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Self-consistent determination of long-range
electrostatics in neural network potentials
Ang Gao 1✉ & Richard C. Remsing 2✉

Machine learning has the potential to revolutionize the field of molecular simulation through

the development of efficient and accurate models of interatomic interactions. Neural net-

works can model interactions with the accuracy of quantum mechanics-based calculations,

but with a fraction of the cost, enabling simulations of large systems over long timescales.

However, implicit in the construction of neural network potentials is an assumption of

locality, wherein atomic arrangements on the nanometer-scale are used to learn interatomic

interactions. Because of this assumption, the resulting neural network models cannot

describe long-range interactions that play critical roles in dielectric screening and chemical

reactivity. Here, we address this issue by introducing the self-consistent field neural network

— a general approach for learning the long-range response of molecular systems in neural

network potentials that relies on a physically meaningful separation of the interatomic

interactions — and demonstrate its utility by modeling liquid water with and without applied

fields.
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Computer simulations have transformed our understanding
of molecular systems by providing atomic-level insights
into phenomena of widespread importance. The earliest

models used efficient empirical descriptions of interatomic
interactions, and similar force field-based simulations form the
foundation of molecular simulations today1. However, it is dif-
ficult to describe processes like chemical reactions that involve
bond breakage and formation, as well as electronic polarization
effects within empirical force fields. The development of quantum
mechanics-based ab initio simulations enabled the description of
these complex processes, leading to profound insights across
scientific disciplines2–9. The vast majority of these first principles
approaches rely on density functional theory (DFT), and the
development of increasingly accurate density functionals has
greatly improved the reliability of ab initio predictions10–15. But,
performing electronic structure calculations are expensive, and
first-principles simulations are limited to small system sizes and
short time scales.

The prohibitive expense of ab initio simulations can be over-
come through machine learning. Armed with a set of ab initio
data, machine learning can be used to train neural network (NN)
potentials that describe interatomic interactions at the same level
of accuracy as the ab initio methods, but with a fraction of the
cost. Consequently, NN potentials enable ab initio quality simu-
lations to reach the large system sizes and long time scales needed
to model complex phenomena, such as phase diagrams16–20 and
nucleation21,22.

Despite the significant advances made in this area, there are
still practical and conceptual difficulties with NN potential
development, especially with regard to long-range electrostatics.
To make NN potential construction computationally feasible,
most approaches learn only local arrangements of atoms around a
central particle, where the meaning of “local” is defined by a
distance cutoff usually <1 nm. Because of this locality, the
resulting NN potentials are inherently short-ranged. The lack of
long-range interactions in NN potentials can lead to both
quantitative and qualitative errors, especially when describing
polar and charged species23–25.

The need for incorporating long-range electrostatics into NN
potentials has led to the development of several new
approaches23,24,26–29. Many of these approaches exclude all or
some of the electrostatic interactions from training and then
assign effective partial charges to each atomic nucleus that are
used to calculate long-range electrostatic interactions using tra-
ditional methods23,25–28. The values of these effective charges can
be determined using machine learning methods. For example,
the fourth-generation high-dimensional neural network potential
(4G-HDNNP)28 employs deep NNs to predict the electro-
negativities of each nucleus, which are subsequently used within a
charge equilibration process to determine the effective charges.
These approaches can predict binding energies and charge
transfer between molecules, but they also introduce quantities
that are not direct physical observables, such as the effective
charges and electronegativities. Another approach explicitly
incorporated nonlocal geometric information into the construc-
tion of local feature functions24,30. This approach, referred to as
the long-distance equivariant representation, is able to more
accurately predict the binding energy between molecules and the
polarizability of molecules, compared to purely local models.
However, this model only takes in the coordinates of the nucleus
as input information and cannot handle external fields.

The difficulties that current approaches to NN potentials have
when treating long-range interactions can be resolved by a purely
ab initio strategy that uses no effective quantities. Such a strategy
can be informed by our understanding of the roles of short- and
long-range interactions in condensed phases31–34. In uniform

liquids, appropriately chosen uniformly slowly varying compo-
nents of the long-range forces—van der Waals attractions and
long-range Coulomb interactions—cancel to a good approxima-
tion in every relevant configuration. As a result, the local struc-
ture is determined almost entirely by short-range interactions. In
water, these short-range interactions correspond to hydrogen
bonding and packing35–38. Therefore, short-range models,
including current NN potentials, can describe the structure of
uniform systems. This idea, that short-range forces determine the
structure of uniform systems, forms the foundation for the
modern theory of bulk liquids31–33, in which the averaged effects
of long-range interactions can be treated as a small correction to
the purely short-range system.

In contrast, the effects of long-range interactions are more
subtle and play a role in collective effects that are important for
dielectric screening. Moreover, long-range forces do not cancel at
extended interfaces and instead play a key role in interfacial
physics. As a result, short-range models cannot describe inter-
facial structure and thermodynamics, as they do in the bulk, and
standard NN models fail to describe even the simplest liquid-
vapor interfaces25. The local molecular field (LMF) theory of
Weeks and coworkers provides a framework for capturing the
average effects of long-range interactions at interfaces through an
effective external field34,39–42. LMF theory also provides physi-
cally intuitive insights into the roles of short- and long-range
forces at interfaces that can be leveraged to model nonuniform
systems.

