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Abstract: The nematophagous and entomogenous fungi are natural enemies of nematodes and insects
and have been utilized by humans to control agricultural and forestry pests. Some of these fungi have
been or are being developed as biological control agents in China and worldwide. Several important
nematophagous and entomogenous fungi, including nematode-trapping fungi (Arthrobotrys oligospora
and Drechslerella stenobrocha), nematode endoparasite (Hirsutella minnesotensis), insect pathogens
(Beauveria bassiana and Metarhizium spp.) and Chinese medicinal fungi (Ophiocordyceps sinensis and
Cordyceps militaris), have been genome sequenced and extensively analyzed in China. The biology,
evolution, and pharmaceutical application of these fungi and their interacting with host nematodes
and insects revealed by genomes, comparing genomes coupled with transcriptomes are summarized
and reviewed in this paper.
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1. Introduction

Nematophagous fungi infect their hosts using traps and other devices such as adhesive conidia
and parasitic hyphae tips [1,2]. Entomogenous fungi are associated with insects, mainly as pathogens
or parasites [3]. Both nematophagous and entomogenous fungi are important biocontrol resources [1,3].
Cordyceps spp. are ancient resources in Chinese medicine [4]. Biological control is an economically
and ecologically friendly approach for controlling nematode and insect pests that have a negative
economic impact in agriculture [5]. Nematophagous and entomopathogenic fungi have been used
with various strategies for almost a century and, for instance, mass production of entomopathogenic
fungi were utilized for insect-pest control in the field while nematophagous fungi were released to the
soil for nematode control [6,7]. There is also a long history of utilizing these fungi for the control of
agricultural and forestry pests in China [8].

Among these fungi, Arthrobotrys oligospora (adhesive network traps) and Drechslerella stenobrocha
(constricting ring trap) are well-known nematode trapping fungi in the Orbiliales (Orbiliomycetes
and Ascomycota) [9–11]; Hirsutella minnesotensis, as a nematode endoparasite, responds to the natural
suppressiveness of soybean cyst nematode [12–14]; Ophiocordyceps sinensis, a famous fungus used
as a traditional Chinese medicine, belongs to Ophiocordycipitaceae, Hypocreales (Sordariomycetes,
Ascomycota) [15]; Cordyceps militaris as medicinal fungus and Beauveria bassiana as biocontrol agent
of insect are representatives of Cordycipitaceae, Hypocreales (Sordariomycetes, Ascomycota) [16,17];
and Metarhizium spp. in Clavicipitaceae, Hypocreales (Sordariomycetes, Ascomycota) are important
entomopathogens [18]. The biology, evolution, interaction with hosts, biocontrol application for pests,
and medicinal use of these fungi have been extensively studied by Chinese mycologists [19,20].
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Recently, development of next generation sequencing technology allows the easy obtention of high
quality eukaryotic genome sequences [21,22]. A number of nematophagous and entomogenous fungi
have been genome sequenced. Genomic surveys have provided new strategies to answer biological
issues of those fungi and their sophisticated mechanisms for interacting with their invertebrate hosts.
A number of nematophagous and entomogenous fungi extensively studied in China have been genome
sequenced by Chinese mycologists [9,10,13,15–18]. The approaches obtained from analysis of genomes,
and comparing genomes and transcriptomes of these fungi, provide comprehensive understanding of
their biology and interaction with invertebrate hosts, and furthermore, enhance their application in
pest control and medicine utilization.

