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Classifying attentional vulnerability 
to total sleep deprivation using 
baseline features of Psychomotor 
Vigilance Test performance
Eric Chern-Pin Chua1,2, Jason P. Sullivan3, Jeanne F. Duffy3,4, Elizabeth B. Klerman3,4, 
Steven W. Lockley3,4, Bruce S. Kristal3,4, Charles A. Czeisler3,4 & Joshua J. Gooley1,2

There are strong individual differences in performance during sleep deprivation. We assessed whether 
baseline features of Psychomotor Vigilance Test (PVT) performance can be used for classifying 
participants’ relative attentional vulnerability to total sleep deprivation. In a laboratory, healthy adults 
(n = 160, aged 18–30 years) completed a 10-min PVT every 2 h while being kept awake for ≥24 hours. 
Participants were categorized as vulnerable (n = 40), intermediate (n = 80), or resilient (n = 40) based 
on their number of PVT lapses during one night of sleep deprivation. For each baseline PVT (taken 
4–14 h after wake-up time), a linear discriminant model with wrapper-based feature selection was used 
to classify participants’ vulnerability to subsequent sleep deprivation. Across models, classification 
accuracy was about 70% (range 65–76%) using stratified 5-fold cross validation. The models provided 
about 78% sensitivity and 86% specificity for classifying resilient participants, and about 70% sensitivity 
and 89% specificity for classifying vulnerable participants. These results suggest features derived from 
a single 10-min PVT at baseline can provide substantial, but incomplete information about a person’s 
relative attentional vulnerability to total sleep deprivation. In the long term, modeling approaches that 
incorporate baseline performance characteristics can potentially improve personalized predictions of 
attentional performance when sleep deprivation cannot be avoided.

Many workers experience insufficient sleep due to long and irregular work hours, including military, public safety, 
and medical personnel1,2. Sleep deprivation results in a broad range of performance deficits including decreased 
vigilance, impaired working memory, and reduced processing speed3–6. There are strong trait-like individual 
differences in responses to sleep deprivation7,8. For a given performance task, some individuals consistently show 
severe cognitive impairment during exposure to sleep loss, whereas others are consistently able to maintain rel-
atively high levels of performance. There is currently no simple approach for estimating how a person’s perfor-
mance will be affected by sleep deprivation. Development of methodologies for predicting individual responses 
to sleep deprivation may improve fatigue management and lower risk for occupational errors and accidents in 
safety-sensitive operational settings.

Several studies have shown that groups of participants categorized as either vulnerable or resilient to sleep 
deprivation exhibit differences in behavior and/or physiology at baseline (i.e., under rested conditions). Group 
differences at baseline were observed for functional magnetic resonance imaging (fMRI)-based measures9–13, 
heart rate and its variability14, electroencephalogram (EEG) theta activity14, and performance on the Psychomotor 
Vigilance Test (PVT)14,15, which is used to assess sustained attention16. We and others have shown that a sub-
stantial proportion of variance in PVT performance during sleep deprivation can be explained by individual 
differences at baseline7,8,17. In participants who were stratified into high-performing and low-performing groups 
based on their baseline PVT performance, exposure to total sleep deprivation was associated with a much larger 
between-group difference in attentional lapses during sleep deprivation compared to when the participants were 
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well rested14. These findings suggest that sleep deprivation can amplify individual differences in PVT perfor-
mance that were already present at baseline. Moreover, these studies suggest that baseline measures of PVT per-
formance can potentially be used to improve predictions of individual differences in attentional responses to sleep 
deprivation18.

The goal of the present study was to develop models that can predict an individual’s relative performance on 
an attention task to total sleep deprivation assessed under highly controlled laboratory conditions, using fea-
tures derived from a single 10-min PVT taken at baseline. Performance on the PVT is highly sensitive to sleep 
deprivation and circadian timing19–21, and the number of PVT lapses during sleep deprivation exhibits trait-like 
stability7,8 and substantial broad-sense heritability (h2 = 0.83)22 when measured in laboratory studies. In addi-
tion, the PVT is suitable for repeated administration with few or no learning effects23, and can be implemented 
in diverse operational environments24–26. For these reasons, we evaluated whether baseline PVT performance 
characteristics can be used for predicting a person’s relative vulnerability to worsening attention during a night 
of sleep deprivation. Using a linear discriminant modeling approach with a wrapper-based method for feature 
subset selection, we tested the hypothesis that PVT features at baseline (i.e., under rested conditions) can be used 
to classify participants into performance groups (vulnerable, intermediate, or resilient) that differ in their number 
of attentional lapses during total sleep deprivation.

Methods
Participants and screening procedures.  In this retrospective study, we examined data from 185 healthy 
adults aged 18–30 years who participated in inpatient studies that included an episode of total sleep deprivation 
(i.e., ≥24 h of continuous wake) in the Intensive Physiologic Monitoring Unit within the Harvard Clinical and 
Translational Science Center at Brigham and Women’s Hospital (Boston, MA). Data were combined across several 
previous studies that investigated effects of different types of light stimuli on human circadian rhythms27–32. All 
studies implemented the same screening criteria and laboratory procedures during the sleep deprivation portion 
of the protocol. Eligibility was assessed by screening questionnaires, a physical examination, blood biochemistry 
and hematology, an electrocardiogram, and an interview with a clinical psychologist or psychiatrist. Participants 
who completed the sleep deprivation protocol (n = 185) were considered for inclusion in the present analysis.