Here, we exploit the physical picture provided by liquid-state
theory to develop a general approach for learning long-range
interactions in NN potentials from ab initio calculations. We
separate the atomic interactions into appropriate short-range and
long-range components and construct a separate network to
handle each part. Importantly, the short-range model is isolated
from the long-range interactions. This separation also isolates the
long-range response of the system, enabling it to be learned.
Short-range interactions can be learned using established
approaches. The short- and long-range components of the
potential are then connected through a rapidly converging self-
consistent loop. The resulting self-consistent field neural network
(SCFNN) model is able to describe the effects of long-range
interactions without the use of effective charges or similar arti-
ficial quantities. We illustrate this point through the development
of a SCFNN model of liquid water. In addition to capturing the
local structure of liquid water, as evidenced by the radial dis-
tribution function, the SCFNN model accurately describes long-
range structural correlations connected to dielectric screening, the
response of liquid water to electrostatic fields, and water’s
dielectric constant. Because the SCFNN model learns the
response to electrostatic fields, it can predict properties that
depend on screening in environments for which it was not
trained. We demonstrate this by using the SCFNN trained on
bulk configurations to model the orientational ordering of water
at the interface with its vapor. Finally, the SCFNN also captures
the electronic fluctuations of water and can accurately predict its
high-frequency dielectric constant.

Results
Workflow of the SCFNN model. The SCFNN model consists of
two modules that each target a specific response of the system
(Fig. 1). Module 1 predicts the electronic response via the position
of the maximally localized Wannier function centers (MLWFCs).
Module 2 predicts the forces on the nuclear sites. In turn, each
module consists of two networks: one to describe the short-range
interactions and one to describe perturbations to the short-range
system from long-range electric fields. Together, these two
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modules (four networks) enable the model to predict the total
electrostatic properties of the system.

In the short-range system, the v(r)= 1/r portion of the
Coulomb potential is replaced by the short-range potential
v0ðrÞ ¼ erfcðr=σÞ=r. Physically, v0(r) corresponds to screening the
charge distributions in the system through the addition of
neutralizing Gaussian charge distributions of opposite sign—the
interactions are truncated by Gaussians. Therefore, we refer to
this system as the Gaussian-truncated (GT) system34–38. By
making a physically meaningful choice for σ, the GT system can
describe the structure of bulk liquids with high accuracy but with
a fraction of the computational cost. Moreover, the GT system
has served as a useful short-range component system when
modeling the effects of long-range fields37,39,41,43,44. Here, we
choose σ to be 4.2 Å (8 Bohr), which is large enough for the GT
system to accurately describe hydrogen bonding and the local
structure of liquid water34–38.

The remaining part of the Coulomb interaction, v1ðrÞ ¼
vðrÞ � v0ðrÞ ¼ erf ðr=σÞ=r, is long ranged, but varies slowly over
the scale of σ. Because v1(r) is uniformly slowly-varying, the
effective field produced by v1(r) usually induces a linear response
in the GT system. The linear nature of the response makes the
effects of v1(r) able to be captured by linear models. In the context
of NNs, we demonstrate below that a linear network is sufficient
to learn the linear response induced by long-range interactions.

Module 1. The separation of interactions into short- and long-
range components is crucial to the SCFNN model. In particular,
the two networks of each module are used to handle this
separation. Network 1S of Module 1 predicts the positions of the
MLWFCs in the short-range GT system, while Network 1L pre-
dicts the perturbations to the MLWFC positions induced by the
effective long-range field. Networks 1S and 1L leverage Kohn’s
theory on the nearsightedness of electronic matter (NEM)45,46.
The NEM states that46 “local electronic properties, such as the
density n(r), depend significantly on the effective external
potential only at nearby points.” Here the effective external
potential includes the external potential and the self-consistently
determined long-range electric fields. Therefore, the NEM sug-
gests that the electronic density, and consequently the positions of
the MLWFCs, are “nearsighted” with respect to the effective
potential, but not to the atomic coordinates, contrary to what has
been assumed in previous work that also uses local geometric
information of atoms as input to NNs47,48. An atom located at r0

will affect the effective potential at r, even if r0 is far from r,
through long-range electrostatic interactions. Consequently,
current approaches to generating NN models can only predict the

position of MLWFCs for a purely short-range system without
long-range electrostatics, such as the GT system47,48. We exploit
this fact and use established NNs to predict the locations of the
MLWFCs in the GT system47. To do so, we create a local refer-
ence frame around each water molecule (Fig. 2) and use the
coordinates of the surrounding atoms as inputs to the NN. The
local reference system preserves the rotational and translational
symmetry of the system. The network outputs the positions of the
four MLWFCs around the central water, which are then trans-
formed to the laboratory frame of reference.

