinical Research Center (CCRC) for 2 

weeks and consumed an energy-balanced diet which provided their calculated daily energy 

requirement as 55% of energy (E) as complex carbohydrate, 30%E as fat, 15%E as protein. 

Procedures conducted during the baseline CCRC visit included DXA scans for 

quantification of total body fat, abdominal computerized tomography scans for 

quantification of total, extra- and intra- abdominal fat area, oral glucose tolerance tests with 

deuterated glucose disposal for assessment of insulin sensitivity, and 24-h serial blood 
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collections. Subjects then began the 10-week intervention while residing at their homes and 

consuming either fructose- (n=17) or glucose-sweetened (n=15) beverages at 25% of energy 

requirements with self-selected ad libitum diets. The subjects returned to the CCRC after 2 

outpatient weeks for a 2-day inpatient stay and after 8 outpatient weeks for a 2-week 

inpatient stay. During these inpatient stays, the glucose- or fructose-sweetened beverages 

were consumed as part of an energy-balanced diet which provided 25%E as sugar, 30%E as 

complex carbohydrate, 30%E as fat, 15%E as protein. 24-h serial blood collections were 

conducted during baseline (0wk) and after 2, 8 and 10 weeks (2wk, 8wk, 10wk) of dietary 

intervention and a detailed description of the procedure is available on the online 

supplement. All other experimental procedures conducted during baseline were repeated 

during the final 2 weeks of inpatient intervention.

Subjects

The subjects were men and postmenopausal women, 40 to 72 years of age with BMIs of 25–

35 kg/m2. The race/ethnicity of the 32 subjects were: 29 White (5 Hispanic, 24 not 

Hispanic); 3 African American. Details concerning recruitment and inclusion/exclusion 

criteria have been previously reported (1) and are available on the online supplement. The 

subjects provided informed written consent and the study protocol was approved the 

Institutional Review Board of the University of California, Davis.

Plasma Assays

Plasma concentrations of fasting ASP, adiponectin, and leptin were measured in plasma 

samples collected or pooled from the 8:00, 8:30, 9:00-h timepoints of the 24-h serial blood 

collections. Postprandial concentrations of ASP were measured in samples pooled from the 

22:00, 23:00, 23:30-h timepoints. Leptin concentrations were measured in samples collected 

from all 33 postprandial timepoints and the incremental 24-h AUC over the morning nadir 

was calculated by the trapezoidal method (23). Plasma ASP was measured as described in 

supplementary methods with details provided as published previously (25,26). Leptin, 

adiponectin, and insulin were measured by radioimmunoassay (Millipore Inc., St. Charles, 

MO). TG concentrations were determined with a Polychem Chemistry Analyzer 

(PolyMedCo, Inc., Cortdland, NY).

Statistical analysis

The absolute change (Δ at 2wk, 8wk, 10wk when the diet contained 25%E as fructose or 

glucose and 30%E as complex carbohydrate compared with 0wk when the diet contained 

55%E as complex carbohydrate) for each outcome was analyzed with SAS 9.3 (SAS, Cary, 

NC) in a mixed procedures (PROC MIXED), repeated measures (RM) model with time, 

sugar, gender and metabolic syndrome risk factors (MSRF) as factors. MSRF were those 

defined by the American Heart Association/National Heart Lung and Blood Institute (27), 

with subjects grouped into 2 levels of MSRF (0 and 1 MSRF vs 2 and 3 MSRF). All models 

included adjustment for outcome concentration at 0wk (baseline). Insignificant 3-way and 4-

way interactions were removed if they decreased the precision of the model (F statistic < 1). 

Outcomes that were significantly affected by glucose or fructose consumption were 

identified as least squares means (LS means) of the change significantly different than zero. 

Rezvani et al. Page 4

Obesity (Silver Spring). Author manuscript; available in PMC 2014 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



All outcomes were tested with the following continuous covariables: baseline value of 

outcome, the change (10wk – 0 wk) of %body fat, total, extra-, and intra-abdominal fat, and 

insulin sensitivity index. The following time-level covariables were also tested: absolute 

change (Δ at 2wk, 8wk, and 10wk compared with 0wk) of body weight (ΔBW), previous 

day's energy intake, late-evening TG concentrations, and 24-h insulin AUC. Outcomes with 

significant interactions were further analyzed in sugar- or gender-specific RM models. 

