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Sample size modifications in the interim analyses of an adaptive design can inflate the type 1 error rate,
if test statistics and critical boundaries are used in the final analysis as if no modification had been made.
While this is already true for designs with an overall change of the sample size in a balanced treatment-
control comparison, the inflation can be much larger if in addition a modification of allocation ratios
is allowed as well. In this paper, we investigate adaptive designs with several treatment arms compared
to a single common control group. Regarding modifications, we consider treatment arm selection as
well as modifications of overall sample size and allocation ratios. The inflation is quantified for two
approaches: a naive procedure that ignores not only all modifications, but also the multiplicity issue
arising from the many-to-one comparison, and a Dunnett procedure that ignores modifications, but
adjusts for the initially started multiple treatments. The maximum inflation of the type 1 error rate for
such types of design can be calculated by searching for the “worst case” scenarios, that are sample size
adaptation rules in the interim analysis that lead to the largest conditional type 1 error rate in any point
of the sample space. To show the most extreme inflation, we initially assume unconstrained second
stage sample size modifications leading to a large inflation of the type 1 error rate. Furthermore, we
investigate the inflation when putting constraints on the second stage sample sizes. It turns out that, for
example fixing the sample size of the control group, leads to designs controlling the type 1 error rate.

Keywords: Conditional error function; Interim analysis; Maximum type 1 error; Sample
size reassessment; Treatment selection.
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1 Introduction

In the last decade, adaptivity in clinical trials with design modifications such as sample size reassessment
or treatment selection at an interim analysis has gained increasing attention. One may argue that
there have always been modifications when performing clinical trials, for example simply covered by
amendments to the study protocols. However, it has been shown that if, after design modifications, the
critical boundaries and test statistics for the corresponding fixed sample size design are used, then the
type 1 error rate is inflated. For the comparison of the means of a normally distributed outcome with
known variance between a single treatment and a control in parallel groups and balanced sample sizes,
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that is equal sample size in the treatment and control group, Proschan and Hunsberger (1995) derived
the maximum possible type 1 error rate inflation. They assumed that the experimenter, for any interim
outcome, would choose the second stage sample sizes in such a way that the conditional type 1 error
rate is maximized (“worst case scenario”). This strategy will also maximize the overall type 1 error
rate. They showed that the type 1 error rate can be inflated from 0.05 to 0.11. Graf and Bauer (2011)
extended these worst case arguments to the case of unbalanced sample size reassessment showing that
the maximum type 1 error rate increases to 0.19 when the allocation ratio is allowed to change at
interim. However, in this unbalanced case the maximum of the conditional type 1 error rate can only
occur if the experimenter knows the value of the nuisance parameter, the common mean under the
null hypothesis. This may at least approximately apply for the control treatment if a large number of
data from previous experiments is available.

Many methods for type 1 error control in adaptive designs are available for testing a single hypothesis
(Bauer, 1989; Bauer and Koehne, 1994; Proschan and Hunsberger, 1995; Lehmacher and Wassmer,
1999; Mueller and Schaefer, 2001; Brannath et al., 2002; Mueller and Schaefer, 2004; Gao et al., 2013)
and have been applied in clinical trials. Multiarmed selection designs have been proposed (e.g. Thall
et al., 1988, 1988) and have been extended to allowing for adaptive design modifications (Bauer and
Kieser, 1999; Koenig et al., 2008; Bretz et al., 2009; Bebu et al., 2013; Sugitani et al., 2013). With the
rise of adaptive methods in clinical trials, the main emphasis has been on strict control of the type 1
error rate to maintain the strictly confirmatory nature (EMA, 2007; FDA, 2010; Wang et al., 2013).

However, there are complaints that the adaptive machinery has become too complicated with “tests
that resort to nonstandard adjustments and weightings appear mysterious to all but the specialist
in adaptive design” (Metha and Pocock, 2012). From an operational perspective, adaptations put a
burden on data analysts who have to clean data for interim decision making and on drug supply
managers who have to deal with the possibility that doses may be added to or removed from the trial.
Uncertainty at the planning stage about the total funds needed for the trial can also be a concern.
From a statistical perspective, it has been argued by some experts that adaptive designs offer little
advantage over more conventional group-sequential designs (Tsiatis and Metha, 2003; Jennison and
Turnbull, 2006; Levin et al., 2013) and that they use test statistics that might violate desirable principles
like sufficiency (Burman and Sonesson, 2006). However, these criticisms of adaptive designs are not
uncontroversial themselves (Brannath et al., 2006). In any case, such additional burden may prevent
experimenters from using adaptive design methodology and resort to either ignoring the issue or
using seemingly simple adjustments like Bonferroni or Dunnett corrections. It is therefore desirable
to investigate the maximum type 1 error inflation arising from such strategies. Regarding specific
clinical trials, the precise quantification of the inflation can also be a guide to decide whether the
implementation of the adaptive test machinery is really necessary, or whether a simpler adjustment
might suffice, possibly after additional restrictions of the interim decision options, like upper and lower
limits on the allowed sample size modifications.

In this work, we investigate the maximum type 1 error rate when k test treatments are compared
to a single common control and when treatment selection is allowed at interim either with or without
flexible sample size reassessment. Designs of multiarmed clinical trials with interim treatment selection
have attracted a lot of research in the last decade (Zeymer et al., 2001; Gaydos et al., 2009; Barnes et al.,
2010). Nevertheless, the number of conducted or started trials seems to be rather limited (Elsaesser
et al., 2014; Morgen et al., 2014).