2. Nematophagous Fungi

Nematophagous fungi can use specialized traps to capture nematodes, conidia to adhere to
nematodes, hyphae tips to parasitize nematode females and eggs, or produce toxins to attack
nematodes [2]. Nematode-trapping fungi and nematode endoparasitic fungi are two important groups
of nematophagous fungi. Predation is one of the fungal life-strategies to destroy nematodes [1,23]
by capturing nematodes with sophisticated trapping structures, including constricting rings and
several other types of adhesive traps (sessile adhesive knobs, stalked adhesive knobs, adhesive nets,
adhesive columns, and non-constricting rings) (Figure 1A–D) [24,25]. The traps are usually produced
from hyphae and induced by nematodes, peptides, and nematode extracts [26,27]. Most of the
nematode-trapping fungi belong to Orbiliales (Ascomycota). Among these fungi, Arthrobotrys oligospora
forming adhesive nets was first genome sequenced to understand the molecular basis of the
mechanisms for capturing nematodes (Table 1) [28,29]. A proposed model containing multiple fungal
signal transduction pathways associated with diverse cellular processes such as energy metabolism,
biosynthesis of the cell wall and adhesive proteins, cell division, glycerol accumulation, and peroxisome
biogenesis [29]. The following sequenced genome by Chinese mycologists was Drechslerella stenobrocha,
which forms constricting rings to actively capture nematodes. Comparative genomic analysis provided
support for the hypothesis that nematode trapping fungi evolved from saprophytic fungi in a high
carbon and low nitrogen environment and revealed the transition between saprophagy and predation
for further understanding of the interaction between nematode-trapping fungi and nematodes [30].
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Figure 1. Morphology of traps and adhesive conidia produced by nematophagous fungi: (A) Adhesive
nets (Arthrobotrys oligospora); (B) Constricting rings (Drechslerella stenobrocha); (C) Adhesive columns
(Gamsylella cionopaga); (D) Adhesive knobs (Gamsylella robusta); and (E, F) Adhesive conidia
(Hirsutella minnesotensis). Bars = 10 µm.
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Table 1. Available genomic sequences nematophagous fungi in China.

Features
Nematode-Trapping Fungi Nematode

Endoparasitic Fungi Entomogenous Fungi

Drechslerella
stenobrocha

Arthrobotrys
oligospora

Hirsutella
minnesotensis

Metarhizium
robertsii

Metarhizium
acridum

Beauveria
bassiana

Cordyceps
militaris

Ophiocordyceps
sinensis

Assembled size (Mb) 29.02 40.02 51.4 39.04 38.05 33.7 32.2 ~120

Protein-coding genes 7781 11,479 12,702 10,582 9849 10,366 9684 6792

Coverage (fold) 80ˆ - 128 100 107 76.6 147 241

Number of scaffolds 142 - 967 174 241 242 147 -

Scaffold N50 (kb) 434.4 - 382.4 1960 330 730 4550 -

G + C content (%) 52.5 45.2 52.1 51.49 49.91 51.5 51.4 46.1

Simple repeat rate (%) 0.92 - 1.33 0.98 1.52 2.03 3.04 37.98

TEs (%) - - 34.67 - - - - -

Gene density (genes per Mb) 268 271 247.1 271.1 258.8 308 257 87

Exons per gene 3.5 3.3 2.5 2.8 2.7 2.7 3.0 2.6

tRNA genes 82 149 145 141 122 113 136 -

References Liu et al.
2014 [10]

Yang et al.
2011 [9]

Lai et al.
2014 [13]

Gao et al.
2011 [18]

Gao et al.
2011 [18]

Xiao et al.
2012 [17]

Zheng et al.
2011 [12]

Hu et al.
2013 [15]
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Unlike nematode-trapping fungi, Hirsutella spp. are representatives of nematode endoparasitic
fungi in Hypocreales (Ascomycota). Hirsutella minnesotensis and Hirsutella rhossiliensis, as parasites on
cyst nematodes, can suppress the population of soybean cyst nematodes (SCN, Heterodera glycines)
and are widely distributed in the northeast of China and Minnesota in the United States [12,29].
H. minnesotensis is the first genome sequenced nematode endoparasitic fungus [13]. It can parasitize
nematodes by means of adhesive spores (Figure 1E,F). Genome of H. minnesotensis is different from
those of nematode-trapping fungi but similar to those of entomopathogenic fungi. It has fewer genes
encoding lectins for adhesion and glycoside hydrolases (GHs) for cellulose degradation, but more
genes for protein degradation, signal transduction, and secondary metabolism [13].