Values are reported as mean ± standard error (SEM). A P<0.05 was considered statistically 

significant for all analyses.

Results

Baseline characteristics of the subjects have been previously reported and are available on 

the online supplement (Table S1). The absolute values of outcomes and covariables at all 

measured timepoints are provided in Table 1. There were no significant differences between 

the 2 experimental groups in any of the measured anthropomorphic characteristics or 

metabolic parameters at baseline. The P-values of the associations of anthropometric and 

metabolic parameter with sugar-induced changes (Δ) in adipocyte hormone concentrations 

are shown on the online supplement (Table S2).

Both fasting (Figure 1A) and postprandial (Figure 1B) ASP concentrations were increased 

during consumption of fructose at 2wk (Fasting: P=0.0006; Postprandial: P=0.0015) and 

8wk (Fasting: P=0.0007; Postprandial: P=0.0007), but not at 10wk. Fasting (P=0.031) and 

postprandial (P=0.020) ASP concentrations were increased during consumption of glucose 

at 8wk only. The trend for ASP levels to be higher at 2wk and 8wk was significant in the 

postprandial state (P=0.0029, effect of time), and nearly so in the fasting state (P=0.054). 

The Δfasting and postprandial ASP were not significantly affected by sugar (Fasting: 

P=0.16; Postprandial: P=0.29).

The effects of gender (P=0.47) and MSRF (P=0.12) on Rfasting ASP were not significant, 

however the effect of plasma ASP concentrations at baseline was highly significant 

(P<0.0001). When subjects were divided into 2 equal groups based on baseline ASP 

concentrations, subjects with low ASP concentrations (<7.0 nmol/mL) had markedly higher 

increases of fasting ASP at 2wk (+9.1±1.3 vs −1.6±1.5 nmol/mL, P<0.0001) and 8wk 

(+8.5±1.1 vs −0.5±1.5 nmol/mL, P<0.0001) than subjects with high baseline ASP 

concentrations.

Subjects with 0–1 metabolic syndrome risk factors (MSRF) had greater increases of 

postprandial ASP levels at all three intervention time-points than subjects with 2–3 MSRF 

(P=0.019). The effect of MSRF was independent of the effect of baseline postprandial ASP 

concentrations, which, as with fasting ASP, were inversely associated with Δpostprandial 

ASP (P=0.0007). In the postprandial state, the effect of gender (P=0.058) was nearly 

significant, and there was a significant sugar × gender × time effect (P=0.045), due to the 

women consuming fructose having larger increases of ASP than the men consuming 

fructose.
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The sugar-specific models demonstrate that the significant effects of time and MSRF on 

Δpostprandial ASP in the 2-sugar model were mainly mediated by consumption of fructose. 

In the glucose-specific model the effects of time (P=0.24), MSRF (P=0.98), and MSRF × 

time (P=0.88) were not significant (Figure 2A), nor were the effects of gender (P=0.83) and 

gender × time (P=0.79) (Figure 2C). In the fructose-specific model the effects of time 

(P=0.0003), MSRF (P=0.0087), and MSRF × time (P=0.0005) were all statistically 

significant (Figure 2B), as were the effects of gender (P=0.045) and gender × time 

(P=0.0004) (Figure 2D).

In pursuing our secondary objective, three time-level covariates were tested, and Δfasting 

ASP was significantly associated with Δlate-evening TG concentrations (P=0.0051), but not 

with Δbody weight or previous day's energy intake (Table S2). Simple regression analysis 

shows (Figure 1C) that the subjects with larger increases of the late evening TG peaks had 

greater increases of fasting ASP concentrations (r=0.510, P<0.0001). The Δlate-evening TG 

concentrations (P=0.046) was also a significant contributor to the variations in postprandial 

ASP. None of the continuous covariates tested in the model (the Δ%body fat, total, extra-, 

intra-abdominal fat, insulin sensitivity index (10wk – 0 wk)) were associated with Δfasting 

or postprandial ASP (Table S2).

The Δfasting plasma adiponectin concentrations (Figure 3A) was not significantly affected 

by sugar (P=0.10), MSRF (P=0.37) or gender (P=0.087), but was affected by time 

(P<0.001). Compared to baseline (0wk) levels, adiponectin concentrations in subjects 

consuming glucose were increased at 2wk (P=0.023), and decreased at 10wk (P=0.028). 

