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Lysine methyltransferase SETD6 modifies histones on a glycine-lysine motif
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ABSTRACT
Although central to regulating the access to genetic information, most lysine methyltransferases
remain poorly characterised relative to other family of enzymes. Herein, I report new substrates for
the lysine methyltransferase SETD6. Based on the SETD6-catalysed site on the histone variant
H2AZ, I identified similar sequences in the canonical histones H2A, H3, and H4 that are modified
by SETD6 in vitro, and putative non-histone substrates. I herein expend the repertoire of sub-
strates for methylation by SETD6.
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Introduction

Histone H3 lysine residues were found to be methy-
lated over fifty years ago [1,2]. However, it was not
until 2000 that the first mammalian histone lysine
methyltransferase was discovered [3]. The latest
human genome annotation predicts over 60 lysine
methyltransferases (KMTs) based on sequence simi-
larities with either a SET or a seven β-strand catalytic
domain [4]. However, most of these enzymes remain
uncharacterized or poorly studied. Thus, important
questions regarding the biological relevance and bio-
chemical properties of these enzymes remain unan-
swered. Importantly, several histone KMTs also
methylate non-histone substrates, such as the tumour
suppressors p53 [5–7], ING2 [8], and pRB [9], as well
as chromatin proteins such as DNMT1 [10], HP1α/β/
γ [11], RUVBL1 [12], and RUVBL2 [13].

The methyltransferase SETD6 mono-methylates
the NFκB subunit RelA at lysine 310 (K310me1)
[14], the histone variant H2AZ at lysine 7 (K7me1)
[15], and the kinases PAK4 [16], and PLK1 [17].
The expression of SETD6 is amplified in about
10% of cases of breast cancer according to
a study using a patient xenograft model [18] and
is required for cellular proliferation in both ER+

and ER− breast cancer cell models [19], suggesting
an important role in driving breast cancer progres-
sion. Indeed, SETD6 was recently found to

associate with the cytoskeleton protein VIM [20],
which is involved in epithelial to mesenchymal
transition (EMT), cellular attachment, migration,
and signalling, suggesting a role in metastasis.

Much like classical signal transduction events
involve phospho-dependent protein-protein binding,
chromatin signalling events implicate post-
translationalmodifications in the regulation ofmacro-
molecules interactions. For example, lysine methyla-
tion of histones lysine residues serves as landing pads
for chromatin proteins, which are referred to as his-
tone mark readers or simply readers, thereby nucleat-
ing enzymatic complexes that modify and remodel
chromatin to regulate access to genetic information.

Herein, I demonstrate that recombinant SETD6
methylates canonical histones H2A, H3, and H4,
as well as linker histones H1 and the non-histone
protein ING2 in vitro, and identify several putative
novel substrates, including chromatin proteins and
other lysine methyltransferases.

Results

I previously identified 2 mono-methylation sites
on the histone variant H2AZ catalysed by SETD6
[15]. Interestingly, these modified sites,
H2AZK4me1 and H2AZK7me1, are similar. Both
modified lysine residues are preceded by a small

CONTACT Olivier Binda olivier.binda@mail.mcgill.ca Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University,
Newcastle upon Tyne, England
This article has been republished with minor changes. These changes do not impact the academic content of the article.

Supplemental data for this article can be accessed here.

EPIGENETICS
2020, VOL. 15, NOS. 1–2, 26–31
https://doi.org/10.1080/15592294.2019.1649529

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0002-1539-0828
https://doi.org/10.1080/15592294.2019.1649529
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/15592294.2019.1649529&domain=pdf&date_stamp=2020-01-07


amino acid (alanine or glycine) residue at position
−2 and a glycine at position −1 (Table 1).
Examination of canonical histone tails revealed
similar sequences in histones H2A, H3, and H4,
and highlighted a putative SETD6 methylation
consensus motif A/G/RGKme1A/GG (Table 1).

To test whether SETD6 could methylate these
other histones, I used a mixture of purified calf
thymus histones as substrates. Interestingly,
SETD6 was capable of modifying the linker H1
histones as well as the canonical histones H2A,
H3, and H4 (Figure 1). As a positive control,
I used SET7, which is known to methylate H3

[21], and H1 histones [22]. As a negative control,
GST alone was used and as expected GST had no
detectable methyltransferase activity on histones
(Figure 1).

