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Abstract: Genome/gene-editing (GE) techniques, characterized by a low technological 
barrier, high efficiency, and broad application among organisms, are now being employed 
not only in medical science but also in agriculture/veterinary science. Different engineered 
CRISPR/Cas9s have been identified to expand the application of this technology. In pig 
production, GE is a precise new breeding technology (NBT), and promising outcomes in 
improving economic traits, such as growth, lean or healthy meat production, animal welfare, 
and disease resistance, have already been documented and reviewed. These promising 
achievements in porcine gene editing, including the Myostatin gene knockout (KO) in 
indigenous breeds to improve lean meat production, the uncoupling protein 1 (UCP1) gene 
knock-in to enhance piglet thermogenesis and survival under cold stress, the generation of 
GGTA1 and CMP-N-glycolylneuraminic acid hydroxylase (CMAH) gene double KO (dKO) 
pigs to produce healthy red meat, and the KO or deletion of exon 7 of the CD163 gene to 
confer resistance to porcine reproductive and respiratory syndrome virus infection, are 
described in the present article. Other related approaches for such purposes are also discussed. 
The current trend of global regulations or legislation for GE organisms is that they are 
exempted from classification as genetically modified organisms (GMOs) if no exogenes are 
integrated into the genome, according to product-based and not process-based methods. 
Moreover, an updated case study in the EU showed that current GMO legislation is not fit 
for purpose in term of NBTs, which contribute to the objectives of the EU’s Green Deal and 
biodiversity strategies and even meet the United Nations’ sustainable development goals 
for a more resilient and sustainable agri-food system. The GE pigs generated via NBT will 
be exempted from classification as GMOs, and their global valorization and commerciali
zation can be foreseen.

Keywords: CRISPR/Cas9; Genome/Gene-editing (GE); New Breeding Technique (NBT); 
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INTRODUCTION 

Current intensive systems of livestock production are major contributors to environmental 
degradation leading to climate change, biodiversity losses, and animal welfare and even 
human health concerns. Therefore, so-called sustainable animal husbandry must be man-
aged in a smart way to achieve not only production value but also of planet and people 
benefits. From the perspective of pig rearing, systemic selection for body length, backfat 
thickness, and growth has been applied since the 1920s [1]; however, some undesirable 
side effects, such as leg disorders, physiological unfitness and susceptibility to stress or 
disease, have concomitantly resulted from selection for high production efficiency [2,3]. 
New phenotypes have been proposed to meet sustainable breeding goals in pigs [4], and 
selection for productivity and robustness traits in pigs has become an issue [5].
  The advance of molecular biology technology has enabled breeding for a specific trait 
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possible through genomic selection, and the use of gene-edit-
ing technology can even introduce targeted traits in pigs [6]. 
New breeding technology (NBT) presents promise not only 
in agriculture but also in biomedicine [7]. The implementation 
of NBT with the goal of robustness may be learnt by naturally 
selected fitness since random changes in genetic information 
that are most likely to benefit survival, reproduction, and 
adaptability to the environment are the mechanisms driving 
this revolution. In contrast to natural selection, artificial se-
lection is a practice used by humans to develop new organisms 
with desirable traits; in agriculture, it has yielded different 
outcomes, including both gains and losses of diversity. Ge-
netic variation among crop breeds has been increasing due 
to the in vitro mutagenesis approach since 1930, but this is 
less the case in farm animals because the proliferation of 
stocks with phenotypic traits of commercial value has grad-
ually homogenized their genetic background. Once wild-type 
alleles are eliminated from the population, livestock become 
dependent on farm feeding for their survival. In the case of 
pigs, many indigenous breeds are being lost, as native breeds 
are survival driven, and their environmental fitness shows 
little association with phenotypes related to economic viability, 
which has been the chief goal of commercial pig breeding 
[8]. The application of NBT means that pigs can be selectively 
bred for utility in both natural and artificial environments 
(i.e., sustainable production value) based on human design 
as the dominant factor [8].
  The conservation of biodiversity is not only ethical but 
also practical, especially in crucial environmental gradients. 
For example, indigenous breeds may be adapted to a special 
environment, whether biological or physical (e.g., tolerance 
to African swine fever (ASF) infection in warthog [9] and 
heat tolerance in ethnic cattle [10]). The power of whole-ge-
nome sequencing may reveal the genetic source of these 
valuable features and offer opportunities to search for them 
in wild-type species, and the results can be referenced and 
used for improving the performance of commercial breeds.
  Genome/gene-editing (GE) techniques include zinc finger 
nuclease (ZFN)-, transcription activator-like effector nucle-
ase (TALEN)-, and clustered regularly interspaced short 
palindromic repeat (CRISPR)/CRISPR-associated (Cas) 
endoribonuclease 9 (Cas9)-based methods. The CRISPR/
Cas9 method has become the dominant approach since it 
is characterized by a low technological barrier and high ef-
ficiency; its application in pigs has been recently reviewed 
[11,12], and its use to improve resilience/disease resistance 
with the goal of epidemic elimination is of particular interest 
[13]. In pig production, GE has been recognized as a precise 
NBT with promising outcomes in improving sustainable 
traits; although this has already been documented, the pre-
dicted valorization and commercialization of NBT for public 
use remain uncertain considering related legislation. The 

present review will briefly introduce the current progress 
in NBT, followed by the application of NBT to pig produc-
tion to obtain healthy pork and achieve disease resilience. 
Additionally, regulatory concerns will be briefly discussed to 
understand the controversy regarding NBT-derived products.