Circulating adiponectin concentrations were unchanged at 2wk (P=0.77) and decreased at 

10wk (P=0.0011) in subjects consuming fructose. There was a significant effect of sugar × 

gender × time (P=0.039). Gender-specific models showed a significant effect of sugar × 

time in women (Figure 3B; P=0.0011), but not in men (Figure 3C; P=0.57), with women 

consuming glucose having larger increases of plasma adiponectin concentrations at 2wk and 

8wk than at 10wk. (P=0.0014).

The Δfasting plasma adiponectin concentration was also significantly affected by fasting 

adiponectin concentrations at baseline (P=0.0014). Subjects with high baseline levels of 

adiponectin (>7 ug/ml) exhibited greater decreases (−1.5±0.4 ug/ml) of circulating 

adiponectin at 10wk than subjects with low baseline levels (−0.5±0.2 ug/ml, P=0.018).

The Δfasting adiponectin concentrations was influenced by total (P=0.024) and intra-

abdominal (P=0.036) fat volume at baseline (Table S2). The subjects with lower baseline 

levels of total and intra-abdominal fat exhibited the greater decreases in adiponectin. These 

adiposity associations with adiponectin were independent of baseline adiponectin 

concentration, which remained a significant covariate in both models (Total fat: P<0.0001; 

Intra-abdominal fat: P=0.0015). Simple regression showed that the relationship between 

baseline intra-abdominal fat and the Δadiponectin was especially strong at 10wk (P=0.0004, 

r=0.59, Figure 3D).

Both subjects consuming fructose (8wk: P=0.0081; 10wk: P=0.027) or glucose (8wk: 

P=0.023; 10wk: P=0.032) had significantly increased fasting leptin concentrations at 8wk 
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and 10wk (Figure 4), and this change was not significantly affected by sugar (P=0.84), time 

(P=0.36), MSRF (P=0.84), or gender (P=0.44). The Δfasting leptin was significantly 

affected by the Δbody weight (P=0.014); subjects gaining the most weight had the largest 

increases of leptin. The Δ%body fat from 0wk to 10wk was a marginally significant 

contributor to the Δfasting leptin (P=0.055), while the changes and baseline levels of total, 

extra-, and intra-abdominal fat were not (Table S2).

The Δpostprandial leptin was significantly affected by sugar (P=0.026) with subjects 

consuming glucose tending to have increased and subjects consuming fructose tending to 

have decreased 24-h leptin AUCs compared to when they consumed the baseline complex 

carbohydrate diet (Figure 5). The Δleptin AUC was not affected by time (P=0.51), MSRF 

(P=0.56), or gender (P=0.24) (Table 1). The Δ%body fat (P=0.031) contributed significantly 

to the Δleptin AUC, and simple regression showed there was a strong positive relationship at 

10wk (r=0.39; P=0.0015). The Δ24-h insulin AUC significantly affected the Δ24-h leptin 

AUC (P=0.0035), while completely negating the significant effect of sugar (P=0.70) and 

lessening the effect of Δ%body fat (P=0.093). Simple regression, including all 3 intervention 

timepoints (Figure 5D), showed the expected positive relationship between the Δleptin and 

insulin AUCs (P<0.0001, r=0.40).

DISCUSSION

In this study we examined circulating concentrations of the adipocyte hormones; ASP, 

leptin, and adiponectin; in relationship with dietary effects and metabolic consequences of 

10-week fructose and glucose consumption in overweight and obese men and women. We 

had hypothesized that, because subjects consuming fructose exhibited both increased weight 

gain and metabolic dysfunction, including marked increases of postprandial TG, 

consumption of fructose would increase levels of ASP more than consumption of glucose. 

We found that plasma ASP levels were markedly increased during consumption of fructose 

at 2wk and 8wk, but not at 10wk. Consumption of glucose also resulted in significant, 

although less marked, increases in ASP at 8wk.