In Section 2, we give a motivating example of a clinical trial where the experimenters decided to use
the conservative Bonferroni procedure instead of an adaptive approach. In Section 3, we introduce
the hypothesis tests and the type of interim adaptations investigated to calculate the maximum type
1 error rate. In Section 4, we consider the situation when the treatment with the largest observed
interim effect is always selected for the second stage. Furthermore, we investigate the maximum type 1
error rate when second stage sample sizes are restricted to range within a prefixed interval. In Section
5, we mainly focus on the case of k = 2 treatment arms, always proceeding with both treatments
and the control to the second stage. In Section 6, we discuss our findings in the context of the
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motivating example and give some practical considerations. This is followed by concluding remarks in
Section 7.

2 Motivating example

Barnes et al. (2010) give a recent case study for a two-stage clinical trial on the drug indacaterol to
treat chronic obstructive pulmonary disease (COPD). This study comprised a first stage for dose-
finding with dose selection after 14 days of treatment, and a second stage evaluating efficacy and safety
during 26 weeks of treatment. The dose-finding stage included seven randomized treatment arms,
four doses of the study drug, placebo and two further treatment groups with active comparators. At
an interim analysis after the first stage the indacaterol doses were selected using preset efficacy and
safety data (Lawrence et al., 2014). A multiplicity correction using a Bonferroni adjustment with α/4
was applied, despite the fact that in the final efficacy analysis only the two selected indacaterol doses
should have been compared individually against placebo based on the pooled data of both stages with
prefixed sample sizes. This approach controls the type 1 error rate if the sample size, as in the given
example, is prefixed. However, due to the overcorrection, this approach is conservative. The authors
themselves acknowledge that the approach “is statistically somewhat conservative, but it has the merit
of simplicity”. The question arises whether for such a design sample size reassessment strategies would
have been possible without inflating the type 1 error rate.

3 Trial design

In the following, we assume that a clinical trial is designed for k treatment and one control arm where
a two-stage design should be applied. In a first stage the observed outcome measures x(1)

j,i from patients

j = 1, . . . , n(1)
i , randomized to one of k + 1 groups, that is to the control, denoted by index i = 0, or

to one of the treatment groups, i = 1, . . . , k are investigated. The outcome is assumed to be normally
distributed with common known variance, Xj,i ∼ N(μi, σ ). Without loss of generality we set σ = 1.

Having obtained at the end of the first stage n(1)

0 observations in the control and n(1)
i = ain

(1)

0 , i =
1, . . . , k observations in the treatment groups, the sample means x̄(1)

i = 1
n(1)

i

∑n(1)
i

j=1 x(1)
j,i for i = 0, . . . , k

are calculated. The ai > 0 denote the prefixed first-stage-allocation-ratios between treatment group
i and control. The experimenter may set the second stage sample sizes to n(2)

i = rin
(1)
i = riain

(1)

0 in
the treatment groups and to n(2)

0 = r0n(1)

0 in the control group with the second-to-first-stage-ratios
0 ≤ ri ≤ ∞, i = 0, . . . , k based on the interim sample means.

In the final analysis, after the second stage, we test the hypotheses

H0i : μi = μ0 vs. HAi : μi > μ0 for i = 1, . . . , k

using the standardized mean difference Ti pooling the data of both stages and comparing it to the
critical boundary c1−α as used for the fixed sample size design. This means that adaptivity is not
accounted for, neither in the test statistics nor in the critical boundary. The test statistics is defined as:

Ti =
(

n(1)
i x̄(1)

i + n(2)
i x̄(2)

i

n(1)
i + n(2)

i
− n(1)

0 x̄(1)

0 + n(2)

0 x̄(2)

0

n(1)

0 + n(2)

0

) / (√
1

n(1)
i + n(2)

i
+ 1

n(1)

0 + n(2)

0

)

for i = 1, . . . , k with x̄(2)
i , i = 0, . . . , k denoting the second stage sample means.

We obtain the worst case scenarios for each possible interim outcome by searching for the second-to-
first-stage ratios maximizing the conditional type 1 error rate, r̃i. Generalizing the formula in Koenig
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et al. (2008) the conditional type 1 error rate for rejecting at least one treatment-control comparison
in the final analysis, given the observed interim data is (see Appendix A1):

CEα
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a1, . . . , ak, Z(1)

0 , . . . , Z(1)

k , r0, . . . , rk

)
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0

)
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where α is the preplanned level for the type 1 error rate and c1−α the critical boundary of the preplanned

final tests (see Remark 3.1). The Z( j)
i = (X̄ ( j)

i − μ)
√

n( j)
i , i = 0, . . . , k, j = 1, 2 are defined as the

standardized differences between the sample mean and the common true mean μ under the global
null hypothesis of stage j = 1 (at interim) and j = 2, respectively (without loss of generality μ = 0).
The cumulative distribution function and density of the standard normal distribution are denoted by
� and φ, respectively. Note that Z( j)

i follow independent standard normal distributions.
When second stage sample sizes are not constrained, the maximum type 1 error rate is given by

E∗
α (a1, . . . , ak) =
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where

C̃Eα

(
a1, . . . , ak, Z(1)

0 , . . . , Z(1)

k

) = max
0≤r0,...,rk≤∞

CEα
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0 , . . . , Z(1)

k , r0, . . . , rk

)
.

Whereas CEα is a function of r0, . . . , rk, C̃Eα is a function of r̃0, . . . , r̃k, the second-to-first-stage-
ratios leading to the maximum CEα. The r̃i are determined for a given interim outcome (Z(1)

0 , . . . , Z(1)

k )

and are therefore a function of the Z(1)
i . Thus, C̃Eα does not depend on r0, . . . , rk.

In the following we use a quasi Newton method provided by the R-function optim for numerical
optimization and for numerical integration we used the R-function integrate (R Development Core
Team, 2012). R-programs to calculate the maximum type 1 error rate are available as Supplementary
Information.