GENOME/GENE-EDITING 
TECHNOLOGY: AN OVERVIEW

To date, three GE technologies, based on ZFN [14], TALEN 
[15], and CRISPR/Cas9 [16], have been developed. Currently, 
CRISPR/Cas9 is regarded as a canonical methodology and a 
precise NBT with high efficiency and rapid realization, a low 
technological barrier and low cost that can be broadly applied 
in many organisms, including the livestock.
  Considering that the genome sizes of mammalian and 
bird cells per ploidy are approximately one to three billion 
base pairs (bp), the length of a DNA sequence that theoreti-
cally appears only once in the genome should be at least 16 
bp (4n≥3E9, n≥16). Initially, natural DNA-binding proteins 
were screened to identify those that can recognize a stretch 
of DNA longer than 16 bp, and homing endonucleases (HEs), 
which display an economy of size and yet recognize long 
DNA sequences (typically 20 to 30 base pairs) [17], were 
employed for this purpose. The number of HE members in 
a collection should be billions to cover the whole mammali-
an genome, which is an unreachable goal. A modular C2H2 
zinc finger (ZF) recognizes a sequence of 3 bp, therefore, a 
collection of 64 ZFs can represent all 3 bp combinations. 
Usually, a pair of triZFs are engineered and recruited to bind 
two adjacent 9-bp DNA stretches. Each triZF is fused with 
the nuclease domain of type IIS FokI (FN) to serve as the 
ZFN. The nuclease activity of FN exclusively appears in its 
dimeric form Smith et al [18]. A pair of ZFNs with recogni-
tion sites in a tail-to-tail orientation was demonstrated to be 
necessary for effective double-strand cutting activity [19] (Fig-
ure 1A).
  The bacterial transcription activator-like effector (TALE) 
protein contains an array of 34 amino acid (AA) repeats, 
each of which recognizes a bp sequence via the 12th and 
13th residues, known as the repeat variable di-residue (RVD), 
together. More simply, only 4 kinds of repeats, each carrying 
an RVD for distinguishing G, A, T and C, are sufficient build-
ing blocks for any DNA sequence [20,21]. It is feasible to 
assemble more than 20 repeats into an engineered TALE 
corresponding to the target DNA sequence of interest via 
the Golden Gate cloning method in a few days [22-25]. Sim-
ilar to the ZFN-based method, a pair of TALENs (TALE fused 
with FN at the C-terminus) specifically recognize sites in a 
head-to-head orientation and cause a double-strand break 
(Figure 1B-a). In addition to the FN nuclease domain, the 
transcription regulatory domain and DNA-modifying en-
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Figure 1. Genome/gene-editing nucleases. (A) Illustration of a pair of functional ZFNs bound to DNA. An N-terminal domain is shown to aid in the 
folding of zinc finger domains. Each tri-ZF is fused with the nuclease domain of FokI (FN) via a peptide linker. The recognition sites of each pair of 
ZFNs are organized in a tail-to-tail orientation to perform effective double-strand cutting activity. (B-1) A model consisting of a pair of TALENs in a 
head-to head orientation is shown. An N-terminal domain is also needed to facilitate the folding of the 34 AA repeat domains. A C-terminal do-
main containing an NLS is essential for enzyme activity. (B-2) The engineered TALE can be used as a sequence-specific DNA binding domain to 
carry a transcriptional regulator, DNA-modifying enzyme, or histone modification enzyme to the DNA region of interest. The domain organization 
of SpCas9 (C-a) and a schematic diagram of wild-type SpCas9 associated with a sg-RNA (C-b) are shown. (C-c) The noncomplementary strand is 
cut by the RuvC nuclease domain, and this nuclease activity is blocked in the D10A mutant. (C-e) The complementary strand is digested by the 
HNH nuclease domain, and this nuclease activity is blocked in the H840A mutant. (C-f) Both nuclease activities of SpCas9 are lost in the D10A/ 
H840A double mutant, which is referred to as dead Cas9 (dCas9). (C-d) The D10A mutant, also known as Cas9 nickase (nCas9), is engineered as 
a C to T nucleotide editor by linking a cytidine deaminase, APOBEC1, to its N-terminus, and the switching probability can be increased by the fu-
sion of a uracil glycosylase inhibitor (UGI) to the C-terminus of nCas9. (C-g) Similar to TALE, dCas9 can be guided by a sgRNA as a sequence-spe-
cific DNA-binding roboprotein. Transcriptional regulators, DNA-modifying enzymes, or histone-modifying enzymes can be fused to either or both 
of the N- and C-termini.
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zymes can be engineered at the C-terminus of the sequence-
specific TALE core structure to create artificial gene-editing 
factors [26,27] (Figure 1B-b).
  Both ZF and TALE use AA residues to recognize nucleo-
tides, and intrinsic limitations regarding specificity and off-
targeting are unavoidable. The breakthrough CRISPR/Cas9 
technology, in which a single-guide RNA (sgRNA), an artifi-
cial fusion of crRNA and tracrRNA, is used to distinguish 
target DNA sequences via a Watson-Crick base-pairing 
mechanism with precise specificity to prevent off-targeting 
problem, was first reported in 2012 [28]. The target site, a 
protospacer matched to the spacer portion of the guide RNA 
and a protospacer adjacent motif (PAM), and its counterpart 
Cas9/sgRNA complex first interact between the PAM and PI 
(PAM interacting) domains. This event causes the target DNA 
double helix to bend to allow a melted region, where the 
spacer RNA/target strand DNA heteroduplex begins and ex-
tends, to form an R-loop, which can induce the conformation 
of the Cas9 protein to shift to a nuclease-activated state [29,30]. 
The target-strand DNA and non-target-strand DNA sequences 
are independently cleaved by the His-Asn-His motif contain-
ing endonuclease (HNH) and resistance to UV light-C (RuvC) 
nuclease domains of Cas9, respectively (Figure 1C- 1a,b). 
Two types of DNA modification processes, nonhomo
logous end joining and homology-directed recombination, 
have been widely used for genome/gene editing [31]. The 
D10A [28] (Figure 1C-c) and H840A [28] mutations (Figure 
1C-e) and the N863A [32] mutation independently destroy 
the nuclease activity of the RuvC and HNH domains, re-
spectively; however, they do not influence target site binding 
affinity. Cas9 carrying either one or two of these mutations 
is referred to as Cas9 nickase (nCas9) or the dead Cas9 en-
zyme (dCas9) (Figure 1C-f), respectively. To prevent unwanted 
indel mutations or usage of donor template DNA, nCas9 
and dCas9 are utilized as a DNA-targeting core loaded with 
cytosine deaminase [33], adenine deaminase [34,35], an 
uracil glycosylase inhibitor [36] (Figure 1C-d), or reverse 
transcriptase [37,38] (Figure 1C-g) to perform more precise 
and versatile genome/gene editing.