Network 1L predicts the response of the MLWFC positions to
the effective field E(r), defined as the sum of the external field,
Eext(r), and the long-range field from v1(r):

EðrÞ ¼ EextðrÞ �
Z

dr0ρðr0Þ∇v1ðjr� r0jÞ ; ð1Þ

where ρðr0Þ is the instantaneous charge density of the system,
including nuclear and electronic charges. Network 1L also
introduces a local reference frame for each water molecule.
However, Network 1L takes as input both the local coordinates
and local effective electric fields. The NEM suggests that this local
information is sufficient to determine the perturbation in the
MLWFC positions. Network 1L outputs this change in the
positions of the water molecule’s four MLWFCs, and this
perturbation is added to the MLWFC position determined in
the GT system to obtain the MLWFCs in the full system. We note
that E(r) is a slowly-varying long-range field, such that the
MLWFCs respond linearly to this field. Therefore, Network 1L is
constructed to be linear in E(r). Table 1 demonstrates that the

Fig. 1 Schematic of the self-consistent field neural network (SCFNN). The SCFNN consists of two modules, each with two networks. One network learns
the short-range interactions (S) and the other learns the effects of long-range interactions (L). Module 1 learns the positions of maximally localized
Wannier function centers, rw, and Module 2 learns the forces, F, on the atomic nuclei, the positions of which are indicated by R.

Fig. 2 Local frame around a central water. The y-axis is along the OH
bond. The z-axis is perpendicular to the plane of the molecule. The x-axis is
perpendicular to the x and z axes.
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linear response embodied by Network 1L predicts the perturba-
tion of the MLWFCs with reasonable accuracy.

We now need to determine the effective field E(r). This
effective field depends on the electron density distribution, but
evaluating and including the full three-dimensional electron
density for every configuration in a training set requires a
prohibitively large amount of storage space. Instead, we
approximate the electron density by the charge density of the
MLWFCs, assuming each MLWFC is a point charge of
magnitude −2e0. This approximation is often used when
computing molecular multipoles, as needed to predict vibrational
spectra, for example14,48. Here it is important to note that the
MLWFs of water are highly localized so that the center gives a
reasonable representation of the location of the MLWF. More-
over, the electron density is essentially smeared over the scale of σ
through a convolution with v1(r), which makes the resulting fields
relatively insensitive to small-wavelength variations in the charge
density. As a result, the electron density can be accurately
approximated by the MLWFC charge density within our
approach.

The effective field is a functional of the set of MLWFC
positions, E½ rw

� ��, and the positions of the MLWFCs themselves
depend on the field, rw[E]. Therefore, we determine E and rw

� �
through self-consistent iteration. Our initial guess for E is
obtained from the positions of the MLWFCs in the GT system.
We then iterate this self-consistent loop until the MLWFC
positions no longer change, within a tolerance of 2.6 × 10−4 Å. In
practice, we find that self-consistency is achieved quickly.

Module 2. After Module 1 predicts the positions of the MLWFCs,
Module 2 predicts the forces on the atomic sites. As with the first
module, Module 2 consists of two networks: one that predicts the
forces of the GT system and another that predicts the forces
produced by E(r). To predict the forces in the GT system, we
adopt the network used by Behler and coworkers49. This network,
Network 2S, takes local geometric information of the atoms as
inputs and, consequently, cannot capture long-range interactions.
To describe long-range interactions, we introduce a second net-
work (Network 2L in Fig. 1). This additional network predicts the
forces on atomic sites due to the effective field E(r), which
properly accounts for long-range interactions in the system. In
practice, we again introduce a local reference frame for each water
molecule and use local atomic coordinates and local electric fields
as inputs. In this case, we also find that a network that is linear in
E(r) accurately predicts the resulting long-range forces, consistent
with the linear response of the system to a slowly-varying field.

In practice, separating the data obtained from standard DFT
calculations into the GT system and the long-range effective field
is not straightforward. To solve this problem, we apply

homogeneous electric fields of varying strength while keeping
the atomic coordinates fixed. The fields only perturb the positions
of the MLWFCs and the forces on the atoms—these perturba-
tions are not related to the GT system. The changes induced by
these electric fields are directly obtained from DFT calculations
and are used to train Networks 1L and 2L and learn the response
to long-range effective fields. The remaining part of the DFT data,
which has the long-range field E(r) removed, is used to train
Networks 1S and 2S and learn the response of the short-ranged
GT system. See the “Methods” section for a more detailed
discussion of the networks and the training procedure.

We emphasize that our approach to partitioning the system
into a short-range GT piece and a long-range perturbation piece
is different from other machine learning approaches for handling
long-range electrostatics. The standard approaches usually
partition the total energy into two parts, a short-ranged energy
and an Ewald energy that is used to evaluate the long-range
interactions. However, this partitioning results in a coupling
between the short- and long-range interactions. For example, the
short-range part of the energy in the 4G-HDNNP model depends
on the effective charges that are assigned to the atoms, but these
effective charges depend on long-range electrostatic interactions
through the global charge equilibration process used to determine
their values28. In contrast, the SCFNN approach isolates the
short-range interactions during the training process and connects
the short-range model to long-range interactions through E(r) via
self-consistency. The GT system embodied by Network 1S and 2S
does not depend on long-range electrostatics even implicitly; it is
completely uncoupled from the long-range interactions. The
effects of long-range electrostatic interactions are isolated within
the second network of each module, Network 1L and Network 2L
in Fig. 1. This separation of short- and long-ranged effects is
similar in spirit to the principles underlying LMF theory34,39,41

and related theories of uniform liquids32,33,35,36,38.