Our further investigation of how the effects of fructose and glucose on ASP related to the 

previously reported (1) changes in energy balance, body adiposity, circulating lipids, and 

insulin sensitivity in these subjects revealed that the changes in both fasting and postprandial 

ASP were associated with the changes of late-evening TG concentrations. Along with LPL 

and insulin, ASP has an important role in TG clearance from the blood for storage in adipose 

tissue. Principally, ASP stimulates reesterification of fatty acids for synthesis of TG within 

the adipocyte. The positive association between the changes in ASP and postprandial TG 

levels suggest that postprandial TG may be involved in the regulation of ASP production, 

and this is supported by evidence from in vitro studies which demonstrates that 

chylomicrons increase ASP production while VLDLs have minimal effect (28). We have 

suggested several mechanisms for the increased levels of postprandial TG in subjects 

consuming fructose including (1).1. Increased DNL from fructose, which increases hepatic 

lipid and VLDL production and secretion. 2. Decreased LPL activity due to lowered post-

meal insulin responses. 3. Competition between very low density lipoprotein (VLDL) and 

chylomicron for LPL binding sites. We also suggested that positive energy balance 
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contributed to the increases in postprandial TG at 2 and 8wk (1). It is not known which, if 

any, of these mechanisms explain the association between the changes of ASP and 

postprandial TG. Little is known about the regulation of ASP by circulating lipids/

lipoproteins in vivo. The significant increases of postprandial ASP at 2 and 8wk in subjects 

consuming fructose, and the lack of increase at 10wk when they were consuming the 

energy-balanced diet, suggest that positive energy balance may augment the effects of 

postprandial TG to increase ASP.

The very few studies that have investigated acute or chronic effects of macronutrients on 

human ASP concentration suggest ASP-mediated non-esterified fatty acids (NEFA) trapping 

(and re-esterification) could be an important determinant of a healthy lipoprotein phenotype 

(29). In hypercholesterolemic women, a diet high in trans fatty acids decreased fasting ASP 

levels compared with a diet high in polyunsaturated fatty acids and the decrease was 

associated with reduced clearance of fatty acids and higher levels of apolipoprotein B (30). 

In 141 healthy men and women, the acute ASP response to a high fat/high-energy meal 

significantly predicted postprandial TG and NEFA clearance, and both ASP response and 

lipid clearance were inversely related to fasting plasma ASP levels (31). Thus, the subjects 

with low plasma ASP concentrations had increased ASP response to an oral fat challenge 

compared with subjects with high ASP levels. The present data are in accord with these 

acute effects, in that the subjects with low fasting ASP levels had significantly higher 

increases of ASP after 2 and 8 weeks exposure to fructose-induced postprandial 

hypertriglyceridemia than the subjects with high fasting ASP levels. Interestingly, the 

present data also show that subjects consuming fructose with 0–1 metabolic syndrome risk 

factors (MSRF) had higher postprandial ASP responses than those with 2–3 MSRF, and the 

effect of MSRF was independent of the effect of baseline postprandial ASP concentrations. 

These results support the suggestion that ASP-mediated NEFA trapping could be associated 

with a healthy lipoprotein phenotype. Also supportive is a recent report that the adipose gene 

expression of factors related to lipid uptake and processing; such as ASP, LPL, low density 

lipoprotein receptor protein 1, and fatty acid binding protein 4; were lower in morbidly 

obese patients than in lean healthy persons (32). Thus, although obesity results in high levels 

of circulating ASP, high ASP responses to diets that increase levels of TG may be an 

adaptation that helps maintain metabolic equilibrium.

Circulating adiponectin concentrations are known to be inversely correlated with visceral 

adipose tissue (14), therefore we had hypothesized that, because subjects consuming 

fructose had increased accumulation of visceral adipose, they would have greater decreases 

of adiponectin than subjects consuming glucose. We found that fasting adiponectin 

concentrations were significantly decreased at 10wk in both groups of subjects, although 

there was a small, but significant increase of adiponectin at 2wk in subjects consuming 

glucose. As reviewed (14), there is evidence to suggest that adiponectin production by 

adipocytes may be regulated by insulin-stimulated glucose utilization. In 3T3-L1 cells, 

adiponectin production increased following insulin and high glucose treatment (33), and 

adiponectin mRNA increased with augmented insulin-stimulated glucose uptake (34). Thus, 

the regulation of adiponectin production by insulin-stimulated glucose utilization may 

possibly explain the significant increase of adiponectin levels during consumption of 
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glucose, but not fructose, at 2wk. The reversal of this effect, and the significant decrease in 

adiponectin measured in both groups of subjects at 10wk could be attributed to their 

comparable weight gain as it is well documented that adiponectin levels are inversely related 

to adiposity. However, weight gain does not always result in reduced adiponectin levels. 