Prior to the laboratory study, participants were required to maintain a fixed sleep schedule (8 h of time in 
bed per night) for at least 1 week. Participants chose a sleep schedule within the range of 2200–0600 (earliest 
possible schedule) to 0200–1000 (latest possible schedule). Compliance was verified by continuous actigraphy 
monitoring (Actiwatch-L; Minimitter, Inc., Bend, OR). Participants were ineligible for the laboratory study if 
their actigraphy-estimated sleep pattern deviated from the prescribed sleep-wake schedule by more than 30 min 
on any given night. A comprehensive toxicology screen was performed on the day of admission to the laboratory 
study to ensure that participants had complied with refraining from caffeine, over-the-counter drugs, recrea-
tional drugs, alcohol, and nicotine use. Female participants underwent a blood test to verify that they were not 
pregnant. Informed written consent was obtained from all participants, and research procedures were approved 
by the Human Research Committee at Partners HealthCare and complied with HIPAA regulations and ethical 
guidelines in the Declaration of Helsinki.

Protocol overview.  Research participants were studied individually in a laboratory environment that was 
free of time cues. During the first 3 days of the laboratory study, participants were scheduled to sleep and wake 
at their pre-study sleep-wake times. Participants slept in darkness and were exposed to <200 lux during wake 
episodes until midway through the third day, after which time the lights were dimmed to <3 lux measured 
at eye level. Ambient light was provided by ceiling mounted 4100 K lamps (Philips Lighting, Eindhoven, The 
Netherlands) with illuminance measured using a portable radiometer (International Light Technologies ILT1400) 
as previously described27,28. Beginning on the fourth morning of the study, participants were kept awake continu-
ously for 30–50 h using constant routine procedures33. During this episode of total sleep deprivation, wakefulness 
was enforced by a staff member who was present in the participant’s room. The staff member also monitored the 
participant’s compliance with research procedures, including computer testing. Participants were required to 
maintain a semi-recumbent position in bed under dim ambient lighting (<3 lux), with small equicaloric snacks 
given every hour. Following exposure to total sleep deprivation, participants had a recovery sleep episode and an 
additional 4–5 days of their study (results reported elsewhere)27–31.

Psychomotor vigilance test.  Participants completed a 10-min Psychomotor Vigilance Test (PVT) every 
2 h while awake, including the first 3 days of the study and throughout the sleep deprivation protocol. The PVT 
is a simple reaction time test that is used to assess sustained visual attention16,23. Participants were instructed to 
maintain their fastest possible reaction time to a visual stimulus that was presented on a computer monitor at 
random inter-stimulus intervals ranging from 1–9 s. The stimulus comprised a count-up timer that counted up 
in milliseconds until the participant pressed a button on a dedicated PVT response box with the thumb of their 
dominant hand. Attentional lapses were defined as reaction times that exceeded 500 milliseconds6,8,34,35.

Of the 185 participants whose data were considered for the present study, 25 participants were excluded from 
our analyses due to missing or invalid PVT data during the episode of total sleep deprivation (from 16 to 24 h 
after wake-up time). Participants were excluded from retrospective data selection if they had one or more PVT 
sessions that were missing or invalid for the 5 sessions that took place during sleep deprivation (i.e., 16, 18, 20, 
22, or 24 h after wake-up time) because these data were used to categorize participants into different vulnerabil-
ity groups (see below). Missing data were defined as PVT sessions that did not take place or were not digitally 
recorded due to procedural or technical problems. Invalid PVT sessions were defined as those in which the PVT 
was administered more than an hour later than the scheduled time (e.g., due to procedural or technical prob-
lems), the participant used the incorrect button on his/her PVT response box for >10% of trials for a given PVT 
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session, no PVT reaction time was recorded for >1 min during a given PVT session (e.g., due to the participant 
not responding or a technical problem), or the 10-min PVT session was truncated to <8 min due to a technical 
problem (e.g., if the computer program crashed during a PVT session). Using these pre-determined criteria for 
retrospective data selection, there were 8 participants who did not complete all of the PVTs at the scheduled times 
due to procedural problems; 8 participants who were excluded due to experimental problems that invalidated 
their data; and 9 participants who were excluded due to incomplete PVT data. Hence, 160 participants were 
included in the present study (65% male; mean age ± SD = 23.0 ± 2.8 years).

Model for classifying vulnerability to total sleep deprivation.  Stratification of participants into dif-
ferent vulnerability groups.  To categorize participants as resilient or vulnerable to total sleep deprivation, we 
ranked them by their performance when they were sleep deprived, as indexed by their average number of PVT 
lapses (reaction times > 500 ms) during hours 16 to 24 of the sleep deprivation constant routine procedure. The 
top quartile of participants with the fewest number of lapses was defined as the resilient group (n = 40) and the 
bottom quartile with the greatest number of lapses was defined as the vulnerable group (n = 40). The middle 50% 
of participants whose performance fell within the interquartile range were defined as the intermediate perfor-
mance group (n = 80).

Identification of candidate baseline PVT features.  Baseline performance on the PVT was assessed during the first 
16 hours of wakefulness of the constant routine procedure. There were 6 PVT sessions during the baseline inter-
val (4 h, 6 h, 8 h, 10 h, 12 h, and 14 h after wake-up time). For each PVT session that a participant completed, 426 
summary measures were calculated based on trial-by-trial reaction times. These measures characterized various 
aspects of PVT performance, including speed and variability of reaction times, response errors (e.g., anticipation 
errors or failure to respond), and time-on-task effects (Table S1). In addition to standard PVT performance met-
rics36, we included measures based on those introduced recently by our group and others, including percentile 
reaction times37 and lapse counts based on reaction time thresholds that reflect different probabilities of the par-
ticipant’s eyes being closed when lapses occurred38. We also included a series of novel non-parametric measures 
of reaction time variability, such as the number of times that the difference of consecutive reaction times exceeded 
a particular threshold, and differences of percentile reaction times.