Water’s local structure is insensitive to long-range interactions.
We demonstrate the success of the SCFNN approach by modeling
liquid water. Water is the most important liquid on Earth. Yet,
the importance of both short- and long-range interactions makes
it difficult to model. Short-range interactions are responsible for
water’s hydrogen bond network that is essential to its structure
and unusual but important thermodynamic properties36,50. Long-
range interactions play key roles in water’s dielectric response,
interfacial structure, and can even influence water-mediated
interactions41,51. Because of this broad importance, liquid water
has served as a prototypical test system for many machine
learning-based models17,24,48,49,52 Here, we test our SCFNN
model on a system of bulk liquid water by performing molecular
dynamics (MD) simulations of 1000 molecules in the canonical
ensemble under periodic boundary conditions.

One conventional test on the validity of a NN potential is to
compare the radial distribution function, g(r), between atomic
sites for the different models. The g(r) predicted by the SCFNN
model is the same as that predicted by the Behler–Parrinello (BP)
model49 for all three site–site correlations in water (Fig. 3). This
level of agreement may be expected, based on previous work
examining the structure of bulk water36–38,40,41. The radial
distribution functions of water are determined mainly by short-
range, nearest-neighbor interactions, which arise from packing
and hydrogen bonding; long-range interactions have little effect
on the main features of g(r). Consequently, purely short-range
models, like the GT system, can quantitatively reproduce the g(r)
of water36–38,40,41. Similarly, the short-range BP model accurately
describes the radial distribution functions, as does the SCFNN
model, which includes long-range interactions.

Table 1 Mean Absolute Error (MAE), multiplied by 100, of
Network 1L and 2L in predicting the changes in the
maximally localized Wannier function center (MLWFC)
positions (Å) and the forces (eV/Å) on the oxygen and
hydrogen nuclei, FO and FH, respectively, along the z-
direction when fields of strength 0.1 and 0.2 V/Å are
applied along the same direction.

MLWFC positions FO FH
0.1 V/Å 0.028 1.4 0.98
0.2 V/Å 0.056 2.8 2.0

The predictions are made for the test sets and the error is computed with respect to the DFT
results.
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Long-range electrostatics and dielectric response. Though the
short-range structure exemplified by the radial distribution
function is insensitive to long-range interactions, long-range
correlations are not. For example, the longitudinal component of
the dipole density or polarization correlation function evaluated
in reciprocal space, χ0zzðkÞ, was recently shown to be sensitive to
long-range interactions44. This correlation function is defined
according to

χ0zzðkÞ ¼
1
V

∑
l;j

ðk � plÞ ðk � pjÞ
k2

e�ik� rl�rjð Þ
� �

; with k ¼ kẑ : ð2Þ

Here pj is the dipole moment of water molecule j and rj is the
position of the oxygen atom of water molecule j.

Here we compare the longitudinal polarization correlation
function predicted by our SCFNN model and the BP model. The
original BP model is not able to predict molecular charge
distributions. Therefore, to predict the dipole moment of water,
we couple the BP model with the short-range part of the SCFNN
model that predicts MLWFCs (Network 1S). We note that a
similar strategy was used in the previous work47.

The longitudinal polarization correlation function predicted by
our SCFNN model and the BP agree everywhere except at small k,
indicating that long-range correlations are different in the two
models (Fig. 4a). The long-wavelength behavior of the polariza-
tion correlation function is related to the dielectric constant
via35,53,54

lim
k!0

χ0zzðkÞ ¼ ε0kBT
ε� 1
ε

; ð3Þ

where ε ≈ 100 is the value of the dielectric constant of water
predicted by the SCFNN, as discussed below. The χ0zzðkÞ predicted

by our SCFNN model is consistent with the expected behavior at
small k. In contrast, short-range models, like the GT
system35,44,54 and the BP model, significantly deviate from the
expected asymptotic value. Consequently, these short-range
models are expected to have difficulties describing the dielectric
screening that is important in nonuniform systems25,37,39,41,44,
for example.

To further examine the dielectric properties of the NN models,
we can apply homogeneous fields of varying strength to the
system and examine its response. To do so, we performed finite-
field simulations at constant displacement field, D. These finite-D
simulations55 can be naturally combined with our SCFNN model,
unlike many other NN models that cannot handle external fields.
Following previous work44, we use D ¼ Dẑ, vary the magnitude
of the displacement field from D= 0 V/Å to D= 0.4 V/Å, and
examine the polarization, P, induced in water. As shown in
Fig. 4b, the polarization response of water to the external field is
accurately predicted by dielectric continuum theory, as expected,
further suggesting that the SCFNN model properly describes the
dielectric response of water. To the best of our knowledge, this is
the first NN model that can accurately describe the response of a
system to external fields. We emphasize that this response is

a

b

c

Fig. 3 Local structure of bulk water. Comparison of the radial distribution
functions for a O-O, b O-H, and c H-H correlations in liquid water, as
predicted by molecular dynamics simulations of the self-consistent field
neural network (SCFNN) and Behler–Parrinello (BP) models.