Remark 3.1. The critical boundary c1−α of the preplanned test may be defined in different ways:
(i) as the (1 − α)-quantile of the standard normal distribution, z1−α, if no correction at all for mul-
tiplicity is applied or (ii) as a Dunnett critical boundary (Dunnett, 1955) based on the preplanned
first-stage-allocation-ratios ai, i = 1, . . . , k to adjust for multiplicity due to the treatment-control com-
parisons. Even strategy (ii) may not guarantee type 1 error control if additional sample size reassessment
is performed at interim. Moreover, in case of sample size reassessment (and/or treatment selection)
the Dunnett critical boundary would not be fixed a priori when calculated for the actual sample sizes
in the final analysis. For simplicity ,we will apply the pre-fixed Dunnett boundary, d1−α, based on the
preplanned first-stage-allocation-ratios ai between treatment and control in the following. Remarks
4.1 and 4.2 discuss how results change if instead critical boundaries are based on actual (reassessed)
total sample sizes in the final analysis.

C© 2014 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



618 A. C. Graf et al.: Maximum type 1 error inflation

Remark 3.2. For k ≥ 2 we calculate the maximum type 1 error rate under the global null hypoth-
esis μi = μ0, i = 1, . . . , k. A proof that the maximum type 1 error is attained under the global null
hypothesis is given in Appendix A2.

Remark 3.3. For k = 1, Graf and Bauer (2011) showed, by numerical evaluation, that the maximum
type 1 error in the case of balanced first stage sample size between treatments before the interim
analysis (ai = 1, i = 1, . . . , k) is an upper bound. For k ≥ 1 we will likewise set ai = 1, since it is the
most common scenario applied in practice. Note that for many-to-one comparisons, the scenario with
ai = 1/

√
k leads to the smallest required sample size for a given power and significance level. Therefore

we will also give some numerical results for this allocation ratio.

4 Selection of the most promising treatment at interim

We first consider that in the interim analysis the treatment group m with the largest observed interim
effect Z(1)

m = maxi=1,...,k Z(1)
i is selected for the second stage, setting ri = 0 for i 	∈ {0, m}. The second-

to-first-stage-ratios ri, i ∈ {0, m} may be set based on the interim results, 0 ≤ r0, rm ≤ ∞. In the final
analysis, only the selected treatment group m is compared to the control group (using data of both
stages). The corresponding null hypothesis H0m is rejected, if the final test statistic Tm exceeds the critical
value c1−α. Note that the maximum type 1 error rate for the case of always selecting the best treatment
is an upper bound for the maximum type 1 error rate when in a particular trial another single treatment
is selected, for example the treatment with the second largest observed effect at interim because of
potential safety issues for the most effective treatment. Clearly, under the global null hypothesis and
for balanced first stage sample sizes over the k treatments, selecting a treatment with an interim effect
smaller than the largest observed interim effect will reduce the maximum type 1 error rate. Following
the lines of Graf and Bauer (2011), the conditional type 1 error rate (1) for this scenario simplifies to

CEα

(
am, r0, rm, Z(1)
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m

) = 1 − �
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2
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(3)

Note that if the treatment with the largest observed interim effect is selected, m is random and therefore
also am is a random variable. In the following we set a1 = . . . = ak so that am is no longer a random
variable and the maximum type 1 error rate can be evaluated by

E∗
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∫ ∞
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where

C̃Eα

(
am, Z(1)

0 , Z(1)
m

) = max
0≤r0,rm≤∞

CEα

(
am, r0, rm, Z(1)

0 , Z(1)
m

)
. (5)

and k�(x)(k−1)φ(x) is the probability density function of the maximum of independent standard
normal distributions.
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Figure 1 Maximum type 1 error rate E∗
α when always selecting the treatment with the maximum

effect at interim for an increasing number of treatment groups k. Results are given when using the
uncorrected critical boundary z1−α (A) or the fixed Dunnett critical boundary d1−α (B) for equal (black
lines) and flexible (gray lines) second-to-first-stage ratios. Nominal one-sided α was set to 0.01 (solid
lines), 0.025 (dashed lines), and 0.05 (dotted lines).

4.1 Equal second-to-first-stage-ratios

Let r0 = rm = r with 0 ≤ r ≤ ∞, that means only allowing for equal second-to-first-stage ratios, and
let furthermore a1 = · · · = ak = 1 indicating balanced first stage sample sizes for the treatment and
the control groups. After the second stage, the selected treatment group is compared to the control
group (using data of both stages) applying the critical value c1−α of the pre-planned test. Note that for
this scenario the final test is balanced between both groups. In a slight modification of Proschan and
Hunsberger (1995), the conditional type 1 error rate (3) of the final treatment-control comparison for
r0 = rm = r and a1 = · · · = ak = 1 reduces to

CEα

(
r, Z(1)

0 , Z(1)
m

) = 1 − �

[
c1−α

√
r + 1

r
− (

Z(1)
m − Z(1)

0

) 1√
2r

]

= 1 − �

[
c1−α

√
r + 1

r
− T (1)

m
1√
r

]

For notational convenience, the first stage test statistics T (1)
m = (Z(1)

m − Z(1)

0 )/
√

2 is used. The con-
ditional type 1 error rate does not depend on the unknown nuisance parameter μ.

Calculation of E∗
α in this balanced case follows the lines of Proschan and Hunsberger (1995). The

essential difference is that the density of the maximum of k independent standard normal distributions
has to be used in the integration. The subspaces of the interim sample space to perform separate
optimizations remain the same (see Appendix A3).