Young, healthy subjects, who gained approximately 6 kg in 4 weeks by increasing fast food 

consumption and decreasing exercise, had increased levels of fasting insulin, leptin and C 

reactive protein, but plasma adiponectin levels were unchanged (35).

Our further investigation of how the effects of fructose and glucose on circulating 

adiponectin related to the previously reported (1) changes in energy balance, body adiposity, 

circulating lipids, and insulin sensitivity in these subjects revealed that the changes of 

visceral fat did not correlate with the changes of adiponectin. Instead, baseline levels of 

abdominal and visceral adiposity were significant contributors, with higher levels of 

abdominal and visceral adiposity being more protective against decreases of adiponectin 

than lower levels. Similarly, low baseline adiponectin concentrations were associated with 

smaller decreases of adiponectin. A potential explanation for these surprising, independent 

relationships is visceral adipocyte size. As reviewed by Swarbrick and Havel (14), there is 

evidence to suggest that visceral adipocytes, which have been shown to produce more 

adiponectin than subcutaneous adipocytes, become less insulin-sensitive and secrete less 

adiponectin as they enlarge. It is possible that the healthier subjects in this study, with higher 

baseline concentrations of adiponectin and lower amounts of visceral adipose, had small, 

insulin-sensitive visceral adipocytes that had capacity for further enlargement as body 

weight and fat increased. With enlargement these visceral adipocytes became less insulin-

sensitive and produced less adiponectin. In contrast, the subjects with lower baseline 

adiponectin concentrations and higher levels of visceral adipose had larger, more insulin 

resistant visceral adipocytes. These larger adipocytes may have been less responsive to 

weight and fat gain because they had limited capacity for further enlargement and 

adiponectin production was already at a low level.

Recently it was reported that higher circulating adiponectin levels predicted weight gain in 

the participants in the Nurses' Health Study (36). The authors suggested that high 

adiponectin production by adipocytes might be a sign of “healthy” adipose tissue with 

further capacity to store fat. However, in two other studies, higher baseline adiponectin 

concentrations were predictive of greater loss of weight and body fat in morbidly obese 

subjects after Roux-en-Y gastric bypass surgery (37,38). Clearly, more research is needed to 

understand the role of adiponectin concentrations in predisposition to weight loss and weight 

gain under dynamic conditions.

Circulating leptin concentrations are well known to be positively associated with increased 

body adiposity. Therefore, we had hypothesized, that because the two groups of subjects 

gained comparable amounts of total body fat, that they would exhibit comparable increases 

of fasting leptin concentrations. The results supported this hypothesis; leptin concentrations 

increased in both groups of subjects. Our further investigation of how the effects of fructose 

and glucose on fasting leptin concentrations related to the previously reported (1) changes in 

anthropometrics showed that the increases of fasting leptin concentrations were significantly 

and positively associated with the changes of body weight. Of the 2-timepoint covariates, 
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the change in total body fat (10wk – 0wk) showed a marginally significant and much 

stronger relationship to the changes of fasting leptin than the changes in total, intra- and 

extra-abdominal adipose. This is expected as it has been previously reported that leptin 

secretion (39) is higher in subcutaneous adipose samples compared to visceral samples from 

the same subjects.

We hypothesized that sustained fructose consumption would lower 24-h circulating leptin 

profiles compared with sustained glucose consumption and the results supported this 

hypothesis. The 24-h circulating leptin profiles were significantly affected by the 2 sugars, 

in that consumption of glucose tended to increase and consumption of fructose tended to 

decrease 24-h leptin AUC. We have previously shown this differential effect of glucose and 

fructose consumption on 24-hour circulating leptin profiles in normal-weight women (23) 

and in overweight men and women (24) who consumed glucose- or fructose-sweetened 

beverages with meals for one day. To our knowledge this is the first study to document that 

the differential effects of fructose and glucose on 24-hour circulating leptin concentrations 

are sustained during longer term (10 weeks) consumption of the 2 sugars.