APPLICATION OF NEW BREEDING 
TECHNOLOGY IN PIG PRODUCTION

Lean growth promotion
A natural mutation of the myostatin (MSTN) gene in some 
cattle breeds results in double muscling [39,40]. Czaja et al 
[41] recently revealed that MSTN may regulate pituitary de-
velopment and function and that its inhibitory actions in 
muscle may be partly mediated by attenuating growth hor-
mone action in the liver, leading to the expression of insulin-
like growth factor 1 (IGF 1). In pigs, MSTN, IGF2 repressor 
Zinc finger BED-type containing 6 (ZBED6) and Fbox pro-

tein 40 (Fbox 40) gene knockout (KO) can improve growth 
or muscle mass production, but Iroquois homeobox 3 (IRX3) 
KO does not have this effect, as summarized in Table 1.
  The first successful case of pig MSTN KO was achieved by 
using ZFN in the Meishan breed, and the resultant homozy-
gotes reached adulthood normally but showed a higher 
percentage of lean body mass growth, exhibiting wider dor-
sal musculature and double muscling of the hip in particular 
[42]. However, the same attempt to achieve MSTN gene KO 
by using CRISPR/Cas9 failed to produce healthy KO piglets 
in the Landrace and Large White breeds [43,44]; but they 
later successfully generated 23 Erhualian ethnic breed pigs 
showing obvious muscular protrusion, a wider back and 
fuller hips relative to non-KO pigs [46]. Since Wang et al [45] 
suggested that commercial breeds would be more sensitive 
to the KO of endogenous genes, Zou et al [46] generated two 
healthy Duroc pigs with the Belgian Blue mutation only in 
heterozygosity, but they did not show double muscling at the 
neonatal stage. It could be explained by a recent finding that 
showed in commercial MSTN KO pigs, the decreased ex-
pression level of type I collagen and Scleraxis, could result in 
umbilical hernia and tippy-toe standing problems typified 
by the tendon and linea alba dysfunction [47]. 
  Similarly, using CRISPR/Cas9, Xiang et al [48] mutated 
the IGF2 intron 3–3072 site of the IGF2 gene, which abolished 
ZBED6 repressor binding, causing the loss of its regulatory 
function, in indigenous Bama minipigs and obtained healthy 
animals with an improved growth rate, higher lean content, 
and little change in meat quality. This was the first report 
that editing noncoding regions could improve economic 
traits in pigs of indigenous breeds. Furthermore, Li et al [49] 
used CRISPR/Cas9 editing and introduced two mutations 
(PVD20H and GP19del) in the MSTN signal peptide region 
in Liang Guang Small Spotted pigs, an indigenous Chinese 
breed, without inhibiting mature MSTN production. This 
approach downregulated MSTN+/PVD20H and MSTNKO/PVD20H 
and upregulated myogenic regulatory factors, including MyoD, 
Myo-genin, and Myf-5. The precise editing of the MSTN 
signal peptide enhanced porcine muscle development with-
out markedly affecting the expression of the mature MSTN 
peptide. This might be a better KO approach applied to com-
mercial breeds for the further improvement of lean body 
mass without disturbing their normal physiology, such as 
causing reproductive disorders or increasing stress suscepti-
bility, as observed in the highly muscled pig breed Pietrain.
  Fbox 40 in mice targets insulin receptor substrate 1 (IRS1) 
for ubiquitylation and degradation, and the abnormal ex-
pression of FBOX 40 in humans is associated with muscle 
pathology, causing limb-girdle muscle dystrophy [50]. Zou 
et al [51] performed Neo resistance gene knock-in (KI) into 
exon 4 of FBOX 40 to abolish its gene function and identi-
fied increased IRS1 expression and a 4% increase in muscle 
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mass growth. The authors recapitulated human muscular 
disease and suggested the application of this strategy in pig 
production. Similarly, the IRX3 gene is implicated in human 
obesity and controls body mass and body composition in 
mice, but Zhu et al [52] found that clones of IRX3-/- Bama 
minipigs showed a significantly decreased birth weight, poor 
viability, and short survival after farrowing. The disparity in 
these results might originate from errors in somatic cell nu-
clear transfer (SCNT), although the authors hypothesized 
that IRX3 may be responsible for some important physio-
logical functions in pigs and should not be targeted as a 
gene-editing candidate for body fat reduction [52].