The black lines in Fig. 1 show that if no correction for multiplicity is done (Fig. 1A), the type 1
error is highly inflated and increases with k. Using Dunnett boundaries for k treatment-control
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Table 1 Maximum type 1 error rate for k = 2 with and without treatment selection, with or without
adjustment for multiplicity and with equal or flexible second-to-first stage ratios as compared to the
case k = 1.

k = 1 k = 2
nominal α c1−α = z1−α c1−α = z1−α c1−α = d1−α

treatment selection of most promising treatment
equal flexible equal flexible equal flexible

(Proschan and
Hunsberger,

1995)

(Graf and
Bauer, 2011)

(Section 4.1) (Section 4.2) (Section 4.1) (Section 4.2)

0.01 0.0267 0.0491 0.0398 0.0697 0.0224 0.0407
0.025 0.0616 0.1064 0.0887 0.1466 0.0518 0.0892
0.05 0.1146 0.1867 0.1594 0.2496 0.0968 0.1588

without treatment selection
equal flexible equal flexible equal flexible

(Proschan and
Hunsberger,

1995)

(Graf and
Bauer, 2011)

(Section 5.1) (Section 5.2) (Section 5.1) (Section 5.2)

0.01 0.0267 0.0491 0.0478 0.0800 0.0263 0.0473
0.025 0.0616 0.1064 0.1058 0.1701 0.0610 0.1037
0.05 0.1146 0.1867 0.1897 0.2885 0.1138 0.1842

comparisons, that means adjusting for all initially planned comparisons (Fig. 1B), the overall type
1 error decreases with k, that means correcting for multiplicity of all possible individual treatment-
control comparisons leads to a smaller inflation of the overall type 1 error as compared to k = 1. For
increasing k, the correction is done for an increasing number of k − 1 hypotheses not tested in the final
analysis. Correcting for all possible individual treatment-control comparisons would be a conservative
approach if the second stage sample size would be fixed independently of the data, for example in the
planning phase. Here the inflation of the maximum type 1 error rate is caused by the worst case sample
size reassessment rule.

For a direct comparison with the case of no treatment selection discussed later (see Section 5), the
columns “equal” in Table 1 show the maximum overall type 1 error rate for k = 2 with and without
correction for multiplicity as well as for the case of k = 1 (Proschan and Hunsberger, 1995).

If the first-stage-allocation-ratios are set to ai = 1/
√

k, i = 1, . . . , k, a smaller maximum type 1 error
rate was found. When using the Dunnett critical boundary, for α = 0.025 the values are E∗

0.025 = 0.0378
for k = 2 and E∗

0.025 = 0.0351 and 0.0340 for k = 3 and 4, respectively. For comparison, setting ai = 1,
the values are E∗

0.025 = 0.0518 (see Table 1 and Fig. 1), 0.0482 and 0.0463 (see Fig. 1) for k = 2, 3, and
4, respectively. Similar results can be found for α = 0.01 and α = 0.05.

Remark 4.1. To give an impression of how results may change if the actual final adapted sample
sizes are used in the calculation of the critical Dunnett boundaries (see Remark 3.1) for k = 2, the
values would become only slightly smaller than in Table 1: 0.0221, 0.0507, and 0.0948 for α = 0.01,
0.025, and 0.05, respectively.
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4.2 Flexible second-to-first-stage-ratios

“Flexible” second-to-first-stage ratios allow different sample size reassessments for the selected treat-
ment and the control, for example a sample size decrease for the control, but a sample size increase
for the selected treatment group. For each interim outcome, the worst case r̃0 and r̃m may differ. The
sample size of the final treatment-control comparison may then be unbalanced between treatment
arms. If we again assume balanced first stage sample sizes, the conditional type 1 error rate is now
calculated by (3) setting am = 1. We use the independence of Z(1)

0 and Z(1)
m to get rid of the nuisance

parameter μ. The conditional type 1 error rate cannot be written as a function of the test statistic T (1)
m

as in Section 4.1. As in Graf and Bauer (2011), the calculation of E∗
α can be separated into several

parts of the interim subspace using Z(1)
m instead of Z(1)

1 . To evaluate the maximum type 1 error rate
we partition the interim subspace in a way analogous to Graf and Bauer (2011) (see Section 1 in the
Supplemental Materials).

The gray lines in Figs. 1A and B show that allowing for flexible second-to-first-stage ratios substan-
tially increases the possible maximum type 1 error rate. Using d1−α (Fig. 1B) in all scenarios leads
to a nonmonotonous behavior with respect to the number of treatments k. An explanation for this
is that the fixed boundaries are correct for the worst case scenarios, where the overall sample size is
balanced between treatment and control, whereas for the unbalanced worst case scenarios they lead
to smaller critical boundaries as compared to the boundaries using the actual total sample sizes. For
larger k this difference in the correlation matrices is extended to all the k − 1 dropped treatments at
interim, so that the differences between unbalanced and balanced critical boundaries tend to increase
with increasing k which in the end leads to an increase in the maximum type 1 error rate. Again, to
allow a direct comparison to the other discussed scenarios, the columns “flexible” in Table 1 show the
values for k = 2 for both choices of the critical boundary as well as k = 1 (Graf and Bauer, 2011).

If ai = 1/
√

k, i = 1, . . . , k, as in the case of equal second-to-first stage ratios, a smaller maximum
type 1 error was found. When using the Dunnett critical boundary, for α = 0.025 the values are
E∗

0.025 = 0.0860, 0.0792, and 0.0753 for k = 2, 3, and 4, respectively. For comparison, setting ai = 1,
the values are E∗

0.025 = 0.0892 (see Table 1 and Fig. 1), 0.0846, and 0.0830 (see Fig. 1) for k = 2, 3, and
4, respectively. Similar results can be found for α = 0.01 or α = 0.05.

Remark 4.2. When using Dunnett critical boundaries as in Remark 4.1, the maximum type 1 error
rate up to k = 10 (data not shown) is smaller than for Dunnett critical boundaries based on balanced
sample sizes. The maximum type 1 error rate is decreasing in k and hence also differences between the
two approaches increase with k.