When designing this study, we had hypothesized that lowered 24-h leptin concentrations 

would lead to increased energy intake and/or decreased energy expenditure and weight gain 

in subjects consuming fructose compared to those consuming glucose. To test this 

hypothesis, we included in the study protocol the 8-week outpatient period during which 

subjects consumed their usual diets ad libitum along with the glucose- or fructose-sweetened 

beverages. It is interesting that 24-h circulating leptin levels were lowered in subjects 

consuming fructose compared with those consuming glucose, yet there were no differences 

in reported energy intake or weight gain between the 2 groups.

Because we have reported that insulin-stimulated glucose utilization mediates leptin 

production and secretion by adipocytes (20), we further investigated how the effects of 

fructose and glucose on 24-h leptin AUC related to the changes of 24-h glucose and insulin 

AUC, and the amplitude of the post-meal glucose and insulin peaks. We have previously 

reported that these parameters were increased in the subjects consuming glucose and 

decreased in the subjects consuming fructose (40). These results showed that 24-h insulin 

AUC was positively associated with 24-h leptin AUC, and that the differential effects of 

fructose and glucose on circulating leptin profiles were dependent on their differential 

effects on 24-h circulating insulin profiles (AUCs).

In this study, long-term sugar consumption with ad libitum feeding led to changes in 

circulating levels of three different adipocyte hormones, ASP, adiponectin, and fasting and 

postprandial leptin. The changes of each of these hormones were associated with specific 

and distinct metabolic parameters. Fasting and postprandial ASP were associated with 

postprandial TG, adiponectin with baseline abdominal and visceral fat, fasting leptin with 

body weight, and 24-h leptin profiles with 24-h circulating insulin concentrations. More 

research is needed to determine if the observed changes of these adipocyte hormones 

contribute to multiple metabolic derangements induced by consumption of fructose.
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Figure 1. Effects of glucose or fructose consumption on fasting and postprandial plasma ASP 
concentrations
Changes (Δ) at 2wk, 8wk and 10wk compared to baseline (0wk) in the fasting (A) and 

postprandial (B) ASP levels of subjects who consumed 25% of energy requirement as either 

glucose (n=15) or fructose-sweetened beverages (n=17). Effect of: Time** p<0.01 in PROC 

MIXED 4-factor (sugar, time, gender, MSRF) repeated measures (RM) model with outcome 

at 0wk (OutcomeB) as continuous covariable. *P<0.05, **P<0.01, ***P<0.001, Least 

squares mean of the change different from zero. Results are presented as mean ± SEM. (C) 

Correlation between change (Δ) in fasting ASP and change (Δ) in late-evening 

(postprandial) triglyceride (TG) at 2wk, 8wk and 10wk .
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Figure 2. Effects of metabolic syndrome risk factors (MSRF) and gender on the changes in 
postprandial plasma ASP concentrations in subjects consuming glucose or fructose
Changes at 2wk, 8wk and 10wk compared to baseline (0wk) in postprandial ASP levels of 

subjects grouped by number of MSRF during consumption of glucose (A) (n=15) or 

fructose-sweetened beverages (B) (n=17). Changes at 2wk, 8wk and 10wk compared to 

baseline (0wk) in postprandial ASP levels of subjects grouped by gender during 

consumption of glucose (C) (n=15) or fructose-sweetened beverages (D) (n=17). Effect of: 

Time*** p<0.001, MSRF* p<0.05, MSRF × time*** p<0.001, gender* p<0.05, gender × 

time*** p<0.001 in sugar-specific PROC MIXED 3-factor (time, gender, MSRF) RM model 

with outcome at 0wk as continuous covariable. **P<0.01, ***P<0.001, ****P<0.0001, 

Least squares mean of the change different from zero.
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Figure 3. Effects of glucose or fructose consumption on fasting plasma adiponectin 
concentrations in overweight and obese subjects
Changes (Δ) at 2wk, 8wk and 10wk compared to baseline (0wk) in the fasting (A) 

adiponectin levels of subjects who consumed 25% of energy requirement as either glucose 

(n=15) or fructose-sweetened beverages (n=17). Effect of: Time**** P<0.0001 in PROC 