Baseline PVT features that are consistent over repeated assessments (within and between participants) are 
more likely to be reliable in predicting responses during sleep deprivation compared to features that are more 
variable. We therefore pre-selected candidate baseline PVT features for our models that exhibited stable individ-
ual differences across multiple days of rested wakefulness (day 2, day 3, and the first 16 h of wakefulness on day 
4). PVT measures were chosen as candidate features for the linear discriminant model (see below) if they met the 
pre-determined criterion of having an intra-class correlation coefficient (ICC) value > 0.60, which corresponds 
to the threshold for ‘substantial’ or ‘good’ agreement between measurements39,40. For each PVT measure at each 
time point, the ICC value was calculated as between-participant variance (σ2

BS) divided by the sum of between- 
and within-participant variance (σ2

BS + σ2
WS), with values ranging from 0 to 1. An ICC value was computed 

separately for each baseline PVT measure at each time point (4 h, 6 h, 8 h, 10 h, 12 h, and 14 h after wake-up time). 
A linear mixed model was used with day (day 2, 3, and 4) as a fixed factor to correct for systematic order effects 
(i.e., to account for day-to-day changes in PVT performance that might be related to the research protocol), and 
between-participant differences were modeled as a random intercept with a Gaussian distribution41. Across base-
line PVT sessions, about one third of PVT measures met the criterion of having an ICC value > 0.60 and were 
considered for feature subset selection (number of PVT measures with an ICC value > 0.60: 4 h, 165 measures; 
6 h, 108 measures; 8 h, 134 measures; 10 h, 135 measures; 12 h, 163 measures; 14 h, 137 measures). Metrics with an 
ICC value < 0.60 were excluded and were not revisited in the current study.

Three-class linear discriminant model.  For each baseline time point (4 h, 6 h, 8 h, 10 h, 12 h, and 14 h after 
wake-up time on day 4 of the protocol), a different linear discriminant classification model was developed to 
predict individuals in resilient, intermediate, and vulnerable performance groups. A wrapper-based method was 
used to determine the optimal feature subset for predicting performance during total sleep deprivation42. In short, 
a wrapper approach assesses the relative usefulness of candidate feature subsets through its estimated prediction 
performance, and incorporates downstream prediction performance to obtain an optimized feature subset. We 
used a forward selection, best-first search algorithm to perform the feature set search42,43.

Within the wrapper best-first selection, for a given candidate feature set we added an additional layer to eval-
uate model accuracy using cost matrices from 1 to 5 (in 0.5 steps)44. A cost matrix assigns weights to different 
outcomes, hence penalizing and protecting against specific types of misclassification errors. In the present study, 
we did not commit to a particular cost matrix because the choice is user-context dependent. For example, in some 
operational settings it may be more costly (i.e., undesirable) to misclassify a person who is vulnerable to sleep 
deprivation as resilient, as compared with misclassifying a person who is resilient as vulnerable. Our modeling 
approach searched for the optimal combination of feature set and cost matrix to optimize prediction accuracy, 
which was used as the performance metric to select the model for the three-class prediction.

For a given trial feature set, we used repeated 5-fold cross validation to evaluate its performance. Fold assign-
ment was performed for the resilient, intermediate, and vulnerable groups separately, i.e., stratified, to ensure the 
proportion of participants in each group stayed constant across folds. Prediction performance across 100 repeated 
cross-validation runs was averaged to reduce the variance expected of 5-fold cross-validation. The best-first 
search algorithm was terminated upon reaching the condition in which performance did not improve for 5 con-
secutive iterations. After the best feature subset and cost matrix was determined for a given PVT session, the final 
classification model was determined by applying the best feature subset on the entire initial dataset.
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For each PVT session completed at baseline (4 h, 6 h, 8 h, 10 h, 12 h, and 14 h after wake-up time), its corre-
sponding model arranged the summary PVT data (which initially consisted of data expressed in different types of 
units) as a row vector d, and normalized the data for a given PVT measure across subjects by z-scoring them, i.e. 
z = (d − μ)/σ, where μ and σ are the z-score parameters. Then, for each of the possible outcomes, i.e., resilient, 
intermediate, or vulnerable, the model computed the posterior probability that the participant belonged to that 
group, given the set of model parameters and cost matrix (Table S2). Specifically, the discriminant functions for 
each group, i.e., the natural logarithm of the posterior probabilities, were computed as linear combinations of the 
summary PVT measures, according to:
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In each equation, g is the discriminant function, w is the coefficient, and c is the constant term (R = resilient; 
I = intermediate; V = vulnerable). Participants were assigned to the group with the highest value for the discri-
minant function, which is equivalent to assignment based on the highest posterior probability. Depending on the 
testing time point, a different set of z-score and model parameters was applied.

Assessment of model performance.  Performance of the models was assessed using several metrics: (1) 
Accuracy of the classifier, defined as the proportion of participants who were correctly classified as resilient, inter-
mediate, or vulnerable; (2) Cohen’s kappa, which measures accuracy after discounting agreement by chance, i.e., 
accounting for the 1:2:1 structure of the outcome assignments (chance-level accuracy was 37.4% for the 3-class 
classification task); (3) Sensitivity, defined as the proportion of vulnerable participants who were correctly classi-
fied as vulnerable (for the vulnerable classifier), or as the proportion of resilient participants who were correctly 
classified as resilient (for the resilient classifier); (4) Specificity, defined as the proportion of intermediate and 
resilient participants who were correctly identified as not being vulnerable (for the vulnerable classifier), or as 
the proportion of intermediate and vulnerable participants who were correctly identified as not being resilient 
(for the resilient classifier); (5) Positive predictive value, defined as the proportion of participants with a test out-
come (i.e., predicted outcome) of vulnerable who were truly vulnerable (for the vulnerable classifier), or as the 
proportion of participants with a test outcome of resilient who were truly resilient (for the resilient classifier); and 
(6) Negative predictive value, defined as the proportion of participants with a test outcome of either resilient or 
intermediate who were truly resilient or intermediate (for the vulnerable classifier), or as the proportion of par-
ticipants with a test outcome of either intermediate or vulnerable who were truly intermediate or vulnerable (for 
the resilient classifier). Analyses and model development were implemented by self-written code using MATLAB 
software (MATLAB 2012a; MathWorks, Inc, Natick, MA).

