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Egg weight (EW) is an economically-important trait and displays a consecutive increase

with the hen’s age. Because extremely large eggs cause a range of problems in the

poultry industry, we performed a genome-wide association study (GWAS) in order to

identify genomic variations that are associated with EW. We utilized the Affymetrix 600K

high density SNP array in a population of 1,078 hens at seven time points from day

at first egg to 80 weeks age (EW80). Results reveal that a 90Kb genomic region

(169.42Mb ∼ 169.51Mb) in GGA1 is significantly associated with EW36 and is also

potentially associated with egg weight at 28, 56, and 66 week of age. The leading

SNP could account for 3.66% of the phenotypic variation, while two promising genes

(DLEU7 and MIR15A) can be mapped to this narrow significant region and may affect

EW in a pleiotropic manner. In addition, one gene (CECR2 on GGA1) and two genes

(MEIS1 and SPRED2 on GGA3), which involved in the processes of embryogenesis and

organogenesis, were also considered to be candidates related to first egg weight (FEW)

and EW56, respectively. Findings in our study could provide worthy theoretical basis to

generate eggs of ideal size based on marker assisted breeding selection.

Keywords: egg weight, genome-wide association study, chicken, candidate genes, heritability

INTRODUCTION

Egg weight (EW) is an economically-important trait in chicken and one of the major indexes used
by consumers when directly selecting suitable products (Sasaki et al., 2004). Improvements in the
production performance of laying hens have meant that commercial individual ages have been
extended from their original 72 week of age (EW72) to EW80 week of age; some companies have
even extended the laying cycle to 100 weeks and proposed the breeding program called “Breeding
for 500 eggs in 100 weeks” (Schulte-Drüggelte and Thiele, 2013; Bain et al., 2016). Although
EW increases in consecutive increments over the entire laying period as hens age (Tumová and
Gous, 2012), extremely large eggs cause a range of problems in the poultry industry (including
a rapid decline in quality, an increase in breakage rate, and a decreased commercialization rate),
especially in the late laying stage (Koelkebeck et al., 2001), while EW also exerts significant effects on
hatchability (Nangsuay et al., 2011). This means that controlling EW is very important for breeders
if they are to achieve their programs as well as extend the laying cycle.
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It is well-known that EW is a highly heritable quantitative
trait (Savegnago et al., 2011; Yi et al., 2014). Thus, in concert
with developments in molecular genetics, research has been
carried out to elucidate the genetic basis of EW (Schreiweis
et al., 2006; Wright et al., 2006; Liu et al., 2011; Wolc
et al., 2012, 2014; Yi et al., 2015; Liao et al., 2016); a
total of 248 quantitative trait loci (QTLs) on 19 different
chromosomes (18 autosomes and one sex chromosome) have
been reported to be associated with EW and are listed in
the AnimalQTLdatabase (https://www.animalgenome.org/cgi-
bin/QTLdb/index). However, despite a range of studies in
this area, wide confidence intervals for the positions of QTL
remain that have rarely been replicated. A new research era
was initiated with advances in single nucleotide polymorphism
(SNP) chip and sequencing technology, and genome wide
association study (GWAS) has become one of the most effective
methods to detect genetic variation in livestock. In previous
studies, Liu et al. (2011) and Wolc et al. (2012) performed
GWASs using moderate density SNP chips to determine
associations with EW in chicken, while Yi et al. (2015)
subsequently reported several candidate genes that are related
to longitudinal EWs using a 600K high density SNP chip in a
GWAS. The NCAPG gene, one of those promising genes, was
located on GGA4 and may affect egg weight in a pleiotropic
manner. Genetic improvements to EW remain slow, however,
because of measurement difficulties and other complicating
factors.

A very limited number of previous genetic studies have
addressed EW across the whole chicken laying period, from the
first egg to 80 weeks of age, and most have concentrated on peak
or early stage eggs. We therefore utilize a commercial chicken
600K SNP chip in this study to detect the genetic variations
associated with EW at different ages within a population of 1,078
hens using GWAS.

MATERIALS AND METHODS

Ethics Statement
All the blood samples used in this study were collected in
accordance with the Guidelines for Experimental Animals
established by the Ministry of Agricultural of China (Beijing,
China). The whole of this study was approved by the Animal
Welfare Committee of China Agricultural University (permit
number: SYXK 2007-0023).