MIXED 4-factor (sugar, time, gender, MSRF) RM model with outcome at 0wk as 

continuous covariable. *P<0.05, **P<0.01, Least squares mean of the change different from 

zero. Changes at 2wk, 8wk and 10wk compared to baseline (0wk) in fasting adiponectin 

levels of women (B) and men (C) during consumption of glucose (n=15) or fructose-

sweetened beverages (B). Effect of: Time** P<0.05, Time**** P<0.0001, Sugar × time*** 

P<0.001 in gender-specific PROC MIXED 3-factor (time, sugar, MSRF) RM model with 

outcome at 0wk as continuous covariable. *P<0.05, Least squares mean of the change 

different from zero. Results are presented as mean ± SEM. (D) Correlation between the 

10wk changes (Δ) in fasting adiponectin and baseline intra-abdominal fat volume.
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Figure 4. Effects of glucose or fructose consumption on fasting leptin concentrations
Changes (Δ) at 2wk, 8wk and 10wk compared to baseline (0wk) in the fasting leptin levels 

of subjects who consumed 25% of energy requirement as either glucose (n=15) or fructose-

sweetened beverages (n=17). PROC MIXED 4-factor (sugar, time, gender, MSRF) RM 

model with outcome at 0wk as continuous covariable. *P<0.05, Least squares mean of the 

change different from zero.
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Figure 5. Effects of glucose or fructose consumption on 24-h leptin profiles
24-h circulating TG concentrations in subjects before and after 2, 8, and 10 weeks of 

consuming glucose-sweetened beverages (A) (n=14) or fructose-sweetened beverages (B) 

(n=17). (C) Changes (Δ) at 2wk, 8wk and 10wk compared to baseline (0wk) in the 24-h 

leptin AUCs of the subjects who consumed glucose or fructose-sweetened beverages. Effect 

of: Sugar* P < 0.05 in PROC MIXED 4-factor (sugar, time, gender, MSRF) RM model. 

Mean ± SEM. (D) Correlation between changes (Δ) in 24-h leptin AUC and 24-h insulin 

AUC at 2wk, 8wk and 10wk.
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Table 1

Outcome and covariable concentrations before and after consumption of glucose- or fructose-sweetened 

beverages

Variable Sugar (n)
Complex Carb 

0 wk Sugar 2 wk Sugar 8 wk Sugar 10 wk

Factors/interactions/covariable P valuePreceding diet Energy balance Ad libitum Ad libitum Energy balance