To confirm the SETD6-catalysed methylation
sites on canonical histones, the first 50 amino
acid residues of H2A, H3, and H4 were fused to
the amino terminus of GST to leave the histone
tail free at the amino terminus and generate
H2A1-50-GST, H31-50-GST, and H41-50-GST. Then
the predicted sites (Table 1) were converted to
arginine by site-directed mutagenesis. The affinity
purified recombinant proteins were then used for
in vitro KMT assays with SETD6. In agreement
with previous experiments showing that SETD6
modifies canonical histones (Figure 1), SETD6
methylated recombinant histone tails from H2A,
H3, and H4 (Figure 2(a)). Importantly, mutation
of the GK motifs reduced drastically the methyla-
tion of H2A and H3 by SETD6 (Figure 2(a)).
However, single mutation of H4 at K5 or K12
only minimally reduced methylation by SETD6
(Figure 2(a)), suggesting that both K5 and K12
are modified.

Table 1. SETD6 consensus motif. Based on H2AZ methylation
sites by SETD6, putative modification sites were identified in
canonical histones H2A, H3, and H4.
Histone consensus

−3 −2 −1 0 +1 +2 +3
H2AZ A G G K4 A G K
H2AZ K A G K7 D S G
H2A G R G K5 Q G G
H3 T G G K14 A P R
H4 G R G K5 G G K
H4 G L G K12 G G A

• • * * • : •

Figure 1. SETD6 methylates histones. Recombinant KMTs were used to modify histones isolated from calf thymus in the presence of
3H-SAM. Samples were analysed by SDS-PAGE, then either stained with Coomassie (top panel) or transferred to PVDF membrane and
autoradiographed (bottom panel).

EPIGENETICS 27



Since H4 methylation seemed stronger (Figure 1),
and to further investigate the methylation of H4 by
SETD6, methyltransferase assays on H4 peptides
H41-20 and H410-31 were performed and confirmed
that SETD6 methylates H4 (Figure 2(b)).
Interestingly, SETD6 methylated H410-31 better
than the H41-20 peptide, while methylation at K20
(K20me1, K20me2, or K20me3) impaired this effect
(Figure 2(b)), suggesting that SETD6 modifies
H4K20 in addition to H4K12 or other site(s), such
as H4K16 or H4K31 (Figure 2(c)). Alternatively,
these results may suggest that there is a cross-talk

between H4K20me and the SETD6-catalysed methy-
lation site(s).

Several KMT, including SETD6, modify non-
histone proteins. I thus searched for the GKDS
motif in protein sequence repositories and identi-
fied several putative SETD6 substrates (Table 2
and S1), including the ATPase RUVBL1, which is
modified by the H3K9 methyltransferases G9A
and GLP [12]. Importantly, some putative SETD6
substrates (AHNAK2, ERICH3, and MDN1) were
found in the PhosphoSitePlus mass spectrometric
database to be methylated at the predicted site [23]

Figure 2. SETD6 methylates GK motifs in canonical histones. (a) SETD6 was used to methylate the indicated recombinant histone
tails. Samples were analysed by SDS-PAGE, then either stained with Coomassie (top panel) or transferred to PVDF membrane and
autoradiographed (bottom panel). (b) KMT assays were performed with SETD6 on H4 peptides. (c) Sequence of H4 peptides used in
panel B with each lysine numbered.
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(Table S1). A similar search using the H4K5 and
H4K12 motif GKGG also yielded several putative
substrates for SETD6, such as the chromatin
remodeller BRG1 (GK1029GG) and the HBO1
acetyltransferase subunit JADE2 (GK637GG).

Herein, I found that SETD6 methylates histones
H2A, H3, and H4 on lysine residues within an A/
G/RGKme1A/GG consensus motif.

Discussion

Proteomic studies have identified post-
translational modifications on histones and non-
histone proteins, but the enzymatic activities
depositing these modifications remain largely
unknown. There is a dire need to identify PTMs
to understand how proteins are regulated, but
more importantly to identify the enzymes catalys-
ing these biochemical events. To this end, I have in
the past designed an unbiased chemical-biology
approach to tag novel KMT substrates [24].
However, traditional biochemical studies are still
required to investigate and validate novel post-
translational modifications.