4.3 Constrained second stage sample size

Unconstrained sample size reassessment of course will hardly be used in practice. We therefore put
constraints on the second-to-first-stage-ratios ri, ri,lo ≤ ri ≤ ri,up, i ∈ {0, m}. The ranges for the maxi-
mization in formula (5) are therefore changed to r0,lo ≤ r0 ≤ r0,up and rm,lo ≤ rm ≤ rm,up. Figure 2 shows
the maximum type 1 error rate E∗

α , α = 0.025 for different constraints on sample size reassessment
using the Dunnett critical boundary d1−α:

I. r0,lo = rm,lo = 0, r0,up = rm,up, rm,up = 1, 2, . . . , 10: Setting the lower boundary to 0 means that
we allow for early rejection at interim. The solid lines in Fig. 2 show that E∗

α is increasing with
increasing upper boundary, flattening off for larger values. Allowing for flexible second-to-
first-stage-ratios (solid lines in Fig. 2B), the increase with the upper boundary is even steeper
than for equal ratios (Fig. 2A). However, the results for k ≥ 3 are very similar.

II. r0,lo = rm,lo = 1, r0,up = rm,up, rm,up = 1, 2, . . . , 10: In this scenario, the second stage sample
size has to be at least as large as the first stage sample size for the selected treatment and the
control. The dashed lines in Fig. 2A. show that for equal ratios and k ≥ 4, the maximum type
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Figure 2 Maximum type 1 error rate E∗
α as a function of the upper boundary rm,up for the second-to-

first-stage-ratio when always selecting the treatment with the maximum effect at interim for constrained
second stage sample size for equal (A) and flexible (B) second-to-first-stage-ratios using Dunnett
corrected critical boundaries. Solid lines: r0,lo = rm,lo = 0, r0,up = rm,up, dashed lines: r0,lo = rm,lo = 1,
r0,up = rm,up and dotted lines: r0,lo = rm,lo = 1, r0,up = 1. Nominal one-sided α was set to 0.025.

1 error is always below the nominal α = 0.025. Calculations including numerical integration
of E∗

α for k = 4 and ri,up = ∞ give a value of 0.02509. Therefore, for k = 4 selecting always
only one treatment and the control, such type of constraints may be safely applied in practice
without inflating the type 1 error rate. The reason is that there is a tradeoff (i) between the
overcorrection from using Dunnett boundaries adjusting for treatment-control comparisons
that are not carried over to the final test and (ii) the inflation due to data-dependent choice
of the final sample size of the selected treatment (equal ratios, total sample size per selected
treatment at least twice the first stage sample size per group). The smaller the prefixed range
for the second stage sample sizes the smaller the impact of the latter effect.
Similar results can be found for a nominal α of 0.05 and 0.01. For k = 4 and ri,up = ∞ the
values are E∗

0.01 = 0.0106 and E∗
0.05 = 0.0483. Note that in the scenario for k = 4 without any

interim sample size reassessment, for example: r0,lo = rm,lo = r0,up = rm,up = 1, the selection of
one treatment and the control would happen quite late in the trial in terms of total sample over
all groups (at a fraction of 5/7).
Allowing for flexible second-to-first-stage-ratios (Fig. 2B) only for smaller windows (smaller
r0,up and rm,up) E∗

α does not exceed α. For example for α = 0.025 and r0,up = rm,up = 2, the
number of treatments has to be larger than 3 so that E∗

α will always be below 0.025.
III. r0,lo = rm,lo = 1, r0,up = 1, rm,up = 1, 2, . . . , 10: In this case, the second-to-first-stage-ratios are

allowed to be flexible by definition, the only option for sample size adaptation is the choice of
a second stage sample size for the selected treatment to be at least as large as in the first stage
and not to exceed rm,up (see dotted lines in Fig. 2B). Such an adaptation may arise from a rare
adverse event in the selected treatment group requiring additional information. It is interesting
to note that for k > 2 the maximum type 1 error rate E∗

α will never exceed the nominal level, even
if the upper boundary is set to ∞. For k = 2 no inflation occurs with rm,up = 2. Similar results
can be found for a nominal α of 0.05 and 0.01. Note that Fig. 2B shows that the type 1 error
rate is not inflated when Dunnett critical boundaries are used in case of an allocation ratio to
control of 1/(k + 1) between treatment(s) and control in both stages, that is rm,lo = rm,up = k.
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5 No treatment selection at interim

Since selecting only the treatment with the largest interim effect is a natural strategy often discussed
in the literature (Cohen and Sackrowitz, 1989; Bowden and Glimm, 2008; Friede and Stallard, 2008;
Stallard et al., 2008; Bauer et al., 2010), we first elaborated on this in Section 4. However, if all initially
planned treatment arms are further investigated in the second stage, under the global null hypothesis,
the maximum type 1 error rate is larger than for any other case with treatment selection. The reason is
that dropping treatments at the interim analysis can be viewed as a constrained sample size reestimation
problem (with ri = 0 or ri = 1 as the only options for treatment i), and this cannot produce a larger
maximum of the conditional type 1 error rate than the unconstrained optimization problem.

For k > 1 we were not able to find a general closed solution for the maximum type 1 error rate (even
if a single constant c1−α is used as a critical boundary for all the k standardized treatment vs. control
test statistics). To put the above optimization problem into a manageable framework, we illustrate
the calculation for the case of two experimental treatment arms (k = 2) in the following. For the less
complex scenario of equal second-to-first-stage ratios, numerical results are reported for k > 2.