Resource Population
An 11th generation pure line of Rhode Island Red chicken from
Beijing Huadu Yukou Poultry Breeding Co., Ltd. comprised the
experimental material for this study. A total of 92 sires and 801
dams contributed to this population which has been selected
for egg production and quality over many years. Thus, a total
of 1,078 hens of accurate known pedigree were chosen for SNP
genotyping in order to collect phenotypic EW-related data. All
birds were housed in individual cages of the same area at 13
weeks of age and were provided with free access to feed and
water.

Phenotypic Measurements and Heritability
Evaluation
We measured EWs at seven different time points in order to
depict genetic architecture across the whole laying period. Thus,
first egg weight (FEW) is regarded as the weight of the first egg
laid by each bird; however, because of the changes in egg laying
performance, we collected fresh eggs at 28 weeks of age, 36 weeks
of age, 56 weeks of age, 66 weeks of age, 72 weeks of age, and
80 weeks of age for two successive days during the early laying
period (before or at 56 weeks) as well as for three successive days
during the late laying period (after 56 week). These time points
were selected according to the actual breeding objectives of the
company, and average EW for either 2 or 3 days was defined as
the phenotypic value for each sample. Descriptive statistics of all
phenotypic data were handled using the software R version 3.3.1
(https://www.r-project.org/).

Pedigree-based hereditability values for EWs across the
whole laying period were calculated using the average
information restricted maximum likelihood (AI-REML)
method implemented in the software DMU v6.0 (Madsen and
Jensen, 2013). A multi-trait general animal model was utilized in
this analysis, as follows:

y = 1µ + Za+ e (1)

In this expression, y denotes the phenotypic value of traits, 1 is the
n× 1 vector of all 1’s, µ refers to population means (fixed effect),
Z is the n × 1 vector of the covariate (random effect), and a and
e denote the additive effect and random residual, respectively.

Genotyping, Quality Control, and
Imputation
We isolated genomic DNA from whole blood samples using
standard phenol/chloroform methods, and genotyped qualified
DNA of 1,078 hens with the Affymetrix 600K chicken SNP
chip (Affymetrix, Inc. Santa Clara, CA, USA; Kranis et al.,
2013). Two linkage groups and two sex chromosomes, 6,550
SNPs with unknown physical positions, and 43 markers with
repeated genomic coordinates were excluded from a preliminary
set of 580,961 SNPs across 28 autosomes. We then employed
the software Affymetrix Power Tools v1.19.0 (APT) to carry
out genotype calling and quality control following the Axiom
Genotyping Solution pipeline so that individual dish quality
control (DQC) was >0.82 and call rate was >97%. A suite of
ps-metrics supplied by Affymetrix (http://affymetrix.com/) were
then applied to calculate SNP quality values; lower quality ones
were filtered out using a bespoke R script so that 1,063 individuals
and 517,856 SNPs remained. In addition, we discarded SNPs
on sex chromosomes because the egg weight is a quantitative
trait and the genes that affecting egg weight are mainly located
on autosomes. It is very difficult to detect associations between
phenotypes and genotypes in these cases. The software PLINK
(Purcell et al., 2007) was then used for further quality control
so that minor allele frequencies (MAF) in this analysis were
>0.01 and Hardy Weinberg equilibrium (HWE) P-values were
<1e-6. The remaining SNPs were utilized to impute some
missing genotypes using the software Beagle v4.0 (Browning
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and Browning, 2009). A final total of 294,705 SNPs and 1,063
individuals were deemed eligible for subsequent genome-wide
analyses.

Population Structure and Association
Analysis
We initially performed a principal component analysis (PCA)
using the software PLINK to evaluate population stratification
prior to GWAS. Considering that clusters of highly correlated
SNPs may distort the resulting PCs, all SNPs were pruned to
ensure their independence using the indep-pair-wise option in
PLINK software, with a window size of 25 SNPs, a step of
five SNPs and a r2 threshold of 0.2. And the top five principal
components calculated by those independent SNPs were treated
as covariates and included in model of GWAS as fixed effects
to control for population structure. Considering the possibility
of over-conservation inherent to the Bonferroni method, we
adjusted the threshold of genome-wide significant P-values using
the software simpleM (Gao et al., 2010). A total of 31,589
independent effective tests were therefore obtained, and genome-
wide and suggestive significance values were calculated as 1.58e-6
(0.05/31,589) and 3.17e-5 (1.00/31,589), respectively.