Improvement of thermogenesis in piglets cold stressed
Domestic pigs have no brown adipose tissue (BAT) and 
show no uncoupling protein 1 (UCP1) expression in their 
mitochondria [53,54], and exons 3 to 5 of the UCP1 gene 
were deleted during evolution 20 million years ago [55]. The 
function of UCP1 is to disengage oxidative phosphorylation 
from ATP synthesis in mitochondria and dissipate energy as 
heat in BAT for survival in cold environments or under cold 
stress. Although Lin et al [56] proved that cold adaption in 
pigs depends on UCP3 in beige adipocytes, pigs show poor 

thermoregulation [55] due to the absence of nonshivering 
thermogenesis; thus, high thermoneutrality is needed. The 
provision of additional warmth by various means to keep 
piglets warm is a basic practice of producers, especially in 
temperate regions. Zhang et al [57] constructed a porcine 
adiponectin promotor with mouse UCP1 cDNA and per-
formed KI of the exogene at the porcine UCP1 exon 2 site 
through GE by using CRISPR/Cas9. The UCP1 KI piglets 
could maintain a normal rectal temperature of 38°C during 
4 h of 4°C cold exposure, whereas the control group showed 
hypothermia (2°C lower). Since the adiponectin promoter 
drove UCP1 expression in adipocytes, the KI pigs grew nor-
mally relative to the control pigs, without noticeable harm to 
their well-being during the 6-month study period. Carcass 
evaluation further showed that backfat thickness, adipocyte 
size, and body fat accretion were all significantly decreased, 
resulting in an improvement in the carcass lean percentage. 
The authors also claimed that KI pigs showed a loss of body 
fat upon UCP1 activation in white adipocyte tissues, which 
would further improve pig welfare and reduce economic 
losses due to external energy expenditure to achieve ther-
moneutrality, especially in post farrowing piglets.

Table 1. Application of gene-editing (GE) in pigs for animal production

Year Authors Target gene GE method KO or KI Achievement Reference

2015 Qian et al MSTN ZFN KO Improved Meishan pig meat growth through double 
muscling

[43]

2015 Wang et al MSTN CRISPR/Cas9 KO 8 stillbirths or early deaths in Landrace piglets, with 2 
showing double muscling

[44]

2016 Wang et al MSTN CRISPR/Cas9 ssODN KI Generation of one early dead Large White piglet with a 
point mutation (c.938G > A)

[45]

2017 Wang et al MSTN CRISPR/Cas9 KO Generation of 23 Erhualian pigs with obvious muscular 
protrusion, wider backs and fuller hips compared with 
the wild-type control.

[46]

2019 Zou et al MSTN CRISPR/Cpf1-assisted 
ssODN

KO Two heterozygous Durocs with the Belgian Blue muta-
tion

[47]

2020 Li et al MSTN CRISPR/Cas9 Ed Introduction of two mutations (PVD20H and GP19del) 
in the MSTN signal peptide region in Liang Guang Small 
Spotted pigs, resulting in enhanced muscle mass.

[49]

2018 Xiang et al IGF2 CRISPR/Cas9 Ed The IGF2 intron 3–3072 site was mutated with abol-
ished repressor binding, the F1 Bama pigs grew faster 
with normal meat quality.

[48]

2021 You et al Fat-1/IGF-1 CRISPR/Cas9 KI KI Fat-1 and IGF-1 gene in the Rosa26 locus could 
increase pork ω-3 PUFA content and decrease the ω-6 
PUFA/ω-3 PUFA ratio

[68]

2018 Zou et al FBXO40 CRISPR/Cas9 KO Simultaneous KI with a Neo resistance selection 
marker, increasing muscle mass growth by 4% without 
detectable pathological effects.