2.1. Different Origin of Nematode-Trapping and Endoparasitic Fungi

As a special living strategy of fungi, the origin and development of predation are an essential and
attractive topic in evolutionary biology of fungi. It was deduced that predation was evolved to obtain
the nitrogen from nematode in the environments that are rich in carbon but poor in nitrogen [30].
Direct capture of nitrogen from small animals would provide predatory fungi with a competitive
advantage over strictly saprophytic fungi [31]. A previous study based on the multigene phylogeny
estimated that the lineage of nematode-trapping fungi in Ascomycota diverged at 246 million years
ago (Mya), five million years after the Permian–Triassic extinction (251.4 Mya) [30,32]. Other clades
of fungi that form adhesive traps diverged around 200 Mya, coinciding with the Triassic–Jurassic
extinction (201.4 Mya) [30]. However, still little is known about the origin of predatory fungi for the
lack of strong direct evidence.

Currently, available genomic sequences of nematode-trapping fungi have made it possible for
the evolutionary study at genomic level. Phylogenomic relationships constructed via the genomic
sequences confirmed that both D. stenobrocha and A. oligospora are affiliated with the family Orbiliaceae
(Figure 2) [9,10]. The analysis indicated that the nematode-trapping fungi were efficient saprobes.
The identified large numbers of enzymes involved in the process of saprophytic degradation suggested
that nematode-trapping fungi are more similar to fungal saprobes rather than animal pathogens or
plant pathogens [10]. Among these enzymes, the largest number of proteins are carbohydrate binding
module 1 (CBM1)-containing cellulases, previously found to be associated with cellulose degradation
in the typical rot fungus (Phanerochaete chrysosporium) and the coprophilic Podospora anserina [33,34].
Thus, nematode-trapping fungi are suggested to be efficient saprobes and this provides more evidence
for the hypothesis that nematode-trapping fungi might have originated in an environment rich in
carbon resources but lacking nitrogen.

As a nematode endoparasite in the order Hypocreales, phylogenomic analysis indicated that
H. minnesotensis is clustered to the caterpillar fungus O. sinensis, an insect pathogen. H. minnesotensis
diverged from O. sinensis around 23.9–33.9 Mya and from Tolypocladium inflatum around 29.7–39.7 Mya
(Figure 2) [13]. This suggests that the speciation of nematode endoparasites is independent with the
mass extinction but more likely originated from entomopathogens.

2.2. Lectins and Other Adhesive Proteins Involved in Adhering to Nematode

One of the important mechanisms of fungi recognizing their nematode host is mediated by
lectins. The traps of A. oligospora that are challenged by GalNAc (N-acetylgalactosamine) lost the
ability to capture nematodes [35]. Other monosaccharaides such as glucose and mannose can also
inhibit the capacity of the trapping-fungi to recognize nematodes [36]. However, the knocked out
lectin-coding gene in A. oligospora did not affect the trapping ability or vegetative growth [37].
Moreover, lectins were not detected to be differentially expressed during nematode trapping [9].
Thus, the genomic and transcriptomic data did not support the previous hypothesis of lectin-mediated
nematode recognition [9].
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lifestyle character states as follows: red, nematophagous fungi; green, entomopathogenic fungi; black,
other fungi.

The lectin-coding genes identified in the genomes of nematode-trapping fungi suggest that lectins
might play a more important role in the adhesive networks than in the constricting rings. More putative
lectin-coding genes were identified in the genome of A. oligospora than in D. stenobrocha, especially in the
families of fucose-specific and H-type lectins [9,10]. It is also possible that the recognition of nematodes
is executed by multiple lectin-encoding genes, and this would explain why the deleted lectin gene
did not affect the nematode capture capacity of the fungi. Compared with trapping fungi, H-type
and fucose-specific lectins are absent in the H. minnesotensis genome and this would indicate that
nematode endoparasitic fungus has evolved a different mechanism to adhere to the nematode hosts [13].
Furthermore, expression of lectin-encoding genes of H. minnesotensis is significantly up-regulated
during the infection to nematode. Based on the genomic data, pretreating the nematodes with different
lectins and their mixtures can also decrease the adhesion rate of H. minnesotensis [13]. Coupled with
previous studies, it is still possible that lectin is important to mediate the nematode recognition
by fungi.