We initially performed a univariate GWAS by applying a
linear mixed model to account for associations between EWs and
effective SNPs using the software GEMMA (Zhou and Stephens,
2012). The statistical model applied in this study is as follows:

y = Wα + xβ + u + ε (2)

In this expression, y denotes the phenotypic values of EWs for
n samples, while W refers to a covariate matrix (fixed effects: top
five PCs and a column of 1s) used to control population structure,
α denotes a vector of corresponding effects that comprise the
intercept, x denotes the marker genotypes, β refers to the effects
of corresponding markers, u is a vector of random polygenic
effects, and ε is a vector of random residuals. We applied the
Wald statistical test to evaluate the alternative hypothesis H1:
β 6= 0 vs. our null hypothesis H0: β = 0 for each SNP, since

Fwald =
β̂2

Var(β̂)
.

We then performed a multivariate association analysis to
directly account for the influence of genetic variants on
longitudinal EWs. A mixed model in this case was also
implemented using the software GEMMA.

Statistical Analyses of Post-GWAS
We generated Manhattan and quantile-quantile (Q-Q) plots
for EW traits using the “gap” (https://cran.r-project.org/web/
packages/gap/) and “qqman” (https://cran.r-project.org/web/
packages/qqman/) packages within the software R. A genomic
inflation factor (λ) was also calculated using the “GenABEL”
package in R (Devlin, 1999) to evaluate the extent of false positive
signals.

We performed a series of linkage disequilibrium (LD) analyses
to characterize causative SNPs within strong LD regions by
applying the solid spine algorithm in the software Haploview
version 4.2 (Barrett et al., 2005). Thus, the most significant SNP
genotypes (coded 0, 1, or 2) were added as covariates to univariate
and multivariate models to elucidate independent signals in

step-wise conditional analyses. Annotations of candidate genes
adjacent to significant SNPs were determined using the variant
effect predictor (VEP) (McLaren et al., 2010) supplied by
Ensembl (http://www.ensembl.org).

We calculated SNP-based heritability (h2snp) (Lee et al., 2012b)
and pairwise genetic correlations of EW traits were using a
restricted maximum likelihood (REML) approach implemented
in the software GCTA v1.24 (Yang et al., 2011). This enabled us
to estimate the contribution of genome-wide significant SNPs to
phenotypic variance based on a genetic matrix constructed from
all eligible SNPs.

RESULTS

Phenotypic Statistics and Genetic
Parameter Estimations
Descriptive statistics for EW across the whole laying period are
presented in Table 1. These data show that as the laying period
increases, EW values increase faster up to 56 week of age and then
subsequently increase more slowly. Results show that the highest
phenotypic value for EW was attained at 80 week of age; indeed,
EWs at two subsequent age points (72 week of age and 80 week of
age) both exhibited higher phenotypic variation (8.13%∼ 8.74%)
than at other ages with the notable exception of FEW. Pedigree-
based hereditability values were also high between 28 week of age
and 66 week of age, while EW56 and at other times was moderate.

Estimates of SNP-based heritability as well as genetic and
phenotypic correlations among EWs are presented in Table 2.
Results show that estimates of SNP-based heritability were lower
than those due to pedigree for all traits apart from EW80
(0.30 vs. 0.29). Genetic parameter analyses revealed that EWs at
different week of age were both positively and highly interrelated,
especially for two neighboring time points. In addition, FEW
is poorly correlated with other traits regardless of genetic
relationship or phenotypic correlation.

Global Genome-Wide Association Study
(GWAS)
Our analysis of population structure is presented in Figure 1. The
results of this three dimensional (3D) plot show that individuals
has a slight population stratification; we therefore treated the

TABLE 1 | Descriptive EW statistics at different ages.

Trait N Mean SD CV (%) Min Max h2 (SE)

FEW 1,052 42.44 5.06 11.92 17.00 75.00 0.31 (0.08)

EW28 1,063 57.19 3.47 6.07 46.80 68.80 0.50 (0.08)

EW36 1,063 59.35 3.28 5.53 54.00 69.70 0.53 (0.09)

EW56 1,027 60.98 4.54 7.44 35.50 77.00 0.35 (0.08)

EW66 960 60.83 4.50 7.39 42.00 78.00 0.51 (0.09)

EW72 847 60.97 5.33 8.74 42.00 86.00 0.34 (0.08)

EW80 852 62.33 5.07 8.13 39.00 84.00 0.29 (0.08)

FEW, first egg weight; EW28, EW36, EW56, EW66, EW72, EW80, egg weight at 26, 36,

56, 66, 72, 80 weeks of age; N, number of samples; SD, standard deviation; CV, coefficient

of variance; h2 (SE), pedigree-based heritability (standard error).
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TABLE 2 | Estimated genetic parameters for EWs across the whole laying period.