Results
Characterization of vulnerability to total sleep deprivation.  In our sample of 160 young healthy 
adults, large individual differences in PVT performance were observed during exposure to total sleep deprivation 
(Fig. 1a). The quartile of participants who were defined as vulnerable had an average of 30.6 to 52.8 lapses per 
PVT session; the quartile of participants who were defined as resilient had an average of 0.0 to 13.6 lapses per 
PVT session; and the remaining group of participants with intermediate performance had an average of 14.0 
to 30.4 lapses per PVT session. Based on our stratification scheme for defining performance during total sleep 
deprivation, there was almost no overlap in PVT lapses across individual sessions for participants who were cat-
egorized as vulnerable versus resilient (Fig. 1b).

There was a significant difference between groups in the increase in PVT lapses from baseline to sleep dep-
rivation (Fig. 1c,d; Kruskal-Wallis Test, H = 106.0, P < 0.001). Specifically, the group that was categorized as 
vulnerable based on lapses during total sleep deprivation exhibited a greater increase in PVT lapses from base-
line compared with the intermediate performance group, despite having a greater number of lapses at baseline 
(Dunn’s post test, Q = 4.7, P < 0.05). Hence, the group we defined as vulnerable was more susceptible to sleep 
deprivation, even after taking into account baseline differences in PVT performance. Similarly, the intermediate 
performance group exhibited a greater increase in lapses compared with the resilient group (Dunn’s post test, 
Q = 7.0, P < 0.05). These results show that our definition for performance vulnerability, which was based on the 
average number of lapses during total sleep deprivation, also reflects differences in the magnitude of deterioration 
in performance from baseline to the sleep-deprived state.

Model for predicting performance vulnerability using baseline PVT measures.  Separate linear 
discriminant models were developed using baseline PVT features from 6 different time points (4 h, 6 h, 8 h, 10 h, 
12 h, and 14 h after wake-up time; Table S2) to classify participants in resilient, intermediate, and vulnerable per-
formance groups. Across the different models, classification accuracy ranged from 65% to 75%, and Cohen’s kappa 
ranged from 0.48 to 0.61 (Table 1), indicating ‘moderate’ strength of agreement40 between the classification model 
and the true status of participants (i.e., vulnerable, intermediate, resilient). Then, we assessed how well each model 
performed at the binary classification task of classifying resilient participants (top quartile) versus the bottom 75% 
of performers during total sleep deprivation (Table 1). Models that were developed across the 6 baseline PVT ses-
sions provided about 78% sensitivity (range 63–90%), 86% specificity (range 75–93%), 68% positive predictive value 
(range 55–78%), and 93% negative predictive value (range 89–96%). We also assessed the performance of each 
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model at classifying vulnerable participants (bottom quartile) versus the top 75% of performers. For this classifica-
tion task, the models provided about 70% sensitivity (range 57–84%), 89% specificity (range 83–94%), 70% positive 
predictive value (range 60–79%), and 90% negative predictive value (range 87–94%).

Figure 1.  Stratification of participants into resilient, intermediate, and vulnerable performance groups. (a) 
The average number of lapses (reaction times > 500 ms) on the Psychomotor Vigilance Test (PVT) during total 
sleep deprivation (TSD; 16 h to 24 h after wake-up time) is shown for 160 participants who were categorized into 
vulnerable (red, n = 40), intermediate (gray, n = 80), and resilient (blue, n = 40) performance groups. Dashed 
lines demarcate thresholds (25th percentile and 75th percentile) used to define vulnerable and resilient groups. 
(b) The time course of PVT lapses is shown on baseline days that preceded TSD (Day 2 and Day 3) and during 
24 h of continuous wakefulness (Day 4). (c) The mean ± SEM is shown for PVT lapses in groups of participants 
categorized as vulnerable, intermediate, or resilient during TSD. (d) Box plots show the increase in the number 
of lapses from baseline to sleep deprivation in participants whose performance was categorized as Resilient (R), 
Intermediate (I), or Vulnerable (V) during TSD. Boxes show the median and interquartile range, and whiskers 
indicate the 95th percentile of the distribution. Asterisks indicate significant between-group differences (P < 0.001).
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Next, we compared the time course of PVT lapses in groups of participants classified as either vulnerable or 
resilient to the effects of total sleep deprivation. The goal of this analysis was to assess qualitatively the ability of 
the models to select for groups of participants enriched for either vulnerability or resilience. For the classification 
model developed at each baseline time point, we performed 100 runs of 5-fold cross validation, resulting in 100 
predictions for a given participant. The most common prediction (i.e., the mode) in each individual was used to 
determine his/her group assignment (vulnerable, intermediate, or resilient). For classification models developed 
at each of the 6 baseline PVT sessions, the time course of PVT lapses was markedly different between the pre-
dicted vulnerable and resilient groups (Fig. 2; For comparisons between groups at every time point and model, 
P < 0.001), indicating that baseline features of PVT performance could be used to discriminate groups of partic-
ipants who differed in their attentional vulnerability during total sleep deprivation.

Predicting performance vulnerability in participants with high performance at baseline.  Our 
modeling approach was based on the premise that baseline individual differences in performance carry infor-
mation about attentional responses during total sleep deprivation. Given that there were substantial individual 
differences in PVT performance at baseline in the full sample (n = 160), we sought to establish whether our 
modeling approach could be used to predict vulnerability to total sleep deprivation in a group of participants 
with less heterogeneity in PVT performance (i.e., high-performing subjects). We therefore performed a post-hoc 
stratification and analysis in which we applied our modeling approach to the subset of participants who exhib-
ited ≤ 2 lapses per PVT session at baseline (n = 60). In this subgroup of high-performing individuals, we stratified 
participants according to the same criteria as those used in the full sample, i.e. the quartile of participants with the 
greatest number of PVT lapses during sleep deprivation was defined as vulnerable (n = 15), and the quartile with 
the fewest number of lapses was defined as resilient (n = 15).