[51]

2017 Zhang et al UCP1 CRISPR/Cas9 KI Increased thermogenesis of piglets, improving survival 
rate and welfare

[57]

2021 Gu et al PPARγ CRISPR/Cas9 KI Intramuscular fat was increased with normal carcass 
lean ratio 

[69]

KO, gene knockout; KI, DNA fragment or exogene knock-in; MSTN, myostatin; ZFN, zinc finger nuclease; CRISPR/Cas9, clustered regularly interspaced 
short palindromic repeat)/CRISPR-associated (Cas) endoribonuclease 9; Cpf1, type V Cas9; ssODN, single strain oligo-DNA; Ed, editing; IGF, insulin-like 
growth factor; Fat-1, fatty acid desaturase; PUFA, polyunsaturated fatty acid; FBXO40, F-box protein 40; UCP1, uncoupling protein 1; PPARγ, peroxisome 
proliferator-activated receptor gamma.
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Healthy pork production
Red meat (pork, beef, and mutton) consumption may induce 
allergies due to the presence of alpha-Gal on the muscle cell 
surface [58]. This uncommon alpha-gal syndrome [59] can 
be avoided by choosing a product from which the antigen 
has been removed in KO livestock. Recently, the FDA approved 
the commercialization of GGTA1 gene-edited or KO pigs, 
also known as GalSafe pigs, for pork consumption [60]. This 
is the first case of a livestock biotechnology product launched 
for both food and biomedical uses.
  The red meat cell surface expresses tremendous amounts 
of N-glycolylneuraminic acid (Neu5Gc; nonhuman glycan) 
[61], which, once absorbed, is incorporated on the surface of 
human cells [62] and elicits chronic inflammation, causing a 
major risk of colorectal cancer and atherosclerosis develop-
ment [63]. Transforming Neu5Gc to Neu5Ac (the human 
form) in pigs through the KO of the responsible CMP-N-
glycolylneuraminic acid hydroxylase (CMAH) gene has been 
a goal of xenotransplantation, and in animal production, this 
would transform red meat into white since poultry and fish 
also show the Neu5Ac form. Our research group has gener-
ated alpha-gal [64] and Neu5Gc [65] KO pigs by CRISPR/
Cas9 GE. Through crossbreeding, dKO offspring without 
any major pathophysiological indications were obtained. Af-
ter comparing the intestinal decellular scaffold (extracellular 
matrix, ECM) from dKO and wild-type (WT) pigs, we im-
planted dKO or WT ECM into dKO recipient longissimus 
and found that the dKO ECM evoked less inflammation 
than the WT ECM [66]. It is suggested that the dKO pigs 
will provide better medical grafts than WT pigs and that the 
dKO pigs can be considered an animal model for studies of 
alpha-Gal allergy and may also recapitulate human sialic bi-
ology to a greater extent in both healthy and diseased conditions 
[67]. Additionally, these dKO pigs could be served as a heathy 
red meat source.
  Recent efforts of exogenes KI at Rosa26 locus by CRISPR/
Cas9, healthy and tasty pork could also be resulted [68,69]. 
You et al [68] generated dual, Fat1 and IGF-1, transgenic 
(TG) pigs that could provide pork with a significantly higher 
ω-3 polyunsaturated fatty acid (PUFA) level and a significantly 
lower ratio of ω-6 PUFA/ω-3 PUFA. Gu et al [69] generated 
TG pigs carrying muscle-specific overexpression of peroxi-
some proliferator-activated receptor gamma2 (PPARγ2), 
which significantly increased intramuscular fat content while 
maintaining carcass lean ratio. Although, KI the PPARγ2 
gene is considered TG in pigs, yet, both sequences of pro-
moter and PPARγ2 gene are based on pig genome [68] and 
thus the transgenes are “safe-harbored” in Rosa26 locus, mak-
ing the pork safe as the ordinary.

APPLICATION OF NEW BREEDING 

TECHNOLOGY FOR PIG DISEASE 
TOLERANCE OR RESISTANCE

Genetic editing is vital for a proper understanding of disease 
mechanisms. Basically, virions infect pigs by contacting re-
ceptors on the surface of target cells and then enter the infected 
cells (e.g., macrophages) via pinocytosis. In theory, deleting 
the binding domain would disable the virion receptor, an 
approach that can only be effectively achieved by GE, there-
by infection could be avoided. To date, gene editing has been 
applied in pig breeding to achieve resistance against diseases 
including porcine reproductive and respiratory syndrome 
virus (PRRSV) [70-76], African swine fever virus (ASFV) 
[77,78], porcine epidemic diarrhea virus (PEDV) [65,79], 
transmissible gastroenteritis virus (TGEV) [75,79] and clas-
sical swine fever virus (CSFV) [80], with encouraging findings 
(Table 2).