Trait FEW EW28 EW36 EW56 EW66 EW72 EW80

FEW 0.31 (0.05) 0.72 (0.09) 0.59 (0.09) 0.65 (0.11) 0.63 (0.10) 0.56 (0.14) 0.46 (0.13)

EW28 0.34 0.35 (0.05) 0.87 (0.05) 0.94 (0.06) 0.85 (0.07) 0.90 (0.08) 0.92 (0.08)

EW36 0.31 0.64 0.36 (0.05) 0.97 (0.06) 0.84 (0.06) 1.00 (0.07) 0.85 (0.08)

EW56 0.27 0.44 0.50 0.23 (0.05) 0.95 (0.07) 0.91 (0.11) 0.98 (0.08)

EW66 0.32 0.44 0.52 0.51 0.32 (0.05) 0.97 (0.07) 0.92 (0.07)

EW72 0.24 0.39 0.43 0.46 0.58 0.22 (0.06) 1.00 (0.11)

EW80 0.20 0.27 0.40 0.38 0.48 0.47 0.30 (0.06)

Shaded diagonal values are heritability estimates (those in bold are SNP-based), while the upper triangles are genetic correlations and lower triangles are phenotypic. SE values are

reported in parentheses.

FIGURE 1 | A 3D PC plot for chicken using SNP markers. The blue points

denote individuals.

first five principal components as covariates and included them
within a GWAS linear mixed model as fixed effects in order to
adjust for variations in population structure.

We performed seven separate association tests for longitudinal
EW using a univariate linear mixed model. These analyses
revealed a total of 65 genome-wide significant and suggestive
SNPs located on GGA1 for EW36, EW56, EW66, and FEW
(Table S1). Of those significant SNPs, 15 interesting loci that
attain a genome-wide level of significance at 36 weeks of age
are also potentially associated with EW at 28, 56, and 66
week of age in both the univariate and multivariate analyses
(Figure S1). A global view of Manhattan and QQ plots for
EW36 are presented in Figure 2; a high genetic correlation
shows that all of these SNPs are located within a 90Kb region
that spans between 169.42 and 169.51Mb on GGA1. We also
calculated the genomic control inflation factor (λ) at EW36,
a value which ideally should equal 1; the fact that this was a
little higher (1.03) is indicative of slight population stratification.
These results are also consistent with previous PCA results,
while LD analysis reveals that all these genome-wide significant
SNPs were in strong LD status (Figure 3C). Thus, in order
to identify independent SNPs, a further series of stepwise
conditional analyses were performed and the locus rs13972129

that is significantly associated with EW36 was fitted into the
model to examine these associations. The level of significant,
or suggestive loci surrounding SNP rs13972129 decreased below
the genome-wide suggestive threshold when the genotype of
this locus was treated as a covariate in the conditional GWAS
(Figures 3A,B). We therefore suggest that the rs13972129 locus
provides the most reliable signal. The substitution of variant
C to T for rs13972129 led to a significant decrease of in EW
phenotypic value at 36 week of age (Figure 3D).

SNP Effects and Promising Genes
Associated With EW36
Data show that the most significant SNP at EW36 (rs13972129
on GGA1) accounts for 3.66% (SE = 0.04) of phenotypic
variance. Thus, annotation of the 15 interesting SNPs
discussed above using the VEP tool may help us identify
promising EW-associated genes. Detailed information
regarding the genes identified in this study is summarized
in Table 3; one candidate was deleted in lymphocytic
leukemia 7 (DLEU7), a microRNA (MIR15A) was detected
adjacent to significant SNPs, and we also identified several
genes near to suggestively significant SNPs, including
the ribonuclease H2 subunit B (RNASEH2B), a potassium
channel regulator (KCNRG), and a SPRY domain containing 7
(SPRYD7).