Using the same modeling approach described for the full dataset, we developed a set of new models in the sub-
group with ≤ 2 lapses at baseline (4 h, 6 h, 8 h, 10 h, 12 h, and 14 h after wake-up time). In these models, classifica-
tion accuracy ranged from 57% to 64%, and Cohen’s kappa ranged from 0.38 to 0.46, indicating ‘fair-to-moderate’ 
strength of agreement40 between the classification model and participants’ actual vulnerability status (Table 2). 
For classification of resilient participants (top quartile) versus the bottom 75% of performers during sleep depri-
vation, our models provided about 69% sensitivity (range 49–90%), 80% specificity (range 75–89%), 56% positive 
predictive value (range 45–76%), and 90% negative predictive value (range 83–97%). For classification of vulner-
able participants (bottom quartile) versus the top 75% of performers, the models provided about 80% sensitivity 
(range 67–87%), 76% specificity (range 68–81%), 56% positive predictive value (range 47–62%), and 93% nega-
tive predictive value (range 89–95%).

In the subgroup of participants with ≤2 lapses at baseline, we evaluated the average time course of PVT lapses 
in groups of participants who were classified as either resilient or vulnerable to total sleep deprivation. This was 
assessed for models developed for each baseline time point. Similar to results in the full sample, these models 
were able to classify participants who were high performers at baseline into groups that differed in their atten-
tional responses to total sleep deprivation (Fig. 3). Irrespective of the time point of PVT testing that was used 
to develop each model, the group of participants that was predicted to be more vulnerable to sleep deprivation 
exhibited more lapses than the group that was predicted to be resilient to the effects of sleep deprivation.

Discussion
In the present study, we developed and tested a series of models for predicting individual differences in attentional 
vulnerability to total sleep deprivation. Using features derived from a single 10-min PVT taken under rested 
conditions, participants in the full dataset (n = 160) were classified in vulnerable, intermediate, and resilient per-
formance groups with about 70% accuracy across models developed at different baseline time points (range, 

Metric

Time since wake

4 h 6 h 8 h 10 h 12 h 14 h

Accuracy (%) 70.4 ± 1.7 66.7 ± 1.7 75.6 ± 1.9 72.3 ± 1.6 69.9 ± 2.1 64.8 ± 1.4

Cohen’s kappa 0.51 ± 0.03 0.50 ± 0.03 0.61 ± 0.03 0.54 ± 0.03 0.55 ± 0.03 0.48 ± 0.02

Classifying resilient participants versus bottom 75% of performers

Sensitivity (%) 62.9 ± 3.5 84.0 ± 3.0 81.0 ± 2.7 69.2 ± 2.4 83.7 ± 4.1 89.7 ± 2.7

Specificity (%) 91.0 ± 1.3 84.9 ± 1.2 90.7 ± 0.92 92.8 ± 1.2 81.4 ± 1.6 75.1 ± 1.2

Positive predictive value (%) 71.8 ± 3.6 66.9 ± 2.4 76.0 ± 2.2 77.6 ± 2.9 60.7 ± 2.7 55.0 ± 1.9

Negative predictive value (%) 88.5 ± 1.0 94.2 ± 1.0 93.7 ± 0.83 90.3 ± 0.76 94.1 ± 1.4 95.9 ± 1.0

Classifying vulnerable participants versus top 75% of performers

Sensitivity (%) 57.0 ± 3.4 73.9 ± 2.4 70.0 ± 3.5 57.4 ± 3.3 84.0 ± 4.2 79.6 ± 2.1

Specificity (%) 91.8 ± 1.2 83.2 ± 1.4 91.2 ± 1.7 94.4 ± 1.2 86.7 ± 1.5 85.4 ± 1.2

Positive predictive value (%) 71.4 ± 3.7 60.3 ± 2.6 74.6 ± 4.1 79.1 ± 5.0 69.3 ± 3.3 66.0 ± 2.5

Negative predictive value (%) 86.9 ± 0.94 90.9 ± 0.85 90.3 ± 1.1 87.2 ± 0.86 94.4 ± 1.4 92.8 ± 0.74

Table 1.  Model performance metrics in the full sample (n = 160). A 3-class linear discriminant model was 
developed using features of Psychomotor Vigilance Test performance at each baseline time point to classify 
participants in different vulnerability groups (vulnerable, intermediate, resilient). For each model performance 
metric, the mean ± SD is shown for 100 runs of stratified 5-fold cross validation.
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65–76%). These results demonstrate that baseline individual differences in PVT performance metrics associate 
with relative vulnerability to total sleep deprivation. The robustness of our modeling approach was assessed in a 
subgroup of high-performing persons (≤2 lapses at baseline), in whom baseline individual differences were much 
smaller compared with the full sample. As expected, performance of the classifier dropped in this subgroup, but 
the model was still able to classify participants in different performance groups (vulnerable, intermediate, or 
resilient) with about 60% accuracy for models developed across different baseline PVT sessions (range, 57–64%), 
i.e., above a chance-level prediction (37.4%). Hence, even in top-performing participants, individual differences 
in baseline performance associated with responses to total sleep deprivation.

