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We present a novel method for deriving network models from molecular profiles of perturbed
cellular systems. The network models aim to predict quantitative outcomes of combinatorial
perturbations, such as drug pair treatments or multiple genetic alterations. Mathematically, we
represent the system by a set of nodes, representing molecular concentrations or cellular processes,
a perturbation vector and an interaction matrix. After perturbation, the system evolves in time
according to differential equations with built-in nonlinearity, similar to Hopfield networks, capable
of representing epistasis and saturation effects. For a particular set of experiments, we derive the
interaction matrix by minimizing a composite error function, aiming at accuracy of prediction and
simplicity of network structure. To evaluate the predictive potential of the method, we performed 21
drug pair treatment experiments in a human breast cancer cell line (MCF7) with observation of
phospho-proteins and cell cycle markers. The best derived network model rediscovered known
interactions and contained interesting predictions. Possible applications include the discovery of
regulatory interactions, the design of targeted combination therapies and the engineering of
molecular biological networks.
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Introduction

Our ability to measure increasingly complete and accurate
molecular profiles of living cells motivates new quantitative
approaches to cell biology. For example, a key aim of systems
biology is to relate changes in molecular behavior to
phenotypic consequences. To achieve this aim, computational
models of cellular processes are extremely useful, if not
essential. Computational models can be used for the analysis
of experimental data, for the prediction of outcomes of unseen
experiments and for planning interventions designed to
modify system behavior. We have developed a particular
approach to constructing, optimizing and applying computa-
tional models of cellular processes, which we call Combina-
torial Perturbation-based Interaction Analysis (CoPIA). The
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key ingredients of the approach are combinatorial inter-
vention, molecular observation at multiple points, model
construction in terms of nonlinear differential equations,
optimization of model parameters with simplicity constraints
and experimental validation.

The power of combinatorial perturbation

In molecular biology, a targeted perturbation typically inhibits
or activates function of biomolecules, e.g. as a result of drug
action, small RNA interference, genetic or epigenetic change
(Figure 1). In a single experiment, targeted perturbations
can be applied either singly or in combination. Combined
perturbation by several agents can be much more informative
than that by a single agent, as its effects typically reveal
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Figure 1 Combinatorial perturbation and multiple input-multiple output (MIMO) models. Upper left: intuitive view of perturbations and their points of action. Small
inhibitory RNAs alter gene expression; natural protein ligands and small compounds act, e.g., on receptors, transporters or enzymes. Genetic alterations have diverse
functional effects. Perturbations can be natural or investigational. Observations (readouts) typically focus on a phenotype of interest, such as growth or differentiation,
and on observation points that are both practical and informative, such as transcripts, protein levels or covalent modifications, e.g. phosphorylation. Upper right: MIMO
model. All key system variables are represented as real number variables, the combinatorial perturbations u;as well as their targets, internal variables, observation points
and phenotypic outputs y;. Inputs (upper layer, squares) affect the different dynamical variables of the system (circles), some of which can be observed (lower
layer, squares). The model represents a processing system that relates the input to the output through the interacting dynamical variables. Representation of coupled
perturbations (nonlinear effects) is a key requirement of the modeling method. When rate equations are linear (lower left), perturbation effects will combine additively.
However, in a well-parameterized system with nonlinear transfer functions (lower right), epistasis effects will arise, and downstream effects depend on pathway
organization. Below: uses of a derived MIMO model. When inputs and outputs are known, a model can be used to infer the internal mechanism of the system
(Interpretation). When the inputs and the system are known, the model can be used to predict a response (Prediction). When the system and the desired output are
known, the model can serve to design optimal modes of control (Control).

downstream epistasis within the system, such as non-additive investigational tools for extracting information about path-
synergistic or antagonistic interactions. In addition, a large ways of molecular interactions in cells (such as A inactivates B,
number of independently informative experiments can be or X and Y are in the same pathway) (Avery and Wasserman,
performed if in each experiment a different small set of, e.g. 1992; Kaufman et al, 2005; Kelley and Ideker, 2005; Segre et al,
two or three, perturbants is chosen from a larger repertoire. 2005; Yeh et al, 2006; Lehar et al, 2007). Combinatorial
Thus, combinatorial perturbations are potentially powerful perturbations can also be powerful application tools when
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rationally designed to achieve desired effects. For example,
combination of targeted drugs is considered a promising
strategy to improve treatment efficacy, reduce off-target effects
and/or prevent evolution drug resistance (Borisy et al, 2003;
Keith et al, 2005; Komarova and Wodarz, 2005; Chou, 2006).
With recent advances in molecular technologies—e.g.,
targeted perturbation by small molecules, full-genome libraries
of small RNAs, highly specific antibody assays, massive
parallelization and imaging techniques—there is intense inter-
est in the investigational power of multiple perturbation
experiments in a variety of biological systems. The inherent
complexity of such experiments raises significant challenges in
data analysis and an acute need for improving modeling
approaches capable of capturing effects such as time-dependent
responses, feedback effects and nonlinear couplings.