In addition to the lectins, other adhesive proteins were also suggested to contribute to the adhesion
of fungi to nematodes. For instance, numerous CFEM-containing proteins have been identified in the
both nematode-trapping and endoparasitic fungal genomes [9,10,13]. The function of CFEM-containing
adhesive proteins was confirmed by the transcriptomic analysis of H. minnesotensis and the qPCR
analysis of A. oligospora during nematode infection [9,13]. Other supposedly adhesive proteins such as
GLEYA-containing proteins have also been found in the nematode-trapping fungi [9,10]. However,
most of the adhesive proteins are still functionally unknown and should be investigated in detail in
the future.

2.3. Formation of Traps and Infection Pegs

Traps and infection pegs are the only specialized hyphae by which the nematode-trapping
and endoparasitic fungi infect and penetrate nematode cuticle. The processes to form these
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sophisticated hyphal structures are very complicated and poorly understood. Comparing the
expressing patterns between the saprophytic and predatory lifestyles based on the proteomic analysis
of A. oligospora predicted from its genome indicated that multiple fungal pathways are proposed
to be involved in the trap formation of A. oligospora, including mitogen activated protein kinase
(MAPK) pathway, cell division, energy metabolism, biosynthesis of the cell wall and adhesive
proteins, glycerol accumulation, and peroxisome biogenesis [9]. Similar results are found from
the transcriptomic analysis of D. stenobrocha during the trap formation and infection of nematodes.
In addition, Zn(2)-C6 type transcription factors might also be associated with signal transduction [10].
Though the formation of infection pegs of H. minnesotensis is quite different from the traps of
nematode-trapping fungi, the protein kinase C (PKC) signal transduction pathway is shared by
both predatory fungi and endoparasites. Meanwhile, cyclic AMP-protein kinase A pathway and
STM1-like G protein-coupled receptor (GPCR) responsible for filamentation are also thought to be
involved in nematode infection [13].

2.4. Virulence Factors Associated with Nematode Infection

2.4.1. Extracellular Enzymes

Penetrating and digesting the nematode cuticles play key roles during the fungal infection and the
consumption of nematodes. Enzymes such as proteases, collagenases, and chitinases are the virulence
factors of nematophagous fungi [9]. Serine proteases are the extensively studied enzymes and, more
than 20 of them have been cloned or purified from the nematophagous fungi and are considered as
virulent factors [20,38,39]. In addition, the improved pathogenicity by overexpressing serine protease
also confirms its role in virulence function [40].

Genome sequencing has revealed a large number of proteases associated with the degradation
of the nematode cuticle. Subtilisins, as one of the most important families belonging to serine
proteases, namely S08, are abundant in the nematophagous fungi and totally 43 in A. oligospora,
18 in D. stenobrocha, and 21 in H. minnesotensis have been annotated [9,10,13]. However, only two
subtilisin-coding genes in A. oligospora and one in D. stenobrocha were found up-regulated when
they were challenged by nematode or nematode extracts (NE) [9,10]. Although five subtilisins were
up-regulated that might be associated with infection processes of H. minnesotensis, the function of
other subtilisins predicted in the genomes of nematophagous fungi is still unknown [13]. Besides the
subtilisins, other proteases are highly expressed during the nematode infection, such as protease
S28 (DRE_00914) and S33 (DRE_00834) in D. stenobrocha as well as endopeptidases (M4 and M43)
and exopeptidases (M14 and M28) in H. minnesotensis [10,13]. This indicates that the degradation of
nematode cuticles is not only associated with subtilisins but also a series of other secreted enzymes.
Further investigation on these secreted enzymes should be performed to fully understand the molecular
mechanisms of fungi infecting nematodes and will provide new insight to improve the pathogenicity
of nematophagous fungi.