In our prior work based on data collected from a different group of participants14, we showed that individ-
uals who were categorized as vulnerable to the effects of total sleep deprivation on PVT lapses exhibited slower 
and more variable reaction times at baseline. This led us to hypothesize that exposure to sleep deprivation may 
contribute to enhancement of individual differences in PVT performance that were already present at baseline14. 
In a follow-up analysis of participants in that study who were exposed to total sleep deprivation on 2 separate 
occasions, we showed that individual differences in baseline PVT performance contributed significantly to 
between-participant variance in performance during sleep deprivation17. Based on variance components analysis 

Figure 2.  PVT lapses (reaction times > 500 ms) in groups of participants predicted to be resilient or 
vulnerable to total sleep deprivation. Models were developed using baseline PVT performance features to 
classify individuals as resilient (blue, open circles) or vulnerable (red, open circles) to the effects of total sleep 
deprivation. Separate models were developed using a 10-min PVT performed at 6 different time points (4 h, 6 h, 
8 h, 10 h, 12 h, and 14 h after habitual wake time). In all models and at every time point, P < 0.001 for pairwise 
comparisons between predicted resilient and vulnerable groups. For comparison, the time course of PVT lapses 
is shown for participants categorized as resilient or vulnerable based on their average number of lapses during 
total sleep deprivation (resilient, blue circles; vulnerable, red circles). The mean ± SEM is shown in each panel.
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of PVT performance, nearly 50% of the variance in performance during exposure to total sleep deprivation was 
explained by individual differences at baseline. Consequently, the intra-class correlation coefficient value dropped 
substantially when adjusting for baseline performance as a covariate. Although baseline individual differences 
did not fully account for individual differences in PVT performance during prolonged wakefulness7,8, we hypoth-
esized that baseline differences in PVT performance could nonetheless be used to estimate a person’s relative 
vulnerability to total sleep deprivation. The present study addressed this question, demonstrating that various 
measures of baseline PVT performance could be used to classify participants’ vulnerability to total sleep depri-
vation with nearly double the accuracy compared with chance-level prediction accuracy (i.e., much greater than 
37.4% chance-level prediction for the 3-class classification task).

Most predictive performance models that have been developed have been used to identify critical times of 
performance vulnerability in an average individual (i.e., based on group data)45–48, rather than providing indi-
vidualized predictions of performance under conditions of sleep loss or circadian misalignment. Adaptive 
individual-specific performance models address this issue49–52, but such models rely on repeated assessments 
of PVT performance over time under sleep loss conditions. They approach the problem by assessing a person’s 
responses to sleep deprivation periodically and updating the model to predict his/her responses to subsequent 
sleep deprivation, rendering it an impractical approach for many situations. More recently, drift diffusion model53 
parameters derived from baseline PVT data have been used to classify participants in resilient and vulnerable 
groups with 77% accuracy using a support vector machine (SVM) modeling approach18. In its current form, 
however, that model requires data to be combined across consecutive PVTs for reliable estimates of drift diffusion 
parameters, whereas our classifier relies on data derived from a single 10-min PVT. Additionally, participants in 
that study were categorized as vulnerable or resilient to sleep deprivation based on a median split of PVT lapses 
after exposure to sleep deprivation. Using such a definition, there is little separation between higher-performing 
vulnerable participants and lower-performing resilient participants. By comparison, our modeling approach 
included an intermediate performance group, hence ensuring that participants who were categorized as vulner-
able or resilient to the effects of total sleep deprivation on PVT performance were phenotypically distinct. The 
slightly lower classification accuracy in our study might be explained in part by the more challenging 3-class 
classification task (37.4% versus 50.0% chance-level prediction) and the use of a single PVT session for building 
the classifier.

The performance and generalizability of our modeling approach are likely influenced by the definitions used 
for vulnerability to sleep deprivation. PVT lapses have been widely used in sleep and circadian rhythms research 
to assess sustained attention performance and to model group-level or individual responses to different types of 
sleep deprivation15,18,49–52,54,55. There are, however, other PVT-based metrics that have been proposed for quan-
tifying performance impairment that may better capture the influence of homeostatic and circadian processes56. 
Recent work has shown that PVT metrics derived from diffusion modeling (e.g., the log transformation of the 
signal-to-noise ratio) have better psychometric properties than PVT lapses, including higher sensitivity, stability, 
degree of normality, and absence of floor and ceiling effects57. Hence, future modeling efforts should consider 
including other metrics of PVT performance for measuring and predicting changes in vigilant attention.

Consistent with previous studies, we observed strong individual differences in PVT performance during total 
sleep deprivation2,8. Prior work has demonstrated that these individual differences are partially explained by 
genetic make-up22,58, but are likely modulated by other physiologic and behavioral factors. The earlier deteriora-
tion in PVT performance during sleep deprivation in participants categorized as vulnerable could be explained 
by a faster buildup of homeostatic sleep pressure, or an earlier circadian increase in sleep propensity. The present 
study did not, however, examine effects of individual differences in sleep pressure, circadian phase, or chronotype 

Metric

Time since wake

4 h 6 h 8 h 10 h 12 h 14 h

Accuracy (%) 63.2 ± 3.3 57.2 ± 1.6 59.8 ± 3.5 59.1 ± 3.9 64.3 ± 3.5 61.3 ± 3.1

Cohen’s kappa 0.46 ± 0.05 0.38 ± 0.02 0.39 ± 0.05 0.39 ± 0.06 0.46 ± 0.06 0.44 ± 0.05

Classifying resilient participants versus bottom 75% of performers

Sensitivity (%) 90.1 ± 4.1 60.3 ± 1.6 48.5 ± 4.8 61.4 ± 6.2 80.1 ± 8.4 74.7 ± 3.8

Specificity (%) 88.6 ± 3.3 74.7 ± 1.4 78.4 ± 3.6 75.5 ± 3.9 83.7 ± 1.5 75.8 ± 3.2

Positive predictive value (%) 76.3 ± 5.5 46.5 ± 4.4 45.3 ± 7.9 47.5 ± 7.2 65.9 ± 5.3 53.5 ± 5.4

