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A B S T R A C T

Background: Pudilan (PDL), a four-herb prescription with the traditional function of heat-clearing and detox-
ifying, has been clinically used as an anti-SARS-CoV-2 infectory agent in China. PDL might also have therapeutic
potentials for COVID-19 while the underlying mechanisms remain to be clarified.
Methods: We used network pharmacology analysis and selected 68 co-targeted genes/proteins as targets of both
PDL and COVID-19. These co-targeted genes/proteins were predicted by SwissDock Server for their high-pre-
cision docking simulation, and analyzed by STRING for proteins to protein interaction (PPI), pathway and GO
(gene ontology) enrichment. The therapeutic effect for PDL treatment on COVID-19 was validated by the
TCMATCOV (TCM Anti COVID-19) platform.
Results: PDL might prevent the entrance of SARS-CoV-2 entry into cells by blocking the angiotensin-converting
enzyme 2 (ACE2). It might inhibit the cytokine storm by affecting C-reactive protein (CRP), interferon-γ (IFN-γ),
interleukin- 6 (IL-6), interleukin- 10 (IL-10), tumor necrosis factor (TNF), epidermal growth factor receptor
(EGFR), C-C motif chemokine ligand 5 (CCL5), transforming growth factor-β1 (TGFβ1), and other proteins. PDL
might moderate the immune system to shorten the course of the disease, delay disease progression, and reduce
the mortality rate.
Conclusion: PDL might have a therapeutic effect on COVID-19 through three aspects, including the moderate
immune system, anti-inflammation, and anti-virus entry into cells.

1. Introduction

Since the outbreak of the 2019 novel coronavirus disease (COVID-
19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
spread to the whole world with nearly 4.9 million diagnosed patients
and caused more than 320 thousand deaths (updated 20 May 2020).
Unfortunately, few effective drugs were available