Porcine reproductive and respiratory syndrome virus 
resistance
PRRSV emerged in the late 1980s and rapidly became an 
epidemic devastating the pig industry globally. In vivo, the 
virus shows very narrow cell tropism, targeting specific sub-
sets of porcine monocytes/macrophages, and it infects the 
cells via the heparan sulfate, sialoadhesin (CD169) and 
CD163 receptors [81]. The CD169 KO pigs generated via 
traditional homologous recombination and SCNT were not 
resistant to PRRSV infection, suggesting that CD169 is not 
necessary for PRRSV infection [82]. To date, CD163 on por-
cine macrophages has been the best-studied receptor 
involved in PRRSV infection [83]. Efforts including the KO 
of CD163 [70,71,75,76], deletion of exon 7 (scavenger recep-
tor cysteine-rich domain 5 region of the CD163 protein) of 
the CD163 gene [71,74], and the deletion of a portion of 
exon 7 in the infective pocket of virons [73] have achieved 
full resistance to PRRSV infection without disturbing the 
well-being of GE pigs [72-74,84-86]. Furthermore, Xu et al 
[75] generated dKOs of CD163 and pAPN (porcine amino-
peptidase N, a factor responsible for TGEV infection) and 
proved that dKOs pigs could be resistant to type II PRRSV 
and TGEV infection.

Challenges of African swine fever virus
When infected by ASFV, domestic pigs and Eurasian wild 
boars (Sus scrofa) develop a lethal hemorrhagic fever, where-
as this is not observed in warthogs (Phacochoerus africanus) 
or bush pigs (Potamochoerus larvatus), which do not develop 
marked clinical signs; the last two species evolved in south-
eastern Africa in a sylvatic cycle with a vector of ASFV the 
common and argasid ticks of the Ornithodoros moubata spe-
cies complex that live in their burrows and in the pens of 
domesticated pigs. ASFV has gradually became widespread 
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in eastern and central Europe while showing much faster 
outbreaks in China and other countries in Asia [8]. Macro-
phages have been identified as the target cells of ASFV [87], 
and antibodies against CD163 are able to inhibit both ASFV 
infection and viral particle binding to alveolar macrophages, 
highlighting the role of this molecule as a putative receptor 
for the virus [88]. However, Popescu et al [78] challenged 
CD163 KO pigs with the Georgia 2007/1 ASFV isolate and 
failed to reveal any resistance to viral infection, and the ob-
served clinical signs, mortality, pathology, and viremia differed 

little between KO and WT pigs. A group at the University of 
Edinburgh has identified polymorphic variation in RELA 
(p65; v-rel reticuloendotheliosis viral oncogene homolog A), 
the major component of the NF-κB transcription factor and 
revealed that three AAs of RELA differ between warthogs 
and domestic pigs [89]. Subsequently, they generated live 
RELA KO pigs by TALEN and ZFN editing [90] and substi-
tuted three AAs of domestic pig RELA with warthog AAs by 
using CRISPR/Cas9 [77]. However, the same research team 
recently proved that the 3 AAs substitution was not suffi-

Table 2. Studies of CRISPR/Cas9 gene-editing for disease resistance in pigs

Year Authors Virus Targeting gene KO/Indel Achievement and conclusion Reference

2013 Prather et al PRRSV CD169 HR CD169 KO pigs were unresistant to PRRSV infection [82]
2014 Whitworth et al PRRSV CD163 KO Generation of CD163 KO pigs [70]
2016 Whitworth et al PRRSV CD163 KO No fever or lung pathogenesis after PRRSV challenge [84]
2017 Whitworth et al PRRSV CD163 KO CD163 KO sows showed normal pregnancy [86]
2017 Burkard et al PRRSV CD163 Exon 7 Challenge of both PAMs and PMMs with PRRSV gen-

otype 1, subtypes 1, 2, and 3 and PMMs with PRRSV 
genotype 2 revealed complete resistance to viral 
infections assessed by replication.

[71]

2018 Burkard et al PRRSV CD163 Exon 7 Scavenger receptor cysteine-rich domain 5 (SRCR5) 
region-deleted pigs were fully resistant to virus infec-
tion.

[85]

2018 Yang et al PRRSV CD163 KO CD163 knockout conferred full resistance to highly 
pathogenic PRRSV infection in pigs without impairing 
the biological function associated with the gene.

[72]

2019 Guo et al PRRSV CD163 Exon 7 Partial SRCR5 region-deleted pigs were completely 
resistant to PRRSV 2 infection, but PAM still exhibited 
a cytokine response.

[73]

2019 Wang et al PRRSV CD163 Exon 7 Challenged with a highly pathogenic PRRSV strain, 
the CD163E7D pigs exhibited mild clinical symptoms 
and had decreased viral loads in blood.

[74]

2021 Tanihara et al PRRSV CD163 KO Transfer of GE vectors via electroporation into in vit-
ro-fertilization zygotes generated one piglet carrying 
a 5 bp deletion in CD163

[76]

2017 Popescu et al ASF CD163 KO No resistance upon challenging with the ASF virus 
isolate Georgia 2007/1.

[78]

2013 Lillico et al ASF RELA KO Generation of live pigs with RELA KO by TALEN and 
ZFN

[90]

2016 Lillico et al ASF RELA Ed Interspecies substitution of 3 AA of RELA from wart-
hog to domestic pig by ZFN

[77]

2020 McCleary et al ASF RELA Ed Substitution of 3 AA of RELA by editing in pigs was 
not sufficient to confer resilience to ASFV

[91]

2019 Whitworth et al TGEV/ PEDV APN KO ANPEP null pigs were not susceptible to TGEV infec-
tion but retained susceptibility to PEDV infection.