GWAS for FEW and EW56
Manhattan and QQ plots for FEW and egg weight at 56 week
of age (EW56) are presented in Figure 4. Results show that nine
SNPs were different with loci identified in the global genome-
wide association study, including six located on GGA1 associated
with FEW, while three SNPs located on GGA3 associated with
EW56. All of these SNPs reached the genome-wide significance
level (P-value 1.58e-6) in our univariate GWAS analysis and are
clustered into Block 1 (51Kb) and Block 2 (3Kb) (Figures 5A,B).
The two leading SNPs (rs314056488, rs14314036) explain 2.66%
(SE = 0.04) and 2.67% (SE = 0.04) of the FEW and EW56
phenotypic variance, respectively. We therefore also compared
the actual phenotypic difference among the three genotypes of
these two SNPs (Figures 5C,D); these data show that SNPs with
CC genotypes had higher FEW and EW56 phenotypic values
than those with genotypes CT and TT. The gene information
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FIGURE 2 | Manhattan and Q-Q plots derived from a GWAS at EW36. Each dot on this figure corresponds to a SNP within the dataset, while the horizontal red and

black lines denote the genome-wide significance (1.58e-6) and suggestive significance thresholds (3.17e-5), respectively. The Manhattan plot contains –log10

observed P-values for genome-wide SNPs (y-axis) plotted against their corresponding position on each chromosome (x-axis), while the Q-Q plot contains expected

-log10-transformed P-values plotted against observed –log10-transformed P-values. GIF denotes the genomic inflation factor.

FIGURE 3 | Conditional GWAS and LD analyses of SNPs in the significant region for EW36. Results (A) before, and (B) after, conditional association analyses were

performed by fitting the most significant SNP rs13972129 as covariates. (C) LD plot of significant SNPs on GGA1. (D) Genotype effect plot of SNP rs13972129 (⋆⋆P

< 0.01) to indicate the significance among three types (n = 344, n = 545, and n = 174 for CC, TC, and TT, respectively).

we recovered by annotating significant SNPs is presented in
Table 4; it is noteworthy that half of the significant SNPs
associated with FEW are located upstream of the histone acetyl-
lysine reader, CECR2, while two candidate genes for the cat
eye syndrome chromosome region, CECR1 and CECR5, were
also identified. For EW56, the SNP rs14314036 was located
in 36.86Kb upstream of Meis homeobox 1 (MEIS1), while
the other two (rs313852172, rs318144571) were located within
the intron of the sprouty related EVH1 domain containing 2
(SPRED2).

DISCUSSION

Although a number of previous studies have attempted to reveal
the genetic determinants of EW in chicken, most have focused
on just a single or pair of time points. This means that little
information is available regarding longitudinal EWs over the
whole of the laying period (Wright et al., 2006; Liu et al., 2011).
In earlier work, Yi et al. (2015) performed a GWAS series to
detect the genetic architecture of EWs at different ages within
a F2 crossed population using the Affymetrix 600K SNP chip
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TABLE 3 | Annotation of significant SNPs associated with EW at 36 week of age.

SNP GGAa Positionc Alt/Ref MAF βb (SE) Candidate/nearest gene Location (Kb)

rs13972129 1 169475409 T/C 0.42 0.27(0.05) DLEU7 downstream_350.01

rs313260960 1 169499480 C/T 0.419 0.27(0.05) DLEU7 downstream_325.94

rs312483194 1 169495186 C/T 0.421 0.27(0.05) DLEU7 downstream_330.24

rs314907088 1 169491906 C/T 0.417 0.27(0.05) DLEU7 downstream_333.52

rs316032694 1 169485590 G/A 0.421 0.27(0.05) DLEU7 downstream_339.83

rs314693889 1 169487134 G/A 0.421 0.27(0.05) DLEU7 downstream_338.29

rs317788039 1 169511502 G/A 0.419 0.27(0.05) DLEU7 downstream_313.92

rs314165632 1 169449898 C/T 0.429 0.26(0.05) DLEU7 downstream_376.33

rs13972085 1 169423767 A/T 0.425 0.26(0.05) MIR15A upstream_25.89

rs316485040 1 169431981 G/T 0.432 0.26(0.05) MIR15A upstream_34.10

rs317458287 1 169429248 T/C 0.433 0.26(0.05) MIR15A upstream_31.37

rs13972093 1 169428043 C/T 0.43 0.25(0.05) MIR15A upstream_30.16

rs313362705 1 169430636 C/T 0.43 0.25(0.05) MIR15A upstream_32.76

rs314730715 1 169422726 T/A 0.424 0.25(0.05) MIR15A upstream_24.85

rs315261768 1 169427284 G/A 0.424 0.25(0.05) MIR15A upstream_29.40

aChicken chromosome; Alt/Ref, alternative allele/reference allele; bEstimated allelic substitution effect per copy of the effect allele (EA) based on an inverse-normal transformed scale

under an additive model, expressed in SD unit/allele. cGallus_gallus-5.0.