2.4.2. Secondary Metabolites

It has been long known that most of the compounds against nematodes are produced by
toxin-producing fungi that can use them to immobilize nematodes prior to infection [41]. Although the
secondary metabolism was investigated more than thirty year ago in the nematode-trapping fungi,
only 10–19 genes involved in secondary metabolisms are found in trapping fungi [42,43]. Genomics
provides a powerful tool for the study of secondary metabolites: consequently 94 secondary metabolite
gene clusters and 101 core genes have been recently identified in the H. minnesotensis genome while
only one to four core genes were found in the trapping fungi [13]. The transcriptomic profiling of
H. minnesotensis has indicated that the genes encoding secondary metabolites are up-regulated before
and during nematode penetration, and mycelial growth for consuming the nematode body, which
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suggested those compounds could be virulent factors [13]. Further investigation on the secondary
metabolites of H. minnesotensis found that some compounds have nematicidal activity [44].

3. Entomopathogenic Fungi

Entomopathogenic fungi are natural enemies to manage insect pests in the ecosystems and more
than 700 species have been discovered so far [45]. Some of these fungi have been developed as biological
control agents and widely used to control insect pests [46]. Metarhizium robertsii and B. bassiana are
two well-known biocontrol agents that have been approved by the US Environmental Protection
Agency (EPA). Both species are the members of Hypocreales (Ascomycota), an order including a large
number of pathogenic fungi of insects, plants, and other fungi, as well as medicinal fungi [47,48].
The biology of those two fungi and their interaction with host insects have been extensively studied
and most of the studies focus on the pathogenic processes. Genes involved in regulating expression of
virulent factors, the formation of infection structures, and adhesive proteins have been functionally
identified in Metarhizium spp. [49–51]. Similarly, virulence-related genes have been also characterized
in B. bassiana, such as MAP kinases and the neuronal calcium sensor contributing to virulence [52–54].
Likewise, the secondary metabolites with various biological activities such as insecticidal, antibiotic,
and anti-tumor have also been investigated in these two fungi [55–58]. Therefore, M. robertsii (formerly
known as M. anisopliae var. anisopliae), and M. acridum are distributed worldwide and extensively
studied entomopathogenic fungi. Cordyceps spp. have been used as traditional Chinese medicine for
centuries and the fungal products are a big industry in China. A number of medicinal and health
products have been developed and extensively commercialized from natural C. militaris, O. sinensis
(anamorph: Hirsutella sinensis), and other Cordyceps spp. [4]. The market demand of O. sinensis is
huge while the resource in nature is limited and the artificial cultivation of the fruit body has not been
reported. Some ghost moths have been successfully raised in large scale while the infection rate of the
ghost moths by H. sinensis was quite low and this might due to the poor understanding of its infective
mechanisms [4]. These fungal species have been genome sequenced by Chinese mycologists [15–18].
Several biological issues have been comprehensively understood from the genome data.

3.1. Divergence and Origin of Insect Pathogens

Hypocreales is one of the most important orders in Ascomycota and its members include grass
endophytes as well as parasites of plants, insects, and fungi [59]. The entomopathogenic fungi with
genome sequenced mainly belong to this order (Figure 2) including C. militaris and B. bassiana in
Cordycipitaceae, Metarhizium spp. in Clavicepitaceae, and O. sinensis in Ophiocordycipitaceae [47].
Hypocrealean species exhibit a broad range of nutritional modes based on plants, animals, and other
fungi, while the Hypocreales order is suggested to origin from the plant-based nutritional mode [59].
C. militaris diverged 166–211 Mya, closely related to the wheat pathogen Fusarium graminearum
(diverged 200–260 Mya) [60]. Compared with C. militaris, the divergence of Metarhizium spp.
(33–43 Mya) is much later while O. sinensis (diverged 23.9–33.9 Mya) is closely related to
nematophagous H. minnesotensis [13,15,18]. Thus, O. sinensis was hypothesized to origin from
C. militaris and H. minnesotensis might evolve from entomopathogens [15].