Fasting ASP
A

Glucose (n=15) 9.8 ± 1.4 11.3 ± 1.3 12.0 ± 1.3
B

9.7 ± 1.3 Sugar 0.16

(nmol/l) Fructose (n=17) 7.0 ± 0.8 12.7 ± 1.3
C

12.6 ± 1.1
C

9.0 ± 0.9 Gender 0.47

MSRF 0.12

OutcomesB <0.0001

Postprandial ASP
A

Glucose (n=14)
G

9.7 ± 1.2 11.6 ± 1.4 13.6 ± 1.7
B

10.7 ± 1.4 Sugar 0.29

(nmol/l) Fructose (n=17) 9.2 ± 1.3 14.4 ± 1.8
D

14.0± 1.6
D

8.9 ± 1.1 Gender 0.058

MSRF 0.019

Sugar×Gender×t 0.045

OutcomeB 0.0007

Fasting Adiponectin
A

Glucose (n=14)
G

7.7 ± 1.1 8.6 ± 1.2
B

8.1 ± 1.2 7.0 ± 1.1
B

Sugar 0.1000

(ug/ml) Fructose (n=17) 8.1 ± 1.2 8.2 ± 1.0 7.9 ± 1.1 6.9± 1.0
C

Gender 0.087

MSRF 0.37

Sugar×Gender×t 0.039

OutcomeB 0.0014

Fasting Leptin
A

Glucose (n=15) 18.3 ± 3.5 19.6 ± 3.2 20.2 ± 3.4
B

19.7 ± 3.4
B

Sugar 0.84

(ng/ml) Fructose (n=17) 17.3 ± 3.5 18.7 ± 3.1 19.3 ± 3.7
B

18.2 ± 3.5
B

Gender 0.46

MSRF 0.84

OutcomeB 0.072

24-h Leptin AUC
A

Glucose (n=14) 71.2 ± 10.6 83.1 ± 21.3 81.0 ± 13.6 84.8 ± 15.9 Sugar 0.026

(ng/ml × 24-h) Fructose (n=17) 78.9 ± 11.3 51.8 ± 11.3
B

58.1 ± 15.6 64.3 ± 11.6 Gender 0.24

MSRF 0.56

OutcomeB 0.24

Body Weight
A

Glucose (n=15) 86.0 ± 2.8 86.8 ± 2.8
D

87.5 ± 2.9
D

87.5 ± 3.0
D

Sugar 0.39

(kg) Fructose (n=17) 85.5 ± 2.6 86.1 ± 2.7
C

86.9 ± 2.6
E

86.8 ± 2.6
D

Gender 0.11

MSRF 0.32

OutcomeB 0.1

Prior day's energy 

intake
A

Glucose (n=15) 2,376 ± 72 2,895 ± 197
C

2,803 ± 147
D

2,376 ± 72 Sugar 0.61

(kcal) Fructose (n=17) 2,469 ± 92 3,232 ± 155
E

2,845 ± 170
C

2,469 ± 92 Gender 0.0072

MSRF 0.25
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Variable Sugar (n)
Complex Carb 

0 wk Sugar 2 wk Sugar 8 wk Sugar 10 wk

Factors/interactions/covariable P valuePreceding diet Energy balance Ad libitum Ad libitum Energy balance

Late-evening TG peaks
A

Glucose (n=15) 202 ± 25 235 ± 22 227 ± 21 214 ± 20 Sugar 0.0069

(mg/dl) Fructose (n=17) 211 ± 28 296 ± 37
C

283 ± 35
C

275 ± 31
D

Gender 0.071

MSRF 0.49

OutcomeB 0.018

24-h Insulin AUC
F

Glucose (n=14) 596.1 ± 118.7 699.6 ± 112.0 693.0 ± 112.9 757.5± 129.6
C

Sugar <0.0001

(ng/ml × 24-h) Fructose (n=17) 681.4 ± 112.6 426.1 ± 66.6
E

489.1 ± 85.8
D

480.4 ± 72.9
D

Gender 0.56

MSRF 0.64

OutcomeB <0.0001

Body Fat
G

Glucose (n=15) 35.6 ± 2.1

36.1 ± 2.0
H

33.9 ± 2.2

Sugar 0.84

(%) Fructose (n=17) 33.6 ± 2.3 Gender 0.33

MSRF 0.86

Total Abdominal Fat
G

Glucose (n=14) 765 ± 57 794 ± 53 Sugar 0.36

(cc) Fructose (n=17) 683 ± 55 731 ± 51 
H

Gender 0.11

MSRF 0.61

Extra-Abdominal Fat
G

Glucose (n=14) 522 ± 59 544± 61
H

Sugar 0.64

(cc) Fructose (n=17) 476 ± 43 495 ± 38 Gender 0.82

MSRF 0.40

Intra-Abdominal Fat
G

Glucose (n=14)
G

243 ± 21 250 ± 23 Sugar 0.059

(cc) Fructose (n=17) 207 ± 21 235 ± 25
H

Gender 0.049

MSRF 0.21

Insulin Sensitivity
G

Glucose (n=14) 0.236 ± 0.036 0.210 ± 0.021 Sugar 0.030
E

(mmoles 2H20/4-h 
Insulin AUC)

Fructose (n=17) 0.254 ± 0.049 0.208 ± 0.040
I

Gender 0.033
E

MSRF 0.19
E

t: time

Mean ± SEM

A
PROC MIXED 4-factor (sugar, time, gender, MSRF) repeated measures (RM) model on change from 0wk with outcome at 0wk (OutcomeB) as 

continuous covariable.

B
P < 0.05,

C
P < 0.01,

D
P < 0.001,

E
P < 0.0001 Least squares mean of the change from 0 wk different from zero.

F
PROC MIXED 4-factor (sugar, time, gender, MSRF) repeated measures (RM) model on change from 0wk with outcome at 0wk (OutcomeB) as 

continuous covariable on previously reported data (Stanhope, AJCN, 2011).
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G
General Linear Model (GLM) 3-factor ANOVA on 10 wk vs 0 wk difference as previously reported (Stanhope, JCI, 2009).

H
p < 0.05,

I
P < 0.01, Paired t test, 10wk vs 0wk
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