FIGURE 4 | GWAS Manhattan and Q-Q plots for FEW and EW56. The horizontal red and black lines in this figure denote the genome-wide (1.58e-6) and

genome-wide suggestive significant thresholds (3.17e-5), respectively.

(Yi et al., 2015). An interesting region that harboring NCAPG
has not been identified in our study. We suggest that this
region may be associated with egg weights of White Leghorn

after we searched QTLs that affecting EW on GGA4 in chicken
QTL database (https://www.animalgenome.org/cgi-bin/QTLdb/
GG/ontrait?trait_ID=2292). In addition, these workers, however,
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were mainly concerned with the phenotypes of laying hens
younger than 60 weeks of age, a point when egg production
yield remains high (Figure S2). As the aim of this study was
to identify the key genes that affect EWs at seven time points
(FEW, EW28, EW36, EW56, EW66, EW72, and EW80), we
are the first to perform EW GWAS throughout the extended
laying cycle employing a chicken 600K high density SNP
array.

FIGURE 5 | Regional association plots of significant SNPs for FEW and EW56.

(A) LD plot for SNPs on GGA1 for FEW (the strong LD block is defined as D
′
≥

0.8). (B) Significant SNPs located on GGA3 associated with EW56 were within

a 3Kb block. (C,D) The three different genotype effects of the two leading

SNPs (rs314056488 and rs14314036) for FEW and EW56, respectively.

Because a population line of purebred brown egg-type
chickens was used in this study rather than a cross between
two, or more, distant populations which have larger phenotypic
variation than the pure line, our power to detect EW QTLs was
diminished (Zhang et al., 2017). Nevertheless, this shortcoming
was compensated for by the numerous genotypes and phenotypes
of individuals and our use of appropriate methods (Alipanah
et al., 2013). Descriptive phenotype statistics show that EW
increases in concert with the age of a hen, reaching the highest
value at 80 week of age. We are therefore able to predict that
if the egg laying cycle was extended to 100 weeks, EW would
continue to increase. It remains a challenge, however, to maintain
the stable weight of egg across the whole laying period. The SNP-
based heritability estimates for EW presented in this paper are
lower than those reported for an F2 crossed population, while
genetic correlations are the same (Yi et al., 2014); the presence
of a strong genetic correlation between the seven EW traits
discussed in this study assumes that they all encapsulate similar
components of genetic variations (Lu et al., 2012; Fu et al., 2015)
and our pedigree-based heritability estimates were larger than
their SNP-based counterparts. This difference may be the result
of “missing heritability” (Manolio et al., 2009) as eligible SNPs
within the 600K chip do not encapsulate the whole of chicken
genomic variation.

We performed separate GWAS series for EWs at seven time
points in this study. Results show that a 90Kb genomic region
on GGA1 harbored 15 genome-wide significant SNPs and was
associated with EW at 36 week of age. These SNPs were also
determined to be related to EW at 28, 56, and 66 week of
age but were not significant (Figure S1). Multivariate tests also
show that these significant SNPs are responsible for all these
phenotypes, although no significant hit was identified at EW72
and EW80. This may be caused by some missing phenotypes
or hens may don’t lay eggs anymore at 72 and 80 weeks age
(Lee et al., 2012a; Zhou and Stephens, 2012). Conditional GWAS
and LD analyses at EW36 revealed SNPs that are closely linked
together within this significant genomic region; the annotation
of significant SNPs shows that one candidate gene, DLEU7, and
a promising microRNA (MIR15A) around this region are both
also associated with EW36. Previous research of GWAS report

TABLE 4 | Genome-wide association analyses for FEW and EW56.