b

a

Fig. 4 Long-range polarization in bulk water. a The longitudinal
polarization correlation function in reciprocal space, χ0zzðkÞ, shows
differences between the self-consistent field neural network (SCFNN) and
Behler–Parrinello (BP) models at low k. In particular, the SCFNN model
plateaus as k→ 0 in a manner consistent with the theoretical prediction
(green line), while the BP (short-range) model does not. b The polarization,
P, induced by a homogeneous displacement field of magnitude D along the
z-axis is accurately predicted by the SCFNN model, evidenced by the
agreement with dielectric continuum theory (DCT) predictions.
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achieved by learning the long-range response via Networks 1L
and 2L.

Because the SCFNN can predict the response to electrostatic
fields, we can use a highly efficient method to estimate the
dielectric constant56. To do so, we compute the r-dependent
Kirkwood g-factor, GK(r), with E= 0 and D= 0, where

GKðrÞ ¼ hμ1 �M1ðrÞi=μ2; ð4Þ
μ1 is the dipole of a water molecule at the origin and M1(r) is the
total dipole moment in a sphere of radius r including the
molecule at the origin. The composite Kirkwood g-factor,

GKcðrÞ ¼
1
3

2GKðrÞE¼0 þ GKðrÞD¼0

� �
; ð5Þ

converges rapidly with r to a constant gK, which is related to the
dielectric constant through Kirkwood’s relation for polarizable
molecules56

4πβNμ2gK
V

¼ ðε� 1Þð2εþ 1Þ
ε

� ðε1 � 1Þð2ε1 þ 1Þ
ε1

; ð6Þ

where N is the number of water molecules, V is the system
volume, β= 1/(kBT), and ε∞ is the high-frequency dielectric
constant that arises from electronic polarization; ε∞ ≈ 1.65 for the
SCFNN model, as discussed below. As shown in Fig. 5a, the
composite correlation function plateaus to a constant value near a
distance of 6 Å, as expected56. By replacing gK in Eq. (6) with
GKc(r) and inverting, we can compute the effective distance-

dependent dielectric constant, shown in Fig. 5b. The dielectric
constant rapidly converges to the bulk value of ε ≈ 100, which is
close to estimates provided by van der Waals corrected
functionals of similar accuracy14 and significantly less than that
predicted by the PBE functional that overstructures water56.

To push the limits of the SCFNN model, we can ask if it can
properly predict dielectric screening in nonuniform environ-
ments, for which it was not trained. To do so, we simulate a
water-vapor interface by extending the simulation cell along the
z-axis to create a slab of water surrounded by a large vacuum
region on either side. Because we have only trained on bulk
configurations and not on configurations in the nonuniform
system, we cannot expect the BP or the SCFNN model to
accurately reproduce all features of the interface. Yet, both models
do produce a stable interface, as shown by the densities in Fig. 6a,
although the width of the SCFNN interfaces is smaller than those
of the BP. Both models predict densities that are lower than those
predicted by models explicitly trained for the interface, which
may be expected because the bulk models did not learn the
unbalanced dispersion forces that exist at interfaces25,36,57.
However, the bulk density predicted by the SCFNN model is
larger than that of the BP model, in better agreement with
experiments.

Dielectric screening manifests in the orientational structure of
interfacial water, and we examine the orientational preferences of
water by computing hcosθðzÞi, where θ(z) is the angle formed by
the surface normal and the dipole moment vector of a water
molecule located at z. At the water–vapor interface, water

b

a

Fig. 5 Estimating the dielectric constant. a The Kirkwood g-factors for zero
electric field, E= 0, zero displacement field, D= 0, and the composite
correlation function, GKc(r), obtained from their superposition. b The
effective distance-dependent dielectric constant obtained from GKc(r) for
the SCFNN model of water.

b

a

Fig. 6 The structure of the water-vapor interface. a Water density and b
average cosine of the angle formed by the water dipole moment and the
surface normal for the Behler–Parrinello (BP) and SCFNN models without
any additional training.
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molecules tend to point their dipoles slightly toward the vapor
phase, a consequence of breaking an average of one H-bond per
molecule at water’s surface. This dipole layer is screened by
subsequent layers of water, such that no net orientation and zero
electric field exists in the bulk. In the absence of long-range
electrostatics, this screening is not achieved, and short-range
models result in extended ordering from the interface into the
bulk25,36,37,39,44. Indeed, the short ranged BP model results in
long-ranged orientational ordering of water at the liquid–vapor
interface because it lacks dielectric screening. In contrast, the
SCFNN model displays the expected behavior. A single hcosθðzÞi
peak in hcosθðzÞi appears near the interface and goes to zero in
the bulk of the slab due to proper screening of the interfacial
dipole layer. This successful prediction suggests that the SCFNN
approach may lead to the creation of NN models that are at least
partially transferable to different environments.