5.1 Equal second-to-first-stage-ratios

As an extension to Proschan and Hunsberger (1995) we first investigate the case of equal second-to-
first-stage-ratios setting r0 = r1 = r2 = r. Assuming furthermore that the first stage sample sizes are
balanced, that is setting a1 = a2 = 1 (and therefore also that the final stage sample sizes are balanced
between treatment arms), for k = 2 formula (1) simplifies to

CEα

(
Z(1)

0 , Z(1)

1 , Z(1)

2 , r
) = 1 −

∫ ∞

−∞

2∏
i=1

�

[
c1−α

√
2(1 + r)

r
−

√
2
r

T (1)
i + Z(2)

0

]
φ
(
Z(2)

0

)
dZ(2)

0

= 1 − �0,�

⎡⎢⎢⎢⎣
c1−α

√
1 + r

r
− 1√

r
T (1)

1

c1−α

√
1 + r

r
− 1√

r
T (1)

2

⎤⎥⎥⎥⎦ .

As in Section 4.1, for notational convenience, the first stage test statistics T (1)
i for comparing treatment

i to the control are used. The conditional type 1 error rate does not depend on the nuisance parameter
μ. The cumulative distribution function of the multivariate normal distribution with two-dimensional
mean zero-vector 0 and covariance-matrix � with elements σ11 = σ22 = 1 and covariance σ12 = 1/2 is
denoted by �0,�(x). To calculate the worst case conditional type 1 error rate we have to partition the
(T (1)

1 , T (1)

2 )-plane.

I. If T (1)

1 < 0 and T (1)

2 < 0 the largest conditional type 1 error rate is obtained by setting r̃ = ∞,
r̃ denoting the worst case second-to-first-stage ratio. The second stage is now overruling the
negative interim effect and therefore yielding a C̃Eα = 1 − �0,�

[
c1−α

]
that is equal to α if

c1−α = (d1−α, d1−α )′. Since P[(T (1)

1 < 0) ∩ (T (1)

2 < 0)] = 1
3 for the bivariate normal distribu-

tion with σ12 = 1/2 (see e.g. Kotz et al., 2000), the contribution of this subspace to the overall
maximum type 1 error rate E∗

α is 1
3

(
1 − �0,�

[
c1−α

])
.

II. If T (1)

1 > c1−α or T (1)

2 > c1−α the largest conditional type 1 error rate C̃Eα = 1 (applying
early rejection at interim and setting r̃ = 0) is obtained. This leads to a contribution to E∗

α of
P[(T (1)

1 > c1−α ) ∪ (T (1)

2 > c1−α )] = 1 − �0,�

[
c1−α

]
that is equal to α if c1−α = (d1−α, d1−α )′.
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In the remaining interim subspace we were not able to find a closed solution for C̃Eα. Therefore,
we used numerical optimization of the single parameter r. The “equal”-columns of Table 1 show the
results for the overall E∗

α for the case of k = 2, with and without correction for multiplicity. As is to
be expected, applying the naive unadjusted critical boundary z1−α may result in a further considerable
type 1 error rate inflation as compared to k = 1. An interesting finding is that when using the Dunnett
critical value, E∗

α are close to the results for k = 1.
For k = 3 and using Dunnett critical boundaries for α = 0.025 the maximum type 1 error rate is still

inflated up to 0.0545, but interestingly the inflation is smaller compared to k = 2. For k = 4 treatments,
E∗

0.025 is flattening off at an inflated level of 0.0543. For α = 0.01 and 0.05 the same tendencies can be
found.

5.2 Flexible second-to-first-stage-ratios

If we allow for flexible second-to-first-stage-ratios, we again have to use the independent Z(1)
i (instead

of the test statistics T (1)
i ) to get rid of the nuisance parameter μ. If we assume balanced first stage

sample size, the conditional type 1 error rate is now calculated by (1) setting k = 2 and a1 = a2 = 1. To
explain the worst case scenarios in more detail, we will focus on the subspaces in terms of the interim
outcome of the control group Z(1)

0 .

A. Subspace (Z(1)

0 ≤ −c1−α): C̃E = 1 is obtained by setting either r̃1 or r̃2 to ∞ and r̃0 = 0. The
contribution of this subspace to E∗

α therefore is �(−c1−α ).
B. Subspace (Z(1)

0 ≥ 0): The worst case choice is setting r̃0 = ∞ in the final analysis, getting two
independent tests against the asymptotically fixed mean μ = 0. Hence the conditional type 1
error rate reduces to

1 − �

(
c1−α

√
1
r1

+ 1 − Z(1)

1

1√
r1

)
�

(
c1−α

√
1
r2

+ 1 − Z(1)

2

1√
r2

)

independent of Z(1)

0 . A detailed explanation for the calculation of the maximum type 1 error
rate for this subspace B is given in Section 2 in the Supplemental Materials. Summing up the
results for Z(1)

0 ≥ 0, the contribution to the overall maximum type 1 error rate can be calculated
by

1
2

(
1 − 1

16
e−c2

1−α + 1
2

e
−c2

1−α
2 �(c1−α ) − �(c1−α )2

)
.

C. Subspace (−c1−α < Z(1)

0 < 0): In this region the worst case conditional type 1 error rate depends
on all three interim values of control and treatment groups, respectively. If either Z(1)

1 or Z(1)

2 is
larger than min(c1−α

√
2 + Z(1)

0 , c1−α ) again a conditional type 1 error rate of 1 can be achieved.
For the remaining regions we used numerical point-wise optimization and integration for
calculating the contribution to the overall type 1 error rate E∗

α .

The columns “flexible” for k = 2 of Table 1 show the total E∗
α for flexible second-to-first-stage-ratios

applying critical boundaries z1−α or d1−α. Without any correction for multiplicity (z1−α), the maximum
type 1 error is clearly increased as compared to the case k = 1. Interestingly, as for the results of equal
second-to-first-stage ratios (see Section 5.1), when using the pre-specified Dunnett critical boundary,
E∗

α is close to the results for k = 1.
Due to the numerical burden we did not calculate the maximum type 1 error rate for k > 2. However,

we expect similar findings as for the case of equal second-to-first-stage ratios at least for k = 3 and
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4, that is the maximum type 1 error rate sightly decreasing when using a Dunnett adjusted critical
boundary.