Trait SNP GGAa Position Alt/Ref MAF βb (SE) Candidate/nearest genes Location (Kb)

FEW rs314056488 1 61739524 C/T 0.365 0.25 (0.05) CECR1 intron

rs316324927 1 61737361 T/G 0.366 0.25 (0.05) CECR1 intron

rs317875007 1 61776091 A/G 0.365 0.25 (0.05) CECR2 upstream_25.80

rs314470919 1 61724564 C/A 0.366 0.24 (0.05) CECR5 upstream_3.13

rs314043765 1 61760180 T/C 0.368 0.24 (0.05) CECR2 upstream_41.71

rs316675251 1 61764799 C/T 0.368 0.24 (0.05) CECR2 upstream_37.09

EW56 rs14314036 3 10116322 C/T 0.164 0.32 (0.06) MEIS1 upstream_36.86

rs313852172 3 10067518 A/G 0.167 0.32 (0.06) SPRED2 intron

rs318144571 3 10071463 C/T 0.167 0.32 (0.06) SPRED2 intron

Abbreviations and symbols as in Table 3.
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that the DLEU7 gene was related to ovary weight in chicken (Sun
et al., 2015). In addition, studies on humans have also shown
that DLEU7 is associated with height during body growth and
other developmental processes, although specific physiological
mechanisms remain unclear (Weedon et al., 2008; Kang et al.,
2010; Fatemifar et al., 2013). We therefore suggest that the
DLEU7 gene should be considered as a candidate associated with
EW and subjected to further functional validation in chicken. In
addition, one other microRNA, MIR15A, is also known to be
an important independent regulatory molecule involved in the
control of cell proliferation and apoptosis, cardiovascular and
autoimmune diseases, and the synthesis of insulin (Andersen
et al., 2010; Sun et al., 2011; Yuan et al., 2012; Spinetti et al., 2013).
During chick embryonic development, the inhibition of MIR15A
or the activation of HIF-1 or Bcl-2 can prevent hypoxia-induced
lung damage and reduce the number of chick embryonic deaths
(Hao et al., 2014). Yuan et al. (2017) noted that MIR15A can also
control the feed conversion ratio in laying chickens and exerts
an influence on a number of target genes, including forkhead
box O1 (FOXO1) which is also involved in the insulin-signaling
pathway (Yuan et al., 2017). This pathway stimulates protein
synthesis and cell growth via mTOR signal activation (Kim et al.,
2002); we therefore suggest that MIR15A has an indirect effect
on longitudinal EW by affecting the deposition of egg white and
yolk.

It is noteworthy that just six and three hits, respectively,
were detected for FEW and EW56 at a genome-wide level
of significance. Indeed, in the first case (FEW), just 50% of
significant SNPs were located upstream of the CECR2 gene.
Previous research has shown that uncovered that CECR2 is
expressed during chicken embryonic development and exerts
and influence on both somites and neurons (Footz et al., 2002;
Banting et al., 2005; Chen et al., 2010). Limited information
is presently available regarding the CECR1 and CECR5 genes
in chicken. For EW56, SNP rs14314036 on chromosome 3
(GGA3) is located adjacent to a QTL previously identified in
an F2 population (Yi et al., 2015), and that two additional and
interesting genes related to EW are also present at 56 week of
age. The MEIS homeobox genes (MEIS1 and MEIS2) belong
to the three-amino-acid loop extension (TALE) superfamily
which has been subdivided into IRO, MKX, TGF1, PBC, and
MEIS classes (Sánchez-Guardado et al., 2011a). These genes are
important because they regulate various developmental processes
by promoting cell proliferation, repressing differentiation, and
preventing cell fate specification via a number of signaling
pathways (Bessa et al., 2008; Heine et al., 2008; Sánchez-
Guardado et al., 2011b). In chicken, MEIS1 plays a crucial role
during early embryogenesis and organogenesis, while another

gene, the sprouty related EVH1 domain containing 2 (SPRED2),
is a member of the SPRED gene family (SPRED1, SPRED2, and
SPRED3) (Bundschu et al., 2007). SPRED2 is widely expressed in
adult tissues, including the liver and brain (Kato et al., 2003; Ma
et al., 2011), and may act to modulate cellular proliferation and
migration (Ma et al., 2011). We therefore speculate that the genes
CECR2, MEIS1, and SPRED2 may act to influence chicken EW
during embryogenesis and organogenesis.

In conclusion, the GWAS presented in this study
demonstrates that EW is highly heritable and shares similar
genetic determinants at different week of ages. Two promising
genes, DLEU7 and MIR15A, that may influence EW in a
pleiotropic manner were also mapped to within a narrow region
of significance, while three additional candidates (CECR2,
MEIS1, and SPRED2) identified by annotating nine significant
SNPs can be considered as candidates related to FEW and EW56.
Findings in our research could provide valuable breeding theory
for the future production of ideal egg size in the context of
marker-assisted breeding selection.
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