Electronic fluctuations. In addition to the screening encom-
passed by the static dielectric constant, the SCFNN model can
also properly predict electronic fluctuations of water and the
high-frequency dielectric constant. To quantify electronic fluc-
tuations, we compute the probability distribution of the magni-
tude of the water dipole moment from our simulations of bulk
water using the SCFNN model, Fig. 7a. This distribution is
dominated by the electronic polarization of water molecules and
has a width consistent with predictions from ab initio MD
simulations58–61. Moreover, the mean of the distribution yields an
average dipole moment (2.9 D) in agreement with that estimated
from experiments (2.9 D)62, further supporting that the SCFNN
produces an accurate description of the molecular charge dis-
tribution in liquid water.

We also decomposed the dipole moment distribution into
contributions from short- and long-range interactions. The short-
range contribution to the electronic polarization is determined by
Network 1S and the long-range part is determined by Network 1L.
As shown in Fig. 7a, the molecular dipole moment distribution in
bulk water is determined by short-range interactions, where the
nuclear configurations of the bulk were determined using the full
SCFNN model. This is consistent with the idea that local structure
in a uniform bulk liquid, and fluctuations about that local
structure, are determined by short-range interactions.

Long-range electronic effects on electrostatic screening are
quantified by the high-frequency dielectric constant, ε∞. Physically,

ε∞ can be thought of as the amount by which an electric field is
screened without altering the positions of the nuclei; it quantifies
the electronic response to applied fields. To estimate ε∞, we perform
precisely this exercise: we compute the polarization of water in
response to an external electric field of magnitude E and keep all
positions of the nuclei fixed. The resulting polarization, shown in
Fig. 7b, is consistent with a linear response to the field, as expected
for dielectric screening. Fitting the induced electronic polarization
to dielectric continuum theory expectations yields ε∞ ≈ 1.65, in
good agreement with the experimental value of 1.77, demonstrating
that the SCFNN model can accurately predict long-range electronic
response to electrostatic fields.

Finally, we compare the electronic fluctuations of the SCFNN
model to predictions made by the 4G-HDNNP model. To do so,
we perform a MD simulation of bulk water using the extended
simple point charge (SPC/E) water model63 and use the resulting
configurations to determine the dipole moment distribution using
each NN model, Fig. 7c. Using the same set of configurations
allows us to compare only the ability of each model to predict
charge distributions.

The 4G-HDNNP relies on atomic partial charges obtained
from electronic structure calculations during the training process.
The original implementation of the 4G-HDNNP model used
Hirshfeld charges28,64. We additionally train another version of
the 4G-HDNNP model using Mulliken charges to examine the
dependence of the results on the method of determining the
atomic partial charges65. See the Methods section for a more
detailed discussion of the training procedure.

The SCFNN model results in a dipole moment distribution
centered near the experimentally-determined average dipole
moment. Moreover, the width of the SCFNN distribution is in
good agreement with ab initio predictions58–61, although slightly
narrower than that obtained using SCFNN-generated configura-
tions (Fig. 7a). The 4G-HDNNP models result in significantly
narrower distributions than the SCFNN model, and the average
molecular dipole moment is either too large (Hirshfeld) or too
small (Mulliken). The prediction of distinctly different molecular
dipole moments demonstrates a key disadvantage of relying on
atomic partial charges during training—the definition of partial
charges can be ambiguous and often artificial. Then, the resulting
4G-HDNNP models trained with different partial charges will
give different results. In contrast, the SCFNN model removes this
ambiguity by representing the molecular charge distributions
using MLWFCs.

ba c

Fig. 7 Electronic fluctuations in bulk water. a Probability distribution of the water dipole moment in bulk simulations of the SCFNN water model. Vertical
solid and dashed lines indicate the average value estimated from experiments and the simulations, respectively. Data points indicate dipole moments
predicted using the short-range network (SCFNN-SR). b Induced polarization as a function of the applied electric field with fixed nuclear configurations,
which characterizes the high-frequency, electronic response of water to external fields. The solid line indicates predictions from dielectric theory used to
estimate the high-frequency dielectric constant of the SCFNN model. c Probability distribution of the water dipole moment obtained using SCFNN and 4G-
HDNNP models for the same set of nuclear configurations. Results for the 4G-HDNNP model are shown for both Hirshfeld and Mulliken charges. The set of
configurations is from a bulk simulation of the SPC/E water model. Vertical dashed lines indicate the average dipole moment of each distribution.
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Discussion
In this work, we have presented a general strategy to construct NN
potentials that can properly account for the long-range response of
molecular systems that is responsible for dielectric screening and
related phenomena. We demonstrated that this model produces
the correct long-range polarization correlations in liquid water, as
well as the correct response of liquid water to external electrostatic
fields. Both of these quantities are related to the dielectric constant
and require a proper description of long-range interactions. In
contrast, current derivations of NN potentials result in short-range
models that cannot capture these effects.