[79]

2019 Tu et al PEDV CMAH KO CMAH KO piglets with null NGNA expression were not 
immune to PEDV but may show lessened severity.

[65]

2020 Xu et al PRRSV TGEV CD163 pAPN Exon 7 
KO

Double KO pigs were resistant to type II PRRSV 
and TGEV infection; upon TGEV infection, WT pigs 
showed pathogenesis but no significant difference in 
weight gain from dKO pigs.

[75]

2018 Xie et al CSFV shRNA KI Small hairpin RNA KI in the porcine Rosa26 locus 
improved resistance to CSFV infection.

[80]

CRISPR/Cas9, clustered regularly interspaced short palindromic repeat)/CRISPR-associated (Cas) endoribonuclease 9; KO, gene knockout; Indel, insertion 
and deletion; PRRSV, porcine reproductive and respiratory syndrome virus; CD163E7D, CD163 exon 7 deleted; ASF, African swine fever; RELA, p65, v-rel 
reticuloendotheliosis viral oncogene homolog A; Ed, editing; TGEV, transmissible gastroenteritis virus; PEDV, porcine epidemic diarrhea; CMAH, CMP-N-gly-
colylneuraminic acid hydroxylase; NGNA, N-glycolylneuraminic acid; pAPN, porcine aminopeptidase N; CSFV, classical swine fever virus; KI, DNA fragment 
or exo-gene knock-in.
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cient to confer resilience to ASFV; it only delayed the onset 
of clinical symptoms and resulted in less virus in nasal secre-
tions and blood in some animals [91]. On the other hand, a 
German group transfected wild boar lung cell lines with a 
plasmid encoding Cas9 and a guide RNA targeting codons 
71 to 78 of the phosphoprotein p30 gene (CP204L) of ASFV 
and demonstrated that ASFV plaque formation was com-
pletely abrogated, and virus yields were reduced by four orders 
of magnitude due to targeted Cas9 cleavage of the virus ge-
nome [92]. In such an approach, Cas9 and the guide RNA 
plasmids need to be integrated into the cell genome to main-
tain long-term resistance to ASFV infection. Thus, once the 
cells are cloned into animals, they might be argued to be 
GMOs with a high probability of off-target effects due to the 
integration and expression of the Cas9 gene. Recently, Xie et 
al [80] used a CRISPR/Cas9-mediated KI strategy to generate 
TG pigs carrying antiviral small hairpin RNAs (shRNAs), 
safely integrated at the porcine Rosa26 (pRosa26) locus, to 
test the resistance to anti- CSFV. They found that in the TG 
pigs subjected to in vitro or in vivo CSFV challenge, the rep-
lication of CSFV was effectively limited, as demonstrated by 
reduced CSFV-associated clinical symptoms and mortality. 
Furthermore, this disease resistance could be stably transmit-
ted to the F1 generation. A similar approach should effectively 
generate ASFV-resistant pigs, but the outcome remains to be 
seen.

Coronavirus tolerance in pigs
Four genera of coronaviruses (CoVs), including α-, β-, γ-, 
and δ-coronaviruses, have been identified. Currently, six CoVs 
are known to infect pigs, including four α-coronaviruses 
(TGEV, porcine respiratory coronavirus [PRCV], PEDV, and 
swine acute diarrhea syndrome-coronavirus [SADS-CoV]), 
one β-coronavirus (porcine hemagglutinating encephalomy-
elitis virus [PHEV]), and one porcine δ-coronavirus (PDCoV), 
which cause different types of infections of great commercial 
concern in pigs [93]. Among these viruses, TGEV, PRCV, 
and PHEV have globally circulated in pig populations for 
decades with few clinical effects, whereas PEDV, PDCoV, 
and SADS-CoV are considered emerging CoVs and cause 
severe acute diarrhea in piglets with high mortality. These 
viruses infect host target cells via S-protein binding to the 
proposed receptors of aminopeptidase N (APN) and Neu5Gc; 
however, porcine GE by CRISPR/Cas9 for APN [76,79] or 
CMAH [65] KO did not achieve PEDV infection resistance, 
indicating that these receptors might not be sufficient for 
PEDV infection. However, APN KO pigs could resist TGEV 
infection [75,79] and showed decreased susceptibility to 
PDCoV infection with normal growth performance [75]. 
CoVs are RNA+ viruses, and their S-protein is a glycoprotein 
that undergoes complicated posttranslational modifications 
to achieve diverse antigenicity [94]. These highly variable 

sequences [95] hinder effective vaccine development.

Other viral disease
The challenges of precisely editing the genome, developing 
effective vaccines, and designing a strategy ensuring biose-
curity in the face of ASFV and CoVs threats remain in pig 
production. As mentioned above, Xie et al [80] performed 
the CRISPR/Cas9-mediated knock-in of anti-CSFV antiviral 
shRNAs and achieved effective CSFV infection resistance. 
Using this TG strategy, Hu et al [96] generated TG pigs con-
stitutively expressing FMDV-specific shRNAs and found 
that these animals showed higher resistance to FMDV. It ap-
pears that combining shRNA and GE to target and degenerate 
the critical region of the virus genome, without the integra-
tion of the Cas9 gene, could be a viable strategy for achieving 
resistance in animals to lessen or even prevent infection.