Deriving system models from combinatorial
perturbation experiments

Computer simulation of pre-defined pathways can be used to
predict epistasis effects and explore how pathway organization
shapes the perturbation response (Omholt et al, 2000; Segre
et al, 2005; Lehar et al, 2007). In many situations however,
observational data are provided but the pathway is unknown
or only partially known. To solve this problem, our com-
putational modeling approach enables users to construct a
complete differential equation model for a system from
combinatorial perturbation experiments. In the context of this
paper, the system of interest is defined by a particular type of
cell, its environment, a time interval of observation and a
phenotypic change, such as cell death or growth. The system is
further characterized by its points of intervention, such as drug
targets, and the points of observation, such as the phosphor-
ylation state of proteins involved in signaling processes
(Figure 1). To represent such a system mathematically, we
choose network models in which nodes represent molecular
concentrations or levels of activity and edges reflect the
influence of one node on the time derivative of another. The
time evolution of the system is modeled by linear differential
equations, modified by a nonlinear transfer function to reflect
properties of the system that are not explicitly modeled
(Figure 1). We present efficient optimization algorithms to
find models that achieve maximum agreement between
observation and prediction. Our algorithm is based on a
combination of a gradient descent method (to set dynamical
parameters) and a Monte Carlo process (to explore alternative
network connectivities). We make a software implementation
of CoPIA available as platform-independent software
(http://cbio.mskec.org/copia).

Testing the predictive power of derived system
models

We perform combinatorial perturbation experiments in an
MCEF7 breast cancer cell line to test the modeling framework in
the steady-state limit. In this test, we demonstrate how
observation of the effects of drug pair perturbations can be
exploited to deduce a network model of signaling and
phenotype control (reverse engineering of pathways). We
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use observed molecular state and growth phenotype responses to
build predictive models and use these to explain the perturba-
tion-phenotype relationship in terms of coupling between
proteins in the EGFR/MAPK and PI3K/AKT pathways. Without
using known pathway biology, the resulting model reproduces
known regulatory couplings and negative feedback regulation
downstream of EGFR and PI3K/AKT/mTOR, and makes predic-
tions about possible roles of PKC-6 and elF4E in the control of
MAPK signaling and G1 arrest in MCF cells.

We conclude that CoPIA may be of interest as a broadly
applicable tool to construct models, discover regulatory
interactions and predict cellular responses. For instance,
researchers can measure a set of protein phosphorylation
responses to drug combinations and use the method to
automatically construct network models that predict the
response to novel drug combinations. Application of this
methodology to time-dependent experimental observations
would extend this predictive capability to the regimen of time-
dependent, rationally designed combinatorial therapy.

Results

Modeling the effects of combinatorial
perturbations

Multiple input—multiple output models

State space representation is commonly used in mathematical
modeling of input-output behavior in natural systems. In this
representation, the time behavior of the system state is
described by a first-order differential equation

Y Fv(e) ute) 1)

where the vector y(t) represents state variables (the activities
of the system’s components), the vector u(t) represents
perturbations (external influences on the components) and f
is a linear or nonlinear transfer function (de Jong, 2002). For
example, y(t) can be the abundances of specific mRNAs or
proteins, whereas u(t) can be the concentrations of different
chemical compounds to which the cells are exposed (Figure 1).
In essence, state space models relate a system’s input to its
output. State space models with multiple inputs—outputs (that
is, y and u have more than one coordinate) are called multiple
input-multiple output (MIMO) models.

Linear MIMO models

When fis a linear function of y and u, the above model is called a
linear MIMO model. The mathematical properties of linear
MIMO models are well known (Ljung, 1986) and such models
have been applied to many biological problems, for example, the
construction of transcriptional network models (Tegner et al,
2003; Xiong et al, 2004; di Bernardo et al, 2005). Nevertheless,
linear models have a limitation in that they can only model
uncoupled perturbation effects (linear dose-response relation-
ships), whereas nonlinear effects (coupled perturbation effects)
are ignored (Figure 1; ‘Model representation’). As a result, linear
MIMO models are unable to capture important phenomena that
are known to occur in cellular systems, such as saturation effects,
switch-like effects and nonlinear interaction phenomena such as
genetic epistasis and pharmacological synergism.
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Nonlinear MIMO models

To overcome this limitation, we construct nonlinear
MIMO models capable of representing coupled perturbation
effects. Previously, other authors have observed that
complex gene knockout effects, including epistasis effects,
can be predicted in metabolic flux networks where bounds
on the reaction rates are introduced (Fell and Small,
1986; Edwards and Palsson, 2000; Segre et al, 2005; Deutscher
et al, 2006). Similarly, metabolic systems with Michaelis-
Menten kinetics or transcriptional networks with bounds
on transcription rates will exhibit epistasis behavior
(Ombholt et al, 2000; Lehar et al 2007). In the particular case
of the MIMO model, we expect more biologically realistic
behavior if one replaces the linear transfer function f with a
nonlinear transfer function ¢ that imposes bounds on the rates
of change of the system. Accordingly, we propose the class of
models

dy;

@ Bid; (Z wyy;(t) + ui(f)> —oyi(t), 1=1,2,..., (2)

In this class of models, the matrix wj; represents
the interactions between the molecules and processes
represented by the state variables of the system. (Intuitively,
the matrix elements w; can be thought of as a map of
the system, in which w;>0 means ‘node j activates node 7,
whereas w;<0 corresponds to inhibition.) Furthermore,
a;>0 represents the tendency of the system to return to
the initial state (y;=0); B;>0 are constants and ¢; is a
transfer function capable of capturing both switch-like
behavior and bounded reaction rates. Examples of such
functions include sigmoid functions, piece-wise linear
approximations of sigmoids or biochemically motivated
approximations such as the Hill or Michaelis-Menten
equations (Materials and methods).