We anticipate that this approach will be of broad use to the
molecular machine learning and simulation community for
modeling the electrostatic and dielectric properties of molecular
systems. In contrast to short-range interactions that must be
properly learned to describe the different local environments
encountered at extended interfaces and at solute surfaces, the
response of the system to long-range, slowly-varying fields is
quite general. Learning the long-range response (through Net-
works 1L and 2L) is analogous to learning a linear response in
most cases, and we expect the resulting model to be relatively
transferable; we emphasize, however, that the SCFNN is not
limited to the linear response regime. As such, our resulting
SCFNN model can make predictions about conditions on which
it was not trained. For example, we trained the model for electric
fields of magnitude 0, 0.1, and 0.2 V/Å, and then used this model
to successfully predict the response of the system to displacement
fields with magnitudes between 0 and 0.4 V/Å. This suggests that
our approach can be used to train NN models in more complex
environments and then accurately predict the response of water
to long-range fields in those environments. We also showed that
the SCFNN model trained for bulk water can predict orienta-
tional structure at the water-vapor interface as a result of learning
dipolar screening, further emphasizing the ability of the SCFNN
to predict the response of the system to electrostatic fields. The
ability to learn the response of condensed phases to applied fields
should make the SCFNN appealing for modeling atomic systems
in electrochemical environments66, where electrostatic potential
differences drive chemical processes, as well as in the modeling of
interfaces with polar surfaces where the application of displace-
ment fields is used to properly model surface charge densities67,68.

Our SCFNN approach is complementary to many established
methods for creating NN potentials. Learning the short-range, GT
system interactions can be accomplished with any method that uses
local geometric information, and recent advances in optimizing this
training can be leveraged69,70. In this case, the precise form of
Networks 1S and 2S can be replaced with an alternative NN. Then,
Networks 1L and 2L can be used as defined here, within the general
SCFNN workflow, resulting in a variant of the desired NN potential
that can describe the effects of long-range interactions. Because of
this, we expect our SCFNN approach to be transferable and readily
interfaced with current and future machine learning methods for
modeling short-range molecular interactions.

We close with a discussion of the limitations of the SCFNN
model in its current form and possible strategies for improve-
ment. We rely on defining a local molecular coordinate system on
each water molecule, in order to make our model rotationally
equivariant. Moreover, we assumed that a specific number of
MLWFCs are associated with each molecule, four for each water
molecule, and examined their coordinates within the local frame.
These steps are complicated when bond breakage and formation
occurs. Although the general procedure can be readily extended
to many molecules, the set of possible molecules must be known
in advance. Strategies for constructing rotationally equivariant
NN potentials without a local reference frame have been devel-
oped and can be used in place of the strategy used here to develop

further generations of the SCFNN model that improve upon these
deficiencies30,48,71–73.

Methods
Training the SCFNN. Our training and test set consists of 1571 configurations of
64 water molecules52. Homogeneous electric fields were applied to the system, as
described further in the next section. We used two-thirds of the configurations for
training and one-third to test the training of the network.

To train the networks we need to separate the DFT data into the GT system and
the long-range effective field. However, that separation is not straightforward in
practice. To achieve this, we use the differences in the MLWFC locations and forces
induced by different fields to fit Networks 1L and 2L. We now describe this procedure
in detail for fitting Network 1L, and Network 2L was fit following a similar approach.

To learn the effects of long-range interactions, we consider perturbations to the
positions of the MLWFCs induced by external electric fields of different
magnitudes. Consider applying two fields of strength Ej j and Ej j0 . These fields will
alter the MLWFC positions by Δrw[R, E] and Δr0w½R;E0 �, respectively. However,
both Δrw and Δr0w are not directly obtainable from a single DFT calculation.
Instead, we can readily compute the difference in perturbations, Δrw � Δr0w,
directly from the DFT data, because

Δrw � Δr0w ¼ rw � r0w : ð7Þ
Here rw and r0w are the locations of the MLWFCs in the full system in the presence
of the field E and E0 , respectively, and these positions can be readily computed in
the simulations. These differences in the MLWFC positions are used to fit Network
1L. In addition, we also exploit the fact that Δrw= 0 when E= 0. This allows us to
fix the zero point of Network 1L.

After fitting Networks 1L and 2L, we use them to predict the contribution of the
effective field to the MLWFC locations and forces. We then subtract that part from
the DFT data. What remains corresponds to the short-range GT system, and this is
used to train Networks 1S and 2S.

We now describe the detailed structure of the four networks used here.

Network 1S. In the local frame of water molecule i, we construct two types of
symmetry functions as inputs to Network 1S. The first type is the type 2 BP
symmetry function74,

G2
i ¼ ∑

j≠i
expð�ηðrij � rsÞ2Þf cðrijÞ: ð8Þ

Here η and rs are parameters that adjust the width and center of the Gaussian, and fc is a
cutoff function whose value and slope go to zero at the radial cutoff rc. We adopted the
same cutoff function as previous work49, and the cutoff rc is set equal to 12 Bohr.

The second type of symmetry function is similar to the type 4 BP symmetry
function74. This symmetry function depends on the angle between rij and the axis
of the local frame,

G4
i ¼ ∑

j≠i
21�ζ 1þ λ

rij
rij

 !ζ

expð�ηr2ijÞf cðrijÞ: ð9Þ

Here, ζ and λ are parameters that adjust the dependence of the angular term.
We use 36 symmetry functions as input to Network 1S. Network 1S itself

consists of two hidden layers that contain 24 and 16 nodes. The output layer
consists of 12 nodes, corresponding to the three-dimensional coordinates of the
four MLWFCs of a central water molecule. Network 1S is a fully connected feed-
forward network, and we use tanhðxÞ as its activation function.

Network 1L. In the local frame of water molecule i, we construct one type of
symmetry function as input to Network 1L,

EG2
i ¼ ∑

j
Ej expð�ηðrij � rsÞ2Þf cðrijÞ: ð10Þ

Here, Ej is the effective field exerted on atom j. We use 36 symmetry functions as
inputs to Network 1L. Network 1L has no hidden layers. The output layer consists
of 12 nodes, corresponding to the three-dimensional coordinates of the pertur-
bations of a water molecule’s four MLWFCs induced by the external field.

Network 2S. Network 2S is exactly the same as the BP Network employed in the
previous work49. In brief, the network contains 2 hidden layers, each containing 25
nodes. Type 2 and 4 BP symmetry functions are used as inputs to the network. The
network for oxygen takes 30 symmetry functions as inputs, while the network for
hydrogen takes 27 symmetry functions as inputs. A hyperbolic tangent is used as
the activation function.

Network 2L. Network 2L uses the same type of symmetry function as Network 1L. The
network for the force on the oxygen and for the force on hydrogen are trained inde-
pendently. To predict the force on the oxygen, we center the local frame on the oxygen
atom. When the force on a hydrogen atom is the target, we center the local frame on a
hydrogen atom. We use 36 symmetry functions as inputs to Network 2L. Network 2L
has no hidden layers. The inputs map linearly onto the forces on the atoms.
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4G-HDNNP. The same configurations used to train and test the SCFNN model are
used to train and test the 4G-HDNNP. Hirshfeld and Mulliken charges for these
configurations are obtained with DFT. Two-thirds of these configurations are used
to train the 4G-HDNNP and the remaining one-third is used to test the training.
We trained two versions of the 4G-HDNNP, one with Hirshfeld charges and the
other with Mulliken charges. The 4G-HDNNP-Hirshfeld model yields an average
charge error of 0.012e0 on the test set, while the 4G-HDNNP-Mulliken yields an
average charge error of 0.02e0 on the test set.

DFT calculations. The DFT calculations followed previous work52,75 and used
published configurations of water as the training set52. In short, all calculations
were performed with CP2K (version 7)76,77, using the revPBE0 hybrid functional
with 25% exact exchange15,78,79, the D3 dispersion correction of Grimme80,
Goedecker–Tetter–Hutter pseudopotentials81, and TZV2P basis sets82, with a plane
wave cutoff of 400 Ry. Maximally localized Wannier function centers83 were
evaluated with CP2K, using the LOCALIZE option. The maximally localized
Wannier function spreads were minimized according to previous work84. Hirshfeld
and Mulliken charges were determined using the default implementations in CP2K.
A homogeneous, external electric field was applied to the system using the Berry
phase approach, with the PERIODIC_EFIELD option in CP2K56,85,86. Electric
fields of magnitude 0, 0.1, and 0.2 V/Å were applied along the z-direction of the
simulation cell. Sample input files are given at Zenodo87.

MD simulations. MD simulations are performed in the canonical (NVT)
ensemble, with a constant temperature of 300 K maintained using a Berendsen
thermostat88. The system consisted of 1000 water molecules in a cubic box 31.2 Å
in length. The equations of motion were integrated with a timestep of 0.5 fs. Radial
distribution functions and longitudinal polarization correlation functions were
computed from 100 independent trajectories that were each 50 ps in length. Finite-
D simulations were performed under the same simulation conditions, and each
trajectory was 50 ps long at each magnitude of D.

The liquid–vapor simulation was performed at 300 K. The system consisted of
1000 water molecules. The dimensions of the simulation box were Lx= Ly= 30 Å
and Lz= 90 Å. The density profiles and the orientational profiles of water were
obtained from 59 independent trajectories that were each 50 ps in length. Each
trajectory is equilibrated for at least 50 ps before data are collected.

The SPC/E water63 simulation is performed in the canonical (NVT) ensemble,
with a constant temperature of 300 K maintained using a Berendsen thermostat88.
The system consisted of 1000 water molecules in a cubic box of length 31.2 Å. One
thousand configurations were sampled from a 50 ns long trajectory of the SPC/E
water simulation and the SCFNN and 4G-HDNNP were applied to these
configurations to predict the dipole moments of water molecules.

Data availability
The data generated to train and test the SCFNN and the 4G-HDNNP have been
deposited in Zenodo under accession code https://doi.org/10.5281/zenodo.576019187.
Source data are provided with this paper.

Code availability
All DFT calculations were performed with CP2K version 7. In-house code was used to
construct the NN potentials and perform the MD simulations. These codes are available
on Github: https://doi.org/10.5281/zenodo.591931789.
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