Negative predictive value (%) 97.1 ± 1.1 85.6 ± 1.1 82.5 ± 1.8 86.5 ± 2.3 93.2 ± 2.8 90.8 ± 1.5

Classifying vulnerable participants versus top 75% of performers

Sensitivity (%) 78.7 ± 5.0 86.7 ± 0.0 83.1 ± 4.5 80.1 ± 7.9 67.1 ± 5.8 83.3 ± 8.7

Specificity (%) 67.5 ± 4.2 72.5 ± 1.6 80.9 ± 1.7 79.4 ± 2.5 79.7 ± 3.8 76.4 ± 1.6

Positive predictive value (%) 47.0 ± 4.8 54.6 ± 3.1 62.2 ± 4.2 58.9 ± 5.5 56.4 ± 6.8 57.3 ± 5.0

Negative predictive value (%) 91.3 ± 2.2 94.8 ± 0.66 94.1 ± 1.5 93.0 ± 2.8 88.5 ± 2.1 94.1 ± 3.0

Table 2.  Model performance metrics in participants with ≤ 2 lapses at baseline (n = 60). A 3-class linear 
discriminant model was developed to classify participants in different vulnerability groups (vulnerable, 
intermediate, resilient) using features of baseline Psychomotor Vigilance Test (PVT) performance. A separate 
model was developed for each PVT taken during the baseline period and was applied only to high-performing 
participants with ≤2 lapses at baseline. For each model performance metric, the mean ± SD is shown for 100 
runs of stratified 5-fold cross validation.
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on the time-course of PVT performance. We also cannot determine the degree to which individual differences in 
performance were affected by participants’ motivation or effort to perform their best. Effort allocation on the PVT 
is sensitive to sleep deprivation and reward59,60, and is also likely influenced by an individual’s level of intrinsic 
motivation.

We must also emphasize that individual differences in PVT lapses do not necessarily correspond with indi-
vidual differences in performance on other cognitive tasks, e.g. those that assess working memory or processing 
speed8,61. As such, our modeling approach may only be relevant for estimating performance deterioration on tasks 
in which sustained attention is the most important determinant of task performance. It is also well-established 
that performance on the PVT does not associate with individual differences in self-reported sleepiness8,14,62, indi-
cating a dissociation between how sleepy participants feel and how well they can perform during exposure to 
sleep deprivation. Nonetheless, it has been shown that PVT lapses correlate with physiologic indicators of sleep-
iness, including percentage eyelid closure over the pupil over time (PERCLOS), low-frequency EEG activity, and 
some measures of heart rate variability14. Thus, PVT performance reflects overall vigilance, with longer reaction 
times and lapses associated with increased drowsiness and intermittent intrusion of sleep23,38.

Figure 3.  PVT lapses (reaction times > 500 ms) in groups of participants with high performance at baseline 
(≤2 lapses; n = 60) who were classified as resilient or vulnerable to total sleep deprivation. Participants were 
classified as resilient (blue, open circles) or vulnerable (red, open circles) to the effects of total sleep deprivation 
using models developed on baseline PVT measures. Separate models were developed using a 10-min PVT 
performed at 6 different time points (4 h, 6 h, 8 h, 10 h, 12 h, and 14 h after habitual wake time). Asterisks (*) 
indicate significant pairwise differences in PVT lapses between predicted resilient and vulnerable groups during 
the sleep deprivation period (P < 0.05). For comparison, the time course of PVT lapses is shown for participants 
categorized as resilient or vulnerable based on their average number of lapses during total sleep deprivation 
(resilient, blue circles; vulnerable, red circles). The mean ± SEM is shown in each panel.
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The performance of our models may be influenced by our definition of baseline PVT performance. During 
the pre-study screening process, we attempted to minimize the possibility that participants were sleep-deficient 
before enrolling in the laboratory study. Specifically, participants were instructed to spend 8 h of time in bed 
for sleep each night for at least one week, and the same sleep schedule was enforced during the first 3 nights of 
the laboratory study. This amount of time in bed for sleep falls in the middle of the range recommended by the 
National Sleep Foundation for young adults (7–9 h)63, but the duration of sleep required for optimal performance 
likely varies across individuals. In our previous work we showed that participants who were categorized as vulner-
able to the effects of total sleep deprivation on PVT performance exhibited longer sleep durations and more regu-
lar sleep patterns under free-living conditions, as compared with participants categorized as resilient14. Therefore, 
we cannot exclude the possibility that participants in the current study who were categorized as vulnerable to 
total sleep deprivation needed more than 8 h of time in bed for sleep each night for optimal performance54,64, 
and were getting insufficient sleep during the 10+ days immediately prior to undergoing sleep deprivation in 
the laboratory. Relatedly, the duration of time participants maintained their fixed pre-study sleep-wake schedule 
ranged from 1 to 3 weeks and was not factored into our analyses. Additionally, the fixed sleep-wake schedule that 
participants chose did not necessarily reflect their preferred sleep timing and may have been influenced by factors 
such as work hours, school schedule (for participants who were college students), and family responsibilities and/
or home environment. It is also possible that baseline PVT performance was influenced by carry-over effects from 
sleep history before screening. In future studies, these issues can potentially be addressed by having participants 
undergo a sleep-extension protocol in which they are given extended opportunities for sleep to minimize any 
sleep debt20, prior to being exposed to sleep deprivation.