Metarhizium spp. are closely related with grass endophytes Epichlöe spp. [61] and are most
abundant in grass root soils [62,63], indicating that the habitat of some Metarhizium spp. is not only
insects but also the rhizosphere. The adhesive proteins, MAD1 and MAD2, as well as other genes
involved in colonizing the root rhizosphere are presented in Metarhizium spp. [50,64]. Almost all
families of the enzymes involved in plant cell wall degradation are presented in the genomes of
Metarhizium, even some of them are absent in the plant colonizer Trichoderma reesei [18,65]. By screening
the genes against the pathogen–host interaction base (PHI) among Metarhizium and plant-associated
F. graminearum and Magnaporthe oryzae, PHI genes related with plant host are identified to be highly
homologous shared by these fungi living on different strategies, whereas fewer Metarhizium orthologs
were shared with animal pathogen Candida albicans [18]. Although Metarhizium spp. are well recognized



J. Fungi 2016, 2, 9 8 of 14

as insect pathogens, they are more closely related to plant pathogens than to animal pathogens,
suggesting their origin from plant-associated fungi. Metarhizium spp. have been found to be more
abundant in agricultural than in forestry fields and the application of M. robertsii has shown beneficial
effects on plants [66,67].

3.2. Host Recognition and Signal Transduction

Recognition and adaption to nutrient availability of hosts are mediated by signal transduction.
Pth11-like GPCR (PHI-base acc: 404) was identified in Magnaporthe to mediate cell responses to
inductive cues [68]. By comparing the transcriptional responses to hosts, it was found as a key signal
receptor widely shared by the entomopahogens and up-regulated in M. robertsii, M. acridum, and
B. bassiana during the host recognition stage [17,18]. However, it was not detected to be differentially
expressed during the infection to nematode in H. minnesotensis [13]. The PKC belonging to the MAPK
pathway signal transduction pathway is strongly activated during the infection of both nematodes and
insects [9,10,13,17,18]. Moreover, STM1-like GPCR was characterized to adapt to nitrogen starvation in
fission yeast Schizosaccharomyces pombe [69]. The STM1-like GPCRs were up-regulated during the whole
pathogenic processes of H. minnesotensis as well as during the infection of Metarhizium spp. [9,10].
Thus, the signal transductions during the infection of nematode and insect are suggested to be
analogous whereas differ in the recognition processes.

3.3. Secreted Enzymes Involved in Penetration of Insect Cuticles

To penetrate the protein-chitin rich insect cuticles and utilize host tissues as nutritional resources,
entomopathogenic fungi were characterized to secrete large numbers of degradation enzymes as
virulence factors. Representatively, M. robertsii and M. acridum have more genes encoding secreted
proteases than any other sequenced fungus (93) with the number of 132 and 104, respectively [18].
The number of glycoside hydrolases (GH) possessed by M. robertsii (156) and M. acridum (140) is
close to the average for plant pathogenic fungi (150) [18]. Similarly, totally 145 GHs are produced by
B. bassiana [17]. However, O. sinensis has only 66 GHs and misses the enzymes devoted to degradation
of plant materials [15].