6 Practical recommendations

The results presented for the case of selecting the most promising hypothesis at interim are of great
practical interest, because they demonstrate that, given certain restrictions on the second stage sample
size, naive strategies may even lead to an adequate control of the type 1 error rate. For example, if the
sample size per treatment group in the second stage is at least as large as in the first stage and we only
allow for equal second-to-first-stage-ratios, no inflation of the type 1 error rate occurs for the number
of treatments k ≥ 4 when simply using the Dunnett critical boundaries. For k = 3, no inflation occurs
when restricting the second-stage sample size to be at maximum 4 times the first-stage sample size (see
Fig. 2A). If we fix the overall sample size in the control group, allowing for any choice of the overall
sample size in the selected treatment group that increases its first stage sample size more than twofold
does not lead to an inflation of α for k ≥ 3 (see Fig. 2B). Therefore, if in the case study of Barnes et al.
(2010) (see Section 2) only the selection of a single treatment group and control had been pre-specified,
the experimenter would have been permitted to do any balanced increase of the sample size, even when
using the conventional test statistic and the less conservative Dunnett critical boundary (instead of the
applied Bonferroni adjustment) for final testing. If a flexible sample size reassessment for the second
stage would have been allowed for (as in Section 4.2), no type 1 error inflation would have occurred if
the second stage sample size would have been constrained to be between the first-stage and twice the
first stage sample size. However, it has to be noted that for realistic scenarios (as e.g. an upper bound
of twice the first stage sample size) and a larger k, the obtained maximum type 1 error rate may be
much smaller than α so that even using the Dunnett critical boundaries would lead to conservative
procedures. Note that these results only apply when using prespecified-binding constraints on the
selection rules.

Allowing for early rejection at interim, the maximum type 1 error rate will always be inflated. In such
scenarios, if the use of conventional test statistics is preferred, one may adjust the critical boundary so
that the maximum type 1 error rate is controlled. As an example, assume that we only allow for equal
second-to-first-stage ratios setting the upper bound of the second-stage-sample size of the selected
treatment and control to be twice the first stage sample size. For k = 2 an adjusted level of 0.013
(instead of 0.025) has to be used to control the maximum type 1 error rate. In more detail, if we assume
for both treatments an effect size of 0.5 times the standard deviation, a sample size of n = 65 per group
would be needed to achieve 80% power. Compared to a fixed sample size test with Dunnett adjusted
critical boundaries, this would be a 20.4% increase of the per-group sample size. For increasing k, this
is only slightly decreasing: for k = 3 an increase of 18.8% and for k = 4 an increase of 17.0% of the
per-group sample size is needed to control the maximum type 1 error rate when additionally allowing
for the given sample size reassessment. To achieve a power of 90%, a slightly smaller increase in the
per-group sample size is needed, that means an increase of 16.4%, 16.7%, and 15.6% would be needed
for k = 2, 3, and 4, respectively. All these examples show that adjusting for the worst case would be
a rather conservative strategy and adaptive tests should be implemented instead (Koenig et al., 2008;
Bretz et al., 2009).

7 Discussion

In this paper, we have investigated the maximum type 1 error rate arising from the application of a
nonadaptive test used by experimenters who freely adapt their ongoing trials. This problem has been
addressed by Proschan and Hunsberger (1995) for the comparison of one treatment with a control and
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balanced sample sizes before and after the adaptive interim analysis. They considered a restricted rule
incorporating a stopping for futility criterion. This leads to procedures where the effect of adjusting
the adaptation of the sample size is no longer dramatic. Graf and Bauer (2011) have extended the
worst case calculations allowing for unbalanced sample sizes. In this paper, a further level of com-
plexity has been added by considering multiple comparisons of k treatments with a single control.
For the case without selection of a treatment arm at interim, we calculate the maximum type 1 error
rate for k = 2 in the case of equal and flexible second-to-first-stage-ratios (assuming balanced first
stage sample sizes). Not surprisingly, when applying uncorrected level α treatment-control compar-
isons, the worst case type 1 error is dramatically inflated. By using Dunnett-adjusted critical boundaries,
the worst case inflation is still large. Interestingly, the inflation is very similar to the case of comparing
k = 1 treatment to a control (Graf and Bauer, 2011). This means that when adjusting for the number
of treatments for k = 2, no noticeable further maximum inflation of the type 1 error rate occurs as
compared to k = 1.

The case of equal and flexible second-to-first-stage ratios was investigated for scenarios where only a
single treatment and the control are selected at the interim analysis. In this scenario, there is a trade-off
between inflation due to sample size reassessment and the overcorrection for the k − 1 treatments
finally not selected and not tested in the statistical analysis. For equal ratios, the maximum type 1
error is monotonically decreasing with k with a finite limit noticeably larger than the nominal level α.
As expected, the impact of flexible ratios is more severe, the maximum inflation of the actual level α,
though decreasing for small k, is increasing with larger k.

There are several caveats to be mentioned here. First, for the case of flexible ratios the conditional
error can only be calculated when the nuisance parameter, the common mean under the global null
hypothesis, is known. Secondly, the maximum type 1 error only occurs if the experimenters apply the
worst case sample size reassessment rule (maximizing the conditional type 1 error rate) at any point
in the interim sample space. Thirdly, in some interim subspace, the maximum is assumed if some of
the second stage sample sizes go to infinity. Although theoretically interesting, this of course means
that these maximum type 1 error rates can never be reached in real clinical trials. Adjusting for these
“unrestricted worst cases” would be an extremely conservative strategy and cannot be recommended
for use in practice. Therefore, we also investigated maximum type 1 error rates that arise when the
second stage sample sizes are constrained by upper and lower limits. Some of these results are practically
interesting, because they demonstrate that in certain cases, when putting restrictions on the second-
stage-sample sizes, naive strategies can control the type 1 error rate. Such calculations under constraints
could replace simulations of the type 1 error rate in designs with adaptive selection rules, the latter
being considered problematic by some researchers (Posch et al., 2011).