Application of nonlinear MIMO models to combinatorial
perturbation experiments

We developed computer algorithms to infer nonlinear models
of the above type from experimental data, as specified by the
best-performing values of the coupling parameters w;; and
other parameters. As detailed in Materials and methods,
the current implementation of our approach consists of the
following steps. First, the system of interest is subjected to a set
of independent single or multiple target perturbation experi-
ments; and, for each perturbation vector (time-independent
instance of u), a readout vector (steady-state instance of y) is
recorded. Second, we infer a nonlinear model that best
reproduces the experimental data (Materials and methods).
Specifically, we rely on parameter estimation techniques for
feedback systems to find a model that minimizes a quadratic
error term between observed and predicted readouts, subject
to simplicity constraints on the number of interactions in the
system. Third, the fitted model can be used to predict the
system’s response to unseen perturbations (for example,
combinations of drugs), and to gain new insight into the
system’s architecture.
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Testing modeling power for combinatorial
perturbations in breast cancer cells

Dual drug perturbation experiments in MCF7 breast
cancer cells

To directly test the power of the approach, we performed an
independent experimental study in MCF7 human breast carci-
noma cells. As perturbants of the system, we chose compounds
targeting EGFR (ZD1839), mTOR (rapamycin), MEK
(PD0325901), PKC-6 (rottlerin), PI3 kinase (LY294002) and
IGF1R (A12 anti-IGFIR inhibitory antibody). As relevant read-
outs of molecular and phenotypic responses, we chose phospho-
protein levels of seven regulators of survival, proliferation and
protein synthesis (p-AKT-S473, p-ERK-T202/Y204, p-MEK-S217/
S221, p-elF4E-S209, p-c-RAF-S289/5296/5301, p-P70S6K-S371
and pS6-S235/S236) as well as flow cytometric observation of
two phenotypic processes (cell cycle arrest and apoptosis)
(Figure 2). Inhibitors were administered singly and in pairs,
followed by EGF stimulation. When recording responses of
protein phosphorylation, we used the average response at 5 and
30 min as the surrogate for steady-state values. To build models,
we represented the state of each of the above perturbation targets
(signaling proteins), as well as each of the readouts, by one state
variable y;. We then used the proposed optimization procedure
(Materials and methods) to estimate the coupling parameters w;
and other parameters, resulting in predictive models of response
in terms of these system variables.

Quantitative prediction of system response

We first assessed the predictive power of the derived models
using leave-one-out cross-validation, in which one pair
perturbation is left out of the analysis and then its effect
predicted from information gained from all other perturba-
tions. The resulting predictions were reasonably accurate for
the nine different readouts. The best prediction was obtained
for p-S6 phospho-protein levels (cross-validation error
CV=0.02, Pearson correlation r=0.96) and the weakest for
the G1 arrest phenotype (CV=0.07, r=0.45) (Figure 2 and
Supplementary Table 1). We directly compared the perfor-
mance of our modeling approach to one using a corresponding
set of linear differential equations with the same optimization
procedure. By comparison, predictions using the nonlinear
approach agreed better with experimental observations for
eight of the nine readouts. Using the nonlinear modeling
approach, the prediction error was lower by up to 50% with
correspondingly better correlation between predictions and
experimental observations (Supplementary Table 1). Thus, we
conclude that our method is capable of deriving reasonably
accurate network models for the input-output behavior of
MCEF?7 cells with respect to the readouts used.

Detection of key regulatory mechanisms without
prior knowledge

From a set of perturbation experiments, how can one deduce
the logical network structure of activating and inhibiting
interactions between the key molecular components, similar
to the familiar pathway diagrams in publications summarizing
a set of molecular biological experiments? Here, we use the
derived network models with the smallest global error
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data for model construction, we treated human MCF7 breast tumor cell lines with

one natural ligand (epidermal growth factor (EGF)) and six inhibitors, singly and in combination. The treatment protocol used EGF, an IGF1 receptor inhibitory antibody
(A12) and inhibitors of the signaling molecules EGFR, PI3K, mTOR, PKC-6 and MEK. The inhibitors are ZD1839, LY294002, rapamycin, rottlerin and PD0325901. In the
perturbation matrix (top panel, columns=experiments, rows=perturbations), a blue box indicates the presence of a particular perturbation and white indicates absence.
For each treatment, we used western blots to detect levels of the proteins phospho-AKT, phospho-ERK, phospho-MEK, phospho-elF4E, phospho-c-RAF, phospho-
p70S6K and phospho pS6. We used a FACS-based assay to quantify apoptosis (measured as the ‘sub-G1 fraction,” Materials and methods) and G1 arrest (measured as

the G1 fraction). Here, representative flow histograms depicting cell cycle distribution in

MCF7 cultures treated with or without drug are shown (one experiment is shown,

see Supplementary information for all measurements). Evaluation of predictive power: After model construction based on these experiments, we see good agreement
between experimental observation of the response of the MCF7 cell line to the 21 different perturbations (top, columns=experiments, rows=readouts) and the model
prediction (bottom). Statistical assessment is in Supplementary Table 1. For each readout, we quantify the system’s response by the phenotypic index defined as log
relative response in treated versus untreated cells. For some drug combinations, the phenotypic readout increases as a result of perturbation (orange), for others it

decreases (blue).