Though the entomopathogenic fungi of Cordycipitaceae and Clavicipitaceae diverge into quite
different lineages, similar enzymes are shared in these fungi suggesting that they all have potential
targets in insect hosts [16,17]. Consistent with the previously characterized enzymes, numerous
subtilisins, aspartyl proteases, chitinases, and lipases have also been identified as key enzymes
responsible for the degradation of protein-chitin rich insect exoskeleton [18]. Chitin is a major
component of insect cuticle that is more crucial for entomopathogens to penetrate [70]. Among the
putative GHs, GH18 chitinases are predicted to be involved in the digestion of insect cuticle chitin [71].
The necessity to degrade chitin is reflected in the larger number of chitinases represented in Metarhizium
(30 in M. robertsii and 21 in M. acridum), B. bassiana (20), and C. militaris (20) than in the compared
plant pathogens (average 11) [16–18]. Phylogenetic analyses of the chitinase coding genes revealed
that the duplication events occurred after the speciation of B. bassiana and C. militaris, Metarhizium spp.,
and, Trichoderma spp., respectively [17]. Thus the abundance of chitinases might be due to convergent
evolution [17]. In contrast, only nine chitinase coding genes were identified in O. sinensis, indicating
the weaker capacity to breach insect cuticle [15].

Proteases are another kind of enzymes predicted to degrade the protein-chitin rich insect cuticle.
The entomopathogenic fungi code for large numbers of proteases required during infection. The most
significant expansion of proteolytic enzymes occurs in the trypsin family (protease S01) [17,18]. Six to
ten times the trypsins were predicted in the genomes of entomopathogens (12–32) than that in
plant pathogens (4 or less) [16–18]. The distribution of trypsins might be caused by the specific
duplication detected in the M. robertsii genome and horizontal transfer in the B. bassiana genome from
bacteria [17,18]. In addition, the vital function was also indicated by the high expression during the
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infection process of M. robertsii [18]. Consistent with the overall loss of enzymes in the O. sinensis
genome, only two trypsins were identified [15].

Subtilisins belonging to protease S08 are shared by entomopathogens and nematophagous fungi
as virulence factors. A total of 55 subtilisins in M. robertsii and 43 in M. acridum were identified, similar
to that in B. bassiana (42), while there were more than that in O. sinensis (17) [15,17,18]. However, similar
to nematophagous fungi, most of the subtilisins were not detected to be abundantly expressed [10,13].
Overall, the reduction of virulence factors in O. sinensis suggests that O. sinensis might be selected to
avoid host defenses, while other entomopathogens evolved to be highly parasitic to hosts [15].

3.4. Secondary Metabolites

Secondary metabolites in entomogenous fungi have been extensively investigated. They are not
only insecticidal such as destruxins but also active against bacteria or tumor cells [55,58]. Cordycepin
is one of the main active components in C. militaris for medicinal use [72]. Other compounds, such as
bauvericin, tenellin, bassiatin, oosporein, and destruxin have already been identified, however, the gene
clusters that involved in their biosynthesis were rarely known before the genomic sequencing [73–76].
On the other hand, secondary metabolites are also involved in the host range of entomopathogenic
fungi. M. roberstii as a broad host range fungus has a larger potential to produce secondary metabolites
for killing the hosts via toxins and grow saprophytically comparing to the acridid-specific M. acridum
to kill the hosts by systemic infection [77]. More putative core genes associated with the production of
secondary metabolites have been identified in M. roberstii (43 core genes) than in M. acridum (20 core
genes). [18]. Gain and loss of destruxin gene clusters is closely related to the host specificity in
Metarhizium [78]. Some of the genes involved in insecticidal activities are highly homologous, and
M. robertsii also possesses a putative bassianolide synthetase, a crucial virulence factor identified in
B. bassiana [18]. In agreement with its use as a medicinal fungus, genes encoding mycotoxins are not
present in C. militaris, whereas they are abundant (total number of 45 core genes) in B. bassiana [16,17].
The adaptation of pathogenesis and human utilization of entomogenous fungi then could be associated
with their secondary metabolites.

3.5. Mechanisms of Fungal Pathogen Speciation and Host Adaptation

Since genomic data have provided the comprehensive understanding on mechanisms of fungal
pathogenicity against insect hosts, comparing the fungi with narrow and wide host ranges provided
new insights into the mechanisms of host adaption. Typically, gene expansion is significant in the
wide host range fungi. For instance, the wide host range fungi M. robertsii and B. bassiana have
more proteases with a higher proportion in the families of trypsins (average 28) and subtilisin
(average 49) than in the narrow host range fungi M. acridum and C. militaris (averaged 14 trypsins
and 43 subtilisins) [16–18]. Gene duplication or horizontal transfer might lead to the expansion of
proteases as virulence factors [18]. At the same time, the lineage-specific expanded proteases might be
responsible for the adaptation to a broad host range [17,18].

The 12 Metarhizium species described so far include those with wide insect host range, transitional
species, and those with specialized hosts, providing excellent materials to research the speciation
and evolution of fungi interacting with host insects [79–82]. Seven Metarhizium species were genome
sequenced with different host ranges. Significantly, more proteins involved in both primary and
secondary metabolism were identified in the species with wide insect host range than the specialist
species (M. album and M. acridum) and these proteins could contribute to virulence and host range
through production of mycotoxins or detoxification of host metabolites [79]. On the other side,
the genes as virulence factors in Metarhizium spp. including serine proteases, chitinases, and
CFEM domain-containing proteins as virulence determinants were detected to be positively selected,
suggesting the Metarhizium spp. are undergoing rapid evolution during the host adaption [79].

O. sinensis can be found as a caterpillar fungus in Tibetan Plateau alpine ecosystems and is
highly specialized to infect moth larvae (caterpillar fungus). The dependence on the nutritional
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insect-based resources leads to an overall loss of carbohydrate degrading enzymes with fewer glycoside
hydrolases [15]. The genome is shaped by retrotransposon-driven expansions which is corresponding
to the close interaction with host. The changes in gene content are very different from those species of
Cordyceps spp. and Metarhizium spp. [15,16,18]. The entomopathogens provide a trade-off between
the advantages of increased genetic variation and deletion of genes dispensable due to a specialized
pathogenic lifestyle [15].

4. Conclusions

The improvements of next generation sequencing technologies of the high quality eukaryotic
genome sequences have led to the availability of a large number of fungal genomes. Based on fungal
genomics, the biology of nematophagous and entomogenous fungi is much more comprehensively
understood, including the origin and evolution, mechanisms of interaction of the fungus and
invertebrate, host specificity, and secondary metabolites. Transcriptomics and proteomics are essential
supplements for genomics. “-Omics” have been a powerful tool for biological and ecological research.
The following main points should be emphasized based on “-omics” in the future studies for
nematophagous and entomogenous fungi.

1. Nematophagous and entomogenous fungi include many important species that impact ecology
and human life. Origination and differentiation of some species such as O. sinensis or
H. minnesotensis have been studied based on multigene analysis [83,84]. Availability of
de novo genome sequences of these important species has made it possible for population
genomics analysis that could provide a more comprehensive understanding of their origination,
differentiation, and speciation.

2. Phylogeny based on single gene or multigenes has been extensively applied in the systematics and
evolution of fungi. Origination and evolution of trapping devices of nematode-trapping fungi
have been deduced to result from the mass extinct events based on the multigene analysis [25,30].
Since a number of fungal genomes have been sequenced, phylogenomics has become a new
strategy for the systematic and evolutionary study.

3. Many nematophagous and entomopathogenic fungi have been developed/are being developed
as biocontrol agents. The molecular mechanisms of fungi interacting with nematodes and insects
are essential for utilization of these fungi in agricultural pest management. “-Omics” should be
more efficient for finding and identifying the functional genes and pathways involved in the
interaction between fungi and host pests that will help in the development of biocontrol agents.

4. Secondary metabolites are not only involved in the interaction between fungi and their host pests,
but also the precursors to develop nematicides, insecticides and drugs. Destruxins were identified
in 1990s while their biosynthetic puzzle was not solved until the genomes of Metarhizium spp.
were sequenced [75,76]. “-Omics” have provided an efficient strategy to decipher and identify
gene clusters encoding secondary metabolites.
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