Open research problems are at present the unconstrained optimization for k > 2, which imposes
a burden of numerical integration and optimization. For the unconstrained scenario of k = 2, the
optimization lasts up to one half second for one grid point on an Intel(R)Core(TM)i5 CPU M540
processor with 2.53GHz and it is therefore still a time consuming numerical challenge to derive
a sufficiently narrow grid over the three dimensional interim subspaces with sufficiently accurate
values of the maximum conditional error functions to be integrated. Also scenarios where the
selection of s, 1 < s < k out of k treatment groups and the control are prespecified are of high
interest.

As a conclusion, we do not recommend the use of unrestricted “worst case” adjustments since they
will be far too conservative for serious consideration. If limits on sample size modifications can be
imposed, it is still important to compare the operating characteristics of adaptive designs with the
maximum-type-1-error-based adjustments discussed here. Only then we can decide whether sample
size limits can or should be imposed and how tight they might be.
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Appendix

A.1 Calculation of the conditional type 1 error rate

In the following we assume that the global null hypothesis applies (μi = μ for i = 0, . . . , k). The
conditional type 1 error for rejecting at least one treatment-control comparison in the final analysis,
given the interim data, can be calculated as follows:

In the final analysis after the second stage each test (comparing treatment i to the control group) is
based on the following global test statistic:

Ti =
n(1)

i x̄(1)
i +n(2)
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√
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i , i ≥ 0, j = 1, 2, have independent standard normal distributions. If the
overall test statistic Ti is larger than the critical boundary c1−α we get a false positive decision, which
leads to the following inequality:
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Since Z(2)
i and Z(2)

0 have independent standard normal distributions for every set of values ai, r0, ri,
Z(1)

0 and Z(1)
i (and hence are independent of these quantities), the conditional error can be written as

in formula (1).
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A.2 The maximum type 1 error rate is attained under the global null
hypothesis

For k ≥ 2 the maximum type 1 error rate is attained under the global null hypothesis μi = μ0, i =
1, . . . , k. To see this, assume (without loss of generality) that the null hypothesis is not true for H01.
Then the conditional error for rejecting at least one true hypothesis is calculated in the same way as
CEα(a1, . . . , ak, Z(1)

0 , . . . , Z(1)

k , r0, . . . , rk) from formula (1), but the product going from 2 to k rather
than 1 to k, further on denoted by CE∗

α (a2, . . . , ak, Z(1)

0 , Z(1)

2 , . . . , Z(1)

k , r0, r2, . . . , rk). Obviously, for
given r0, r2, . . . , rk, CE∗

α ≤ CEα. This statement is true since the integrated term in formula (1), for
given r0, r2, . . . , rk, is the same for CEα and CE∗

α but r1 does not appear in CE∗
α . Since the integrated

function in (1) is at every point larger (or equal) in CE∗
α , the whole integral must be larger (or equal)

for CE∗
α as compared to CEα for every given constellation of r0, r2, . . . , rk.

Let now denote r∗
0, r∗

2, . . . , r∗
k the second-two-first-stage-ratios leading to the maximum C̃E∗

α. Due
to the above arguments
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for all r1. The ratios r∗

0, r∗
2, . . . , r∗

k may not be the ratios maximizing CEα, but finding the ratios leading
to C̃Eα can only increase the conditional type 1 error CEα and thus
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This domination also holds for the integral for the type 1 error E∗
α (a1, . . . , ak) in formula (2), showing

that the global null indeed gives the parameter constellation leading to the largest type 1 error inflation.

A.3 Maximum conditional type 1 error rate when selecting the most
promising treatment for the scenario of equal second-to-first-stage-ratios

Following the lines of Proschan and Hunsberger (1995) the maximum conditional type 1 error rate
when selecting the treatment with the largest observed interim effect for the scenario of equal second-
to-first-stage-ratios (refer to Section 4.1) can be calculated by dividing the interim sample space into
three subspaces:

I. If T (1)
m ≤ 0 (equivalently Z(1)

m − Z(1)

0 < 0) the worst case arises from setting r̃ = ∞ so that the
second stage overrules the first stage adverse effect leading to C̃Eα(Z(1)
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m ) = 1 − �(c1−α ).

This results in a contribution to E∗
α of (1 − �(c1−α ))/(k + 1) since P[T (1)

m < 0] = �0,�(0) =
1

1+k , 0 here denoting the k-dimensional zero vector and � the k-dimensional covariance matrix
with σii = 1 and σi j = 1/2 for i 	= j.

II. Within the subspace 0 < T (1)
m < c1−α (or equivalently Z(1)

0 < Z(1)
m < c1−α

√
2 + Z(1)

0 ), Proschan
and Hunsberger (1995) showed that r̃ = (

c1−α

T (1)
m

)2 is leading to a worst case conditional type

1 error rate C̃Eα(T (1)
m ) = 1 − �(

√
c2

1−α
− (T (1)

m )2). We found no simplification of the two-
dimensional integration in this subspace.

III. If T (1)
m > c1−α (or equivalently Z(1)

m > c1−α

√
2 + Z(1)

0 ) the test can be rejected already at interim
(r̃ = 0 with C̃Eα = 1) leading to a contribution of this subspace of 1 − �0,� [c1−α] where c1−α

is a k-dimensional vector with values c1−α which is P[T (1)
m > c1−α] and reduces to α when using

the multiplicity corrected Dunnett critical boundary d1−α.
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