(Etotai=Essq + AEstrucT, Materials and methods) to infer causal
connectivity diagrams. The inference is based on the assump-
tion that interactions in sufficiently simple models that fit
experimental observations, called ‘good” models, represent an
underlying causal relationship between system components
modeled by the system variables y;. Such a relationship can be
either an indirect regulatory effect or a direct physical
interaction that would be observable in vitro with purified
components. Using our Monte Carlo algorithm, we generated a
population of 450 good models from the MCF7 dual drug

© 2008 EMBO and Macmillan Publishers Limited

perturbation experiments. From these, we assessed the
statistical significance of the individual interactions both in
terms of a posterior probability (which is obtained directly
from the Monte Carlo process, see Materials and methods) and
a 90% confidence interval constructed by boot-strapping
simulations (Table I). We now discuss the connectivity of the
best model, i.e. the one with the smallest error (schema in
Figure 3, explicit equations in Materials and methods) relative
to the known biology of regulatory pathways in the MCF7
breast cancer cell line.
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Table I Statistical assessment of inferred interactions in MCF7 cells

Regulator Target Mean 90% CI Posterior probability (%) Comment
interaction
EGFR — MEK 0.78 (0.67,0.88) 99 0 Activation of MEK by RTK signaling
MEK — p-ERK 0.39 (0.26, 0.48) 99 0 MAPK signaling
PI3K - p-AKT 0.57 (0.47,0.69) 93 0 PI3K-dependent activation of AKT
PKC-6 — p-RAF 0.25 (0.17,0.32) 71 0 Prediction
mTOR - p-P70S6K 0.25 (0.20,0.29) 41 0 mTOR signaling pathway
p-ERK - p-elF4E 0.19 (0.14, 0.25) 38 0 Prediction
p-ERK - p-ERK 0.29 (0.22, 0.40) 35 0 Prediction
p-P70S6K - p-S6 0.54 (0.53, 0.56) 20 0 S6 kinase activates S6
Apoptosis — G1 arrest 0.37 (0.30, 0.44) 20 0 Prediction
G1 arrest — EGFR 0.39 (0.29, 0.49) 13 0 Low significance prediction
MEK - p-RAF 0.29 (0.16, 0.41) 13 0 Low significance prediction
p-elF4E - PI3K 0.05 (0.02, 0.08) 13 1 Low significance prediction
p-AKT — Apoptosis -0.39 (—0.43, —0.36) 0 77 AKT controls survival in MCF?7 cells
PKC-6 — G1 arrest —0.12 (—-0.20, —0.06) 0 41 Prediction
p-ERK — EGFR —0.28 (—0.42, —0.17) 0 36 MAPK negative feedback loop
G1 arrest — p-elF4E —0.33 (—-0.36, —0.30) 0 32 Predicted bi-stable regulation
p-elFAE — G1 arrest -0.19 (=0.25, —0.12) 0 20 Predicted bi-stable regulation
Apoptosis — p-P70S6K —0.39 (—0.42, —0.36) 0 19 Low significance prediction
IGF1IR — G1 arrest —0.06 (—0.14, —0.01) 0 16 Low significance prediction
G1 arrest — p-ERK —0.09 (-0.16, —0.01) 1 15 Low significance prediction
mTOR — Apoptosis —0.07 (—0.12, —0.02) 1 12 Low significance prediction
MEK — MEK —-0.13 (—0.21, —0.07) 0 8 Low significance prediction
EGFR — p-RAF —0.03 (—0.11, —0.04) 6 2 Low significance prediction

Statistical assessment of inferred molecular interactions as shown in Figure 3. Column ‘Mean w;’ shows the average interaction strength between the target and the
regulator, as obtained from 200 bootstrapping simulations (see Supplementary information). 90% confidence intervals (CI) for the interaction strength are shown. The
left column of posterior probabilities shows the fraction of models with a positive regulation in the Monte Carlo simulation. The right column shows the fraction of
models with negative regulation (for instance, inhibition of apoptosis by p-AKT was present in 77 % of models). The names p-P70S6K and p-p70S6K are synonymous.
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Figure 3  Use of MIMO models to infer regulatory interactions in breast cancer cells.
The interaction matrix w; from a set of good models can be used to infer
regulatory interactions (squares=inputs; circles=internal system vari-
ables and other observables). Positive w; means activation and
negative w; means inhibition of the target. Interestingly, some of the
interactions are well known in MCF7 cells (green arcs) and others
constitute predictions (orange arcs). See Table | for functional
comments on interactions. No underlying pathway model was
used—the network is a straightforward interpretation of the optimized
model parameters w; The EGFR—MEK—ERK and PI3K— AKT,
canonical pathways are identified. Also, note the detection of self-
inhibitory interactions in MEK/ERK signaling, identification of elF4E
and AKT as direct regulators of apoptosis and G1 arrest.

6 Molecular Systems Biology 2008

Interpretation of derived network structure

In comparing the inferred connectivity with mechanisms
known to occur in MCF7 cells (Table I), two caveats are
important. (1) The logical nodes in our models are defined
precisely as the perturbed and observed molecular species,
i.e. the targets of drug perturbation and the targets of specific
observed antibody reactions, and may not be exactly identical
to a single molecular species. For example, ‘EGFR’ refers to the
direct target(s) of activation by EGF and of inhibition by the
drug ZD1839, and these two are assumed to be identical. (2)
The models make no reference to unperturbed or unobserved
nodes, e.g. whereas p-AKT is in the network model, the
unphosphorylated AKT is not. With these caveats in mind, one
can use the models both for confirmation and prediction of
interactions. Of the 23 interactions in the best model, 14 had
a posterior probability in the range of 20-99% (Table I). Of
these, several statistically robust interactions clearly confirm
canonical pathway structures. (i) The MAPK cascade down-
stream of the EGF receptor is detected as a chain of interactions
between EGFR, MEK and ERK (Figure 3 and Table I). (ii) The
negative feedback regulation of MAPK signaling is captured as
negative interaction from ERK to EGFR, and as a moderately
significant self-inhibition of MEK (see Discussion). (iii) PI3K-
dependent signaling and the tendency for MCF7 cells to be
dependent on AKT activation for survival are detected as
interactions between PI3K, AKT and the apoptosis phenotype.
(iv) The model inference that apoptosis is controlled by p-AKT,
but not p-ERK, is in agreement with previous results in MCF7
cells (Simstein et al, 2003; DeFeo-Jones et al, 2005). (v) mTOR
downstream signaling is detected as interactions between
mTOR, p70S6K and ribosomal S6 protein (Mingo-Sion et al,
2005). The derivation of these expected interactions from a
small set of perturbation experiments, without prior pathway

© 2008 EMBO and Macmillan Publishers Limited



knowledge, underscores the non-trivial value of the model
building approach and provides some confidence in the
concrete predictions of logical regulatory interactions for
MCF7 cells (Table I), which are discussed below.

Discussion

In summary, our evaluation in breast cancer cells supports two
main conclusions. First, our approach to model construction
can be used to build reasonably accurate quantitative
predictors of pathway responses to combinatorial drug
perturbation in MCF?7 cells. Second, the quality of the deduced
interaction network suggests that well-parameterized non-
linear MIMO models are interpretable in terms of a network of
(direct and/or indirect) regulatory interactions. The inference
of network structure is surprisingly effective: the logical
network diagram in Figure 3 was derived de novo based on
only 21 experiments, using non-temporal data and only nine
experimental readouts and accurately reflects important
known regulatory interactions. This bodes well for future
applications in which the amount of readout data can easily be
an order of magnitude greater. In addition to yielding details of
intermolecular coupling, the method is sufficiently general to
allow predictive modeling of causal relationships between
biomolecular events and cellular phenotypic consequences,
such as growth or cell cycle arrest. The method lends itself to
multi-level modeling in the sense that molecular, mesoscopic
and macroscopic events can be modeled in a single framework
once appropriate state variables y; are defined.

Software and technical aspects of implementation

We aim to put these tools into the hands of both computational
and experimental biologists for widespread use and are
providing a software distribution of CoPIA in the supplement.
When applying the method in practice, three crucial technical
details are important. A user has to choose (i) which system
properties to represent by dynamical variables; (ii) a specific
form for the transfer function ¢; and (iii) protocol and
parameter values for the Monte Carlo simulation, or for a
similar exploration of solution space. The key parameters
include X, which enforces network sparsity to avoid over-
fitting, and T, the temperature parameter, which fine-tunes
the extent of non-optimal exploration of network space. In
Materials and methods, we provide guidelines for these
choices.

Complementarity to response surface models and
epistasis clustering

In a recent interesting work, Lehar et al (2007) used drug pairs
to perturb signaling pathways in cancer cells, and provided an
interpretation framework based on traditional pharmacologi-
cal models for two-drug response surfaces. Drug targets in the
PI3K and MAPK pathways were characterized by correlating
‘synergy profiles, demonstrating a link between network
connectivity and drug pair response. Such synergy profiles, in
turn, can be thought of as a generalization of the epistasis
matrix used by Segre et al (2005) as a basis for functional

© 2008 EMBO and Macmillan Publishers Limited
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clustering of genes. The approach proposed here is different in
the sense that it performs a global optimization that aims to
find a fully parameterized model for the entire system. Such
models, in turn, can be used for additional purposes such as
making predictions of system responses, or making connec-
tivity information explicit as pathway diagrams. Preliminary
data suggest that CoPIA models can be used to interpret or
predict response surface data, as a function of drug concentra-
tions, as an alternative to the approach of Lehdr et al, e.g. to
reduce experimental cost (S Nelander, unpublished data).
Finally, the differential equation CoPIA models can be easily
represented in standard systems biology formats, such as
BioModels (Le Novere et al, 2006) and be used with a number
of tools for model visualization, numerical simulation or
analytical characterization.

Relationship to neural models and Hopfield
networks

The nonlinear representation proposed here, or related neural
models, has been used in biological contexts such as
transcriptional network modeling (Marnellos and Mjolsness,
1998; D’haeseleer et al, 2000; Omholt et al, 2000; Vohradsky,
2001; Li et al, 2004; Bonneau et al, 2006; Hart et al, 2006), in
synthetic biology (Kim et al, 2005, 2006) and for problems
such as approximation of inorganic chemical reactions
(Shenvi et al, 2004), but not for general cellular processes
and/or drug perturbations. In addition, CoPIA models are
similar, but not identical, to Hopfield networks, a formalism
introduced to study computation in physical systems
(Hopfield, 1982). To further motivate this class of models in
representing biological systems, we propose an extended effort
to theoretically and empirically analyze how well biochemical
reactions can be approximated by neural functions, e.g.
reactions involved in DNA switches (Kim et al, 2005).

Confirmed and predicted regulatory interactions in
MCF7 cells

In our analysis, we detected self-inhibitory feedback loops
downstream of the EGF receptor. This is compatible with the
observation that receptor activation of MAPK signaling
frequently leads to rapid feedback inhibition, for instance by
induced expression of inhibitory proteins (such as Sprouty
(Kim and Bar-Sagi, 2004) or MAPK phosphatases), or
inhibition of RAF by direct phosphorylation (Dougherty
et al, 2005). In our experiments, we are not able to identify
the full complexity of the feedback loops, as we did not perturb
nodes such as ERK or RAF-1 or other proteins and used a short
EGF stimulation time. Additional predictions, such as (i) eIF4E
acting as a downstream effector of ERK, as well as (ii) PKC-3
counteracting the G1 arrest phenotype, are supported by
results in other cell types (Waskiewicz et al, 1997). Further-
more, the model predicts a mutually inhibitory interplay
between elF4E activation by phosphorylation and G1 arrest,
consistent with the established role of eIlF4E as a potent
oncogene and a master activator of a ‘regulon’ of cell cycle
activator genes (Culjkovic et al, 2006). However, the predicted
increase in p-RAF by PKC-d is paradoxical: the observed
phosphorylation sites on c-Raf (S289/5296/S301) are regarded
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as inhibitory, which seems inconsistent with the facts that
PKC-6 can activate MAPK signaling in a RAF-dependent way
(Jackson and Foster, 2004). Our prediction might suggest an
unknown direct effect mechanism, or an indirect effect that is
not captured in the present analysis. Finally, three less
interpretable and therefore interesting or potentially proble-
matic features of the network in Figure 3 are (i) the self-
activation of ERK; (ii) the activating arrow between
apoptosis and G1 arrest and, (iii) the fact that RAF is not
placed between EGFR and MEK, as in the usual representa-
tion of this pathway. Overall, a number of predictions can
be used to design experiments to validate or refute the model
predictions.

Future challenges

There are a number of future challenges and opportunities to
apply the method to important problems and to increase its
power. A key challenge is to use the method to extend known
pathways, by combining exploratory perturbation experi-
ments with the richness of biological knowledge in pathway
databases. This can be achieved by adding a priori known
nodes y; into the formalism and introducing a bias in the
network search that favors solutions compatible with prior
knowledge. To deal with off-target effects of perturbations and
incompletely known drug-target specificity, we propose a
variant algorithm in which drug-target couplings are para-
meters that are determined by optimization. Such a variant can
be used in target identification for interesting drugs, e.g.
compounds that have a desirable effect but for which the target
is not yet known. To maximize the information value of
experiments, we propose to develop algorithms for the
design of experiments, e.g. based on the change of outcomes
with respect to particular parameters (King et al, 2004;
Vatcheva et al, 2006). We see tremendous opportunities in
new types of experiments. To generate more comprehensive
and more informative perturbations of a larger set of
cellular components, one can use combinatorial RNA inter-
ference (Friedman and Perrimon, 2006; Sahin et al, 2007). To
generate readout richer by one or two orders of magnitude, one
can use mass spectrometry of protein and phospho-protein
levels (Mann et al, 2002). The CoPIA method can be general-
ized to go beyond the steady-state approximation and
explicitly model the time behavior of system components by
minimizing the error function for a set of time series
experiments.

From models to therapies

The proposed combinatorial perturbation approach to cell
biology, CoPIA, presents a well-specified experimental-com-
putational procedure to construct predictive models for
perturbation responses in malignant cells. We suggest use of
such models to optimize therapeutic protocols, especially by
designing interventions using a combination of targeted
compounds administered in an optimal time sequence. Our
method constitutes a concrete step toward the active develop-
ment of network-oriented pharmacology.

8 Molecular Systems Biology 2008

Materials and methods

Computational methods
Phenotype prediction

The nonlinear MIMO model for combinatorial perturbation in cellular
systems is introduced in the Results section (equation (2)). When this
system is propagated through time, it will generally converge to a
stable, fixed point (Pineda, 1987). We interpret this fixed point as the
phenotypic response to the perturbation u. To calculate the fixed point
given in a model, we used standard numerical integration methods
(odel5s (Mathworks Inc.) and DLSODE (Hindmarsh, 1993)). As the
class of models studied here can in principle have more than one
solution to the steady-state equation (Smits et al, 2006), we used the
convention—for practical purposes—to start each predictive simula-
tion from the unperturbed, wild-type steady state y=0.

Overview of model fitting algorithm

The procedure used to find parameter values (for the o;’s, B;’s and
the wy’s) from experimental data is outlined below. As an overall
approach, we minimize a global error function that combines the
requirements of data fit and simplicity. The error function is defined as

Eotal = Essq + MEstruct (3)

where Egsq is the residual sum of squares error, which measures the
difference between the model’s predicted values and the correspond-
ing observational values for the subset of variables that are observed.
The term Estrycr is @ penalty term that measures the complexity of the
network and A is a tuning parameter that needs to be chosen; for =0
no emphasis is put on the model structure and increasingly sparse
(uncomplicated) models are obtained for increasing values of L. We
used the [°-norm of the regulatory matrix w to define Egrgycras

Estruct = Z |wyl° (4)
i

where 0°=0. The ’-norm is a common approach to enforce sparse
solutions in many machine-learning applications (Weston et al, 2002). In
principle, other norms can be used, such as the ' norm (Yeung et al, 2002).

To minimize E., we made combined use of a Monte Carlo
stochastic search algorithm (to search for the network structure) and
an efficient gradient descent algorithm described by Pineda (1987) (to
set the parameters). In an outer loop of the algorithm, the Monte Carlo
process gradually updates the model structure (the set of non-zeros in
w). In an inner loop, we apply Pineda’s algorithm to fit parameters
(o’s, B7’s and non-zero w;;’s). The output of the algorithm is a set of
complete ODE models, for example

dIGHR — ¢(—A12) — IGFIR
PPBK — 1.14¢(40.05p-eIF4E — LY294002) — 0.84PI3K
dmOR — 1.04¢(—Rapamycin) — 0.96mTOR
dPKCdelta — 1 05¢y(—Rottlerin) — 0.95PKCdelta
AMEK — 0.63¢(—0.21MEK + 0.76EGFR — PD901) — 1.27MEK
dECIR — 1.25¢(—0.34p-ERK1/2 + 0.37Glarrest — EGF) — 0.66EGFR
dp-Engl/Z- = 1.13¢(+0.41MEK + 0.32p-ERK1/2 — 0.13Glarrest) — 0.86p-ERK1/2
9AKT — (+0.55PI3K)-p-AKT
470K _ 1.12¢)(+0.28mTOR — 0.41Apoptosis) — 0.87p-P70S6K
detFIE — 7.07¢(+0.21p-ERK1/2 — 0.33Glarrest) — 0.92p-elF4E
doeRal _ 1.08¢(+0.29PKCdelta + 0.3MEK — 0.07EGFR) — 0.91p-c-Raf
9056 — 1.13¢(+0.52p-P70S6K) — 0.85p-S6
dClarest — 7 11¢(—0.05IGFIR — 0.14PKCdelta

—0.24p-elF4E + 0.4Apoptosis) — 0.87Glarrest
—d"l’fﬁ“’s‘s = 1.09¢(—0.06mTOR — 0.42p-AKT) — 0.91Apoptosis
where ¢(x) = tanh(2x)

(5)
In the following two sections, we describe the gradient descent

algorithm and the Monte Carlo stochastic search algorithm more
thoroughly.
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Inner loop: minimization of Essq using a gradient

descent algorithm

Assume a MIMO system with N dynamical variables yq,y, ..., Vn»
of which a subset Q of the variables can be observed experimentally.
A perturbation experiment is described by the pair (u, Y),
where u=(uy, ..., uy) is the perturbation treatment and Y={Y;|ieQ}
is the experimental observation. As a mathematical model for
the relationship between the perturbation u and the experimentally
observed response Y, we use the dynamical system described in
the Results section (equation (2)). Let Y denote the steady state
of this dynamical system under the perturbation u. We then define
the sum of squares error for a single experiment as Egsq =
Yo (Yi— Vo).

We consider a fixed network structure, where some wy;’s are fixed to
zero. To describe the structure, we define a matrix U such that w;; can
adopt a non-zero value if Uy=1 and wj; is zero if U;=0.

Given N, (u, Y) and U, we want to find parameters «;’s, ;’s and the
non-zero wy’s that minimize the error Esgq. For the special case where
A=0, a=1, B=1, Pineda (1987) described a gradient descent procedure,
based on solving a set of differential equations in which the weights w;
are updated following the gradient descent rule

dwij . _T]dESSQ

dr - dwij (6)

Here, 1 is a (small) number that sets the convergence speed, and t is a
‘pseudo-time’ that increases as the fitting procedure progresses. We
use the update equations derived in D’haeseleer et al (2000) to extend
to an arbitrary o and B. The computation formula to minimize Essq
thus becomes:

&
=

(steady state Y)

d
(_Trli =n¢'; (ZII;]:I WikYk + H:‘)Zzy, — Uyjw; (w update)
% = —nzi (o update)
dp

G = nzigy (Z/I\il Wij)’z) (B update)

(7)

In these equations, z is an error propagation variable introduced for
computational purposes (Pineda, 1987). To fit the model for a single
(u, Y) pair, we integrated these equations (DLSODE or odel5s) with
initial value 0 for w and 1 for o and B. The parameters were not
subjected to constraints such as lower and upper bounds. Solutions for
different stimulus-response pairs were combined using online
learning with momentum described in Duda et al (2000).

Outer loop: minimization of Ergra. With an I-zero

penalty using stochastic search

We used a Markov Chain Monte Carlo approach (Ewens and
Grant, 2005) to minimize Etorar, and hence find the optimal model
defined by the network structure U and parameter values for o, f and
non-zero w’s.

In the algorithm, a set of models are maintained and a particular
model survives to the next iteration with probability proportional to
e~ Fwoul/T (the Boltzmann factor, where T denotes the temperature of the
search). Hence, low-error models are more likely to be propagated to
next iteration. The temperature is typically high in the beginning of the
search and low in the end.

The algorithm is outlined as follows:

1. Initialize with Ugyrreni=Usari- Here, subindexes of U (Ucyrrents Ustarts
U;, U,,...) refer to different realizations of the U matrix
(as opposed to U matrix elements. As Ug,,, We use a N x N matrix
of zeros.

2. Generate a set S={U, ..., U} of structures that are variations
of Uecyrrent. For simplicity, we consider every structure that differs
from Ucurrent by one edge.

3. Estimate the parameters for each structure U, ..., U, using the
variant of Pineda’s algorithm presented above. Record the
corresponding sum-of-square errors Ey, ..., E.
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4. Calculate the total error for each topology as E{/=E;+ L) Uj.

5. Use a decision rule R to select one of the alternate topologies,
Uselecled. _ _

6. Update the current topology, Ucyrrent < Uselected> POtentially update
T, and repeat from step 2.

As decision rule R, we randomly select topology U; with probability
BT
Under certain assumptions (the number of neighbors k is the same for
every topology U, neighbor is a mutual relationship, and all possible
topologies can be reached in a finite number of steps), the above
Markov chain will have a stationary probability distribution in which
the probability for a certain topology is proportional to its Boltzmann

factor Ewens and Grant (2005). For a sufficiently low temperature T,
the algorithm will converge to a probability optimum/error minimum.

P, (8)

Bootstrapping confidence intervals

For a given model structure U, we used re-sampling of residuals to
generate boot-strapped confidence intervals for the model parameters.
First, the model was fitted using structure U and the original data, and
residuals were calculated as the best model fit minus the original data.
Atotal of 200 ‘new’ data sets was then constructed by adding randomly
drawn residuals to each measurement (using residuals for the
corresponding experimental readout, i.e. p-MEK residuals were added
to p-MEK values and so on). For each such re-sampled data set, a
model was fitted using the structure U. Subsequently, confidence
intervals for each coupling parameter w;; were calculated as percentiles
5-95% across the 200 data sets.

Data preprocessing and parameter choices
The relationship between the model variable y;, a corresponding
experimental observation Y; and an experimental reference point Y.
or Ynax is defined by a mapping function. In our evaluation in breast
cancer cells, we used the log relative change defined as

vi =108, (Yi/Yrer) )

The transfer functions ¢; should be chosen such that the interval
spanned by the experimental data corresponds to the target domain
of the function. We found it useful to standardize data to the interval
[—1, + 1] and then to choose the sigmoid function accordingly. As the
reference (‘wild-type’) value Y., we used the untreated controls. As
only one concentration level was used for every drug (chosen to be
around the EDy), we represented perturbation as u;=1 if the drug was
added, and u;=0 otherwise. We used ¢;=tanh(y;) as the sigmoid
(suitable as it maps to the interval [—1, + 1], another function with
this target domain, ¢p,=2/mtan"'(cy;/2), gave very similar results).

Experimental methods

Cell culture and reagents

MCF7 cells were obtained from American Type Culture Collection;
maintained in 1:1 mixture of DME:F12 media supplemented with
100 U/ml penicillin, 100 g/ml streptomycin, 4 mM glutamine and 10%
heat-inactivated fetal bovine serum and incubated at 37°C in 5% CO,.
The final concentrations for inhibitors used for perturbation experi-
ments were 1 uM ZD1839 (AstraZeneca), 10 uM LY294002 (Calbio-
chem), 50nM PD0325901 (Pfizer), 2uM rottlerin (EMD), 10nM
rapamycin and 1.5 pg/ml antibody A12 (ImClone Systems).

Immunoblotting

MCF7 cells were grown in 100 mm dishes, and starved for 20 h in PBS.
They were then treated with indicated concentrations of inhibitors
(details see Cell culture and reagents) or vehicle (DMSO) for 1h,
followed by adding EGF into the media (final EGF concentration was
100 ng/ml). After EGF stimulation for 5 or 30 min in the presence of
drugs or DMSO, western blots were performed by harvesting MCF7
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cellular lysates in 1% Triton lysis buffer (50 mM HEPES, pH 7.4, 1%
Triton X-100, 150 mM NacCl, 1.5 mM MgCl,, 1 mM EGTA, 1 mM EDTA,
100mM NaF, 10mM sodium pyrophosphate, 1 mM vanadate, 1 x
protease cocktail IT (Calbiochem) and 10% glycerol), separating 40 pg
of each lysate by SDS-PAGE, transferring to PVDF membrane and
immunoblotting using specific primary and secondary antibodies and
chemoluminescence visualization on Kodak or HyBlotCL films.
Antibodies for phospho-Akt-S473, phospho-ERK-T202/Y204, phos-
pho-MEK-S217/S221, phospho-elF4E-S209, phospho-c-RAF-S289/
$296/S301, phospho-p70S6K-S371 and phospho-pS6-5235/S236 were
from Cell Signaling. Films were scanned by an microTEK scanner at
600 d.p.i. in gray scale. Bands were selected and quantified by
FUJIFILM Multi Gauge V3.0 software. Each membrane was normal-
ized to internal controls (with or without 100ng/ml EGF). The
membranes were stripped and reprobed with anti-beta actin (Sigma
no. A5441) to confirm equal protein loading.

Flow cytometry analysis of cell cycle and apoptosis
MCEF?7 cells were seeded in six-well plates (200 000 cells per well) and
grown for 20 h in 10% FBS/DME:F12. Cells were then starved for 20 h
in PBS, and then treated with indicated concentrations of inhibitors
(details see Cell culture and reagents) or DMSO for 1h, followed by
adding EGF into the media (final EGF concentration was 100 ng/ml).
After EGF stimulation for 24, 48 or 72h in the presence of drugs or
DMSO, cells were harvested by trypsinization, including both
suspended and adherent fractions, and washed in cold PBS. Cell
nuclei were prepared by the method described by Nusse et al and cell
cycle distribution was determined by flow cytometric analysis of DNA
content (FACS) using red fluorescence of 488 nm excited ethidium
bromide-stained nuclei. The percentage of cells in the G1 phase (cell
cycle arrest) and sub-G1 fraction (apoptosis) was recorded.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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