REGULATORY ISSUES

Although GE creates variants with indel mosaicism and may 
generate off-target effects, the CRISPR/Cas9 system is a ca-
nonical technology with high efficiency, fast performance, a 
low technological barrier, and low cost and can be broadly 
applied to many organisms. However, there is still debate 
concerning the organisms or products generated via GE, as 
genetically modified organisms (GMOs) are subject to diverse 
regulations globally. For example, based on the definition of 
not carrying exo-nucleic acids, Argentina, Austria, Brazil, 
Canada, Chile, and Japan exempt these organisms from clas-
sification as GMOs [97,98]. In the USA, although the title of 
Guidance for Industry 187 has been changed from “Guidance 
for Industry on Regulation of Genetically Engineered Ani-
mals Containing Heritable Recombinant DNA Constructs” 
(2015 revision) to “Regulation of Intentionally Altered Ge-
nomic DNA in Animals” (2017 draft), but the marketing of 
GE animals, their offspring, and their food products (milk, 
meat, and eggs) is not allowed before obtaining the approval 
of a New Animal Drug Application (NADA) granted by the 
FDA. Furthermore, on July 28th, 2018, the European Court 
of Justice (ECJ) issued a directive stating that organisms ob-
tained via directed mutagenesis techniques (genome editing) 
are regarded as GMOs because their genome had been al-
tered (according to a process-based principle). The potential 
benefits of gene editing for the future of agriculture are well 
covered, and the regulatory constraints that limit the ability 
to maximize their objective function can be considered in 
relation to financial returns. For instance, a 15-year delay in 
the introduction of PRRSV-resistant pigs to the USA and 
EU would cause the loss of $28.3 billion USD [99]. Further-
more, legislative restrictions discourage the valorization and 
commercialization of NBT-based innovations and overlook 
the new opportunities they provide regarding not only food 
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security but also biosafety in less-developed regions or un-
derprivileged communities.
  Since 1930, many agricultural varieties have been generated 
via in vitro mutagenesis together with phenotypic selection 
and broadly used in EU agricultural production; however, 
the EU considers these organisms to be non-GMOs based 
on their long history of safe use in the food chain. Because 
the genomes all varieties generated by in vitro mutagenesis 
have been altered, they should be classified as GMOs ac-
cording to process-based principles, and the situation for GE 
organisms is similar. Recently, a case study from the EU 
showed that current GMO legislation is not fit for purpose 
in term of new genomic techniques (NGT), which alters the 
genome of an organism [100]. Furthermore, they claim that 
several plant products obtained via NGT contribute to the 
objectives of the EU’s Green Deal and biodiversity strategies 
and even meet the United Nations’ sustainable development 
goals for a more resilient and sustainable agri-food system. 
However, the case study still is being discussed by EU minis-
ters in the Agriculture and Fisheries Council as of 2021 and 
remains to be addressed by the ECJ. Some new guidelines 
may be added to direct the legal system and allow NGT (or 
NBT) to contribute to a new era of EU farming.
  All GE organisms should be evaluated based on their 
phenotype and derived products and through scientific com-
parison to products currently available on the market. GE 
animals and products should be exempted from classifica-
tion as GMOs or GM products and allowed to be used in 
the food production system.

PERSPECTIVES 

The GE animals may show new genotype – phenotype asso-
ciations; after all an optimal genome expression may not 
necessarily result in optimal phenotypes. A quantitative ge-
netic analysis is essentially needed to obtain information on 
the interactive components of the genetic variance due to 
editing. Furthermore, the passive genotype and phenotype 
selection of farm animals is evolving to a “smart” operation 
by including simulation. Gene expression programming may 
be mathematically modeled by an Artificial Intelligence 
approach. Therefore, the Bioinformatics that features the 
integration of multi-disciplinary technologies of biology, 
mathematics, and computer science should play an impor-
tant role in promoting a better understanding of GE and 
NBT. The application of NBT to improve the sustainability 
of pig husbandry is certainly too important to be left to ge-
neticists alone, genomic designing of next generation of pigs 
or any other farm animal should be the result of a partner-
ship between government and industry that supports and 
values production, people, and the planet.

CONCLUSION

Genome/gene-editing is a useful NBT methodology that 
contributes to agrobiodiversity and the realization of a more 
sustainable food system by achieving greater resistance to 
disease and climate change while ensuring affordable solu-
tions for farmers and consumers. NBT could also be broadly 
applied to pig production for purposes such as increasing 
disease tolerance or resistance and enhancing animal welfare. 
Currently, the trend of global regulations or legislation for 
GE organisms is to exempt them from classification as GMOs, 
but relevant regulatory frameworks remain to be established 
in most countries. Suitable regulations or legislation for the 
scientific application of GE that are based on science and 
comparison with wild counterpart organisms will be a nec-
essary, and include a wise strategy for human development, 
and the global valorization and commercialization of these 
organisms can be foreseen. The integration and convergence 
with digital technologies should play an important role in 
promoting a better understanding of GE and NBT. Next 
generation of pig breeding should be smart and sustainable. 
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