There are several sources of selection bias in our study related to participant recruitment. Our participants 
were selected to be young, very healthy, and willing to undergo rigorous screening and laboratory procedures. 
The latter included staying in a highly-controlled laboratory setting for 9–10 days, during which participants 
were exposed to total sleep deprivation, frequent computer testing, and frequent intravenous blood draws (data 
reported elsewhere) without access to caffeine. Hence, our findings are based on a non-random sample of indi-
viduals who may differ in health, personality, lifestyle, and socioeconomic status from the general population. 
Our participant selection and laboratory procedures likely served to minimize sources of variance in PVT per-
formance, and hence the model performance metrics in the present study may reflect the best-case scenario for 
predicting individual differences in attentional lapses during total sleep deprivation. Looking forward, it will be 
important to test our modeling approach prospectively in more diverse groups of participants who differ in age, 
health, caffeine intake, and sleep history.

Our analyses were limited to a single overnight period of exposure to total sleep deprivation. While pulling an 
all-nighter is common among students and shift workers, longer episodes of sleep deprivation can occur, e.g. in 
medical and military personnel. Future modeling efforts should therefore consider both overnight and extended 
periods of sleep deprivation. While it has been demonstrated that individual differences in PVT performance are 
preserved across different types of sleep deprivation (total sleep deprivation versus chronic sleep restriction)7, it 
will also be important to test whether our modeling approach can be used to classify performance vulnerability in 
individuals exposed to chronic sleep restriction and/or irregular sleep schedules26,55.

The present study used a linear discriminant model that incorporated a best-first search algorithm with 
wrapper-based heuristics, which represents an iterative fitting and testing process. An advantage of wrapper 
methods for feature selection is that they can provide for high classification accuracy42. Such methods can, 
however, result in overfitting if the training data are modeled too well (i.e., modeling peculiarities in the data) 
resulting in a feature set with poor prediction performance in other datasets. Given that we used an internal 
cross-validation scheme and did not test the generalizability of our modeling approach using data derived from 
other experiments or in a hold-out set, our results for accuracy are likely optimistically biased, representing 
the upper limit of prediction performance that can be achieved. This limitation implies that further improve-
ment will require the discovery and implementation of new metrics (e.g., from physiologic data). There are many 
other modeling approaches that can be used to select predictor variables and classify participant performance. A 
comparison of our model with other classifiers was beyond the scope of the present study, but prior attempts to 
classify vulnerability to sleep deprivation based on PVT performance have included SVM models18 and pattern 
classification based on a k-nearest neighbor algorithm and a Naïve Bayes classifier55. Additionally, there are alter-
native approaches for feature selection that may perform better at finding all relevant features, while discarding 
those that are redundant, e.g. the Boruta algorithm which uses a wrapper approach built around a random for-
est classifier65. While our approach was successful in discriminating groups of individuals who differed in their 
attentional vulnerability to total sleep deprivation, future work should investigate the performance of alternative 
models that may be more robust (e.g., more generalizable and resistant to noise) and amenable to protection 
against over-fitting. It is also possible that combining outputs from multiple models (e.g., model fusion or ensem-
ble classifiers) may improve classification performance66.

In the present study, it is likely that some PVT measures included in each candidate feature set carried redun-
dant or overlapping information. It is therefore unsurprising that related but non-identical PVT features were 
selected by models developed at each time point (4 h, 6 h, 8 h, 10 h, 12 h, and 14 h after wake-up time). In all 
models, PVT features were selected that measured the difference in reaction times across different percentiles of 
the reaction time distribution. In particular, differences in reaction times from the faster-to-middle part of the 
distribution (e.g., difference in 20th to 55th percentile reaction times) were selected most often across models, with 
a narrower distribution of reaction times associated with greater resilience to the effects of total sleep depriva-
tion. Measures of reaction time variability (e.g., standard deviation of reciprocal reaction time) and differences 
in reaction times between fast and slow tails of the distribution (e.g., difference in 15th to 85th percentile reaction 
times) were also selected in some models, suggesting that distribution-based measures of PVT performance may 
be especially useful for estimating individual responses to total sleep deprivation.
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Recently, there has been progress in understanding mechanisms that underlie individual differences in 
performance-related responses to total sleep deprivation. Studies that have used fMRI have shown that individual 
differences in patterns of task-dependent brain activation are reproducible across multiple exposures to sleep dep-
rivation67. Participants who are categorized as vulnerable to the effects of sleep deprivation on performance show 
reduced global brain activation at baseline when they are well rested9–11, as well as poorer separation of cortical 
networks that are functionally segregated12. These studies demonstrate that brain imaging markers can potentially 
be used to explain and predict attentional responses to total sleep deprivation. Additionally, polymorphisms in 
genes implicated in sleep and circadian physiology have been shown to associate with individual differences in 
neurobehavioral performance, either during baseline or in response to sleep deprivation58,68–73. It is possible that 
our models for predicting attentional vulnerability to total sleep deprivation would perform better if additional 
factors were included as predictor variables, including brain imaging markers, genotype, or physiological varia-
bles associated with attentional vulnerability to sleep deprivation14.

In conclusion, our analyses of laboratory data suggest that it is possible to classify participants into groups 
that are either more vulnerable or more resilient to the effects of total sleep deprivation on attentional lapses, 
using data derived from a 10-min PVT taken under rested daytime conditions. Under ideal experimental con-
ditions, we show that the upper limit of classification accuracy is about 75%. Further improvement in predicting 
attentional lapses during sleep deprivation will require the discovery and implementation of new metrics. In the 
long term, our modeling approach and related methods can potentially be used toward developing personal-
ized fatigue management strategies when exposure to long work hours and sleep deprivation cannot be avoided. 
With further development of such algorithms and testing of their predictive ability in other populations and in 
real-world operational environments, it might be possible to minimize the risk of attentional failures by screening 
for personnel resilient to the effects of sleep loss and/or deploying appropriate individualized fatigue counter-
measures in those persons who are predicted to be more vulnerable to sleep deprivation.

Data Availability
The authors will make relevant anonymized data available on reasonable request. Execution of a Materials Trans-
fer Agreement is required if the data will be used in research supported by a for-profit company, per Partners 
Healthcare Institutional Review Board policy.
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