The H3K14me1 mark was reported to occur in
both human and mouse [25,26], supporting the
existence of the modification in cells. I have herein
identified the first KMT capable of modifying this
site in vitro. Further work will be required to
validate the role of SETD6 in the catalysis of
H3K14me1 in cells and the function of this mark.

Interestingly, H4K12me3 [23], H4K16me3

[23,26], and H4K31me1 [27] were detected by
mass spectrometry. However, no other reference
to these modifications appear in the current litera-
ture. Interestingly, H4K5 was recently found to be
methylated by SMYD3 [28].

Although mono-methylation events on the lin-
ker histone H1 H1F0 was reported at K12, K59,
K82, K102, K108, and K155 [23,29], these sites do
not share similarities with the SETD6 consensus
GK motif, suggesting that SETD6 modifies non-
GKDS sequences. Indeed, SETD6 methylates RelA
at the non-GKDS site FK310SI [14]. In addition,
SETD6 can methylate the histone mark reader
ING2 in vitro (Figure S1), PAK4 [16], and PLK1
[17], all of which do not contain any GKDS-like
motif.

Structurally, the GK motif on AHR is not within
a particular functional domain, while the putative
methylation sites on CDKN2C and KDM5A are
found at the very end of their unstructured car-
boxy terminus, while the GK motif of SMYD4 is
found near the amino terminus. These observa-
tions lead to conclude that the GK motifs found
on the putative SETD6 non-histone substrates
could be available for modification.

Together, the in vitro data provided here iden-
tifies SETD6 as a likely candidate for the methyla-
tion of reported events on H2AK5 [30], H3K14
[25,26], H4K5 [28,31], H4K12, H4K16, and
H4K31. In addition, based on sequence similarities
I have identified several putative non-histone pro-
tein substrates for SETD6.

Methods

Plasmids

The modified pGEX plasmid with an engineered
multi-cloning site at the N-terminus of the GST
coding sequence was described previously [15].
The cDNA of histones H2A, H3, and H4 was
amplified by PCR from reverse transcribed total
RNA and inserted in frame with GST using
restriction endonucleases and T4 DNA
ligase (NEB).

Recombinant protein expression and purification

Essentially, BL21 DE3 competent bacteria
(Stratagene) were transformed with pGEX plas-
mids. Single colonies were picked and grown in
2YT media. Expression of GST-fusion proteins
was induced with 0.01 mM IPTG for 2.5 hours at
37°C, cells were collected and lysed in buffer

Table 2. Novel SETD6 putative substrates. The GKDS motif from
H2AZ was used to identify novel substrates for SETD6.
Substrate Site Function

AHR GK438DS Nuclear receptor
APAF1 GK100DS Apoptotis
CDKN2C GK160DS CDK4 inhibitor p18INK4C

GREB1 GK278DS Proliferation
KDM5A GK1504DS Demethylase
MYST4 GK393DS Acetyltransferase
RBBP8 GK426DS pRB-binding protein
RUVBL1 GK422DS chromatin remodelling
SMYD4 GK63DS putative KMT
SUV420H1 GK864DS H4K20 KMT
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(50 mM Tris-Cl pH 7.5, 150 mM NaCl, 0.05% NP-
40). Recombinant protein were batch purified
using glutathione-sepharose beads. GST-SETD6
was purified similarly, but from Sf9 insect cells as
described [15].

In vitro KMT and flashplate KMT assays

Lysine methylation assays were performed in reac-
tion buffer (50 mM Tris-Cl pH 8.0, 10% glycerol,
20 mM KCl, 5 mM MgCl2) supplemented with
3H-SAM as described [8], using calf thymus his-
tones (Worthington), recombinant histone tails
(see above), or biotinylated histone H4 peptides.

Motif search

The GKDS sequence was used in a motif search
using PHI-BLAST against the Non-redundant pro-
tein sequences (nr) database, restricted to Homo
sapiens (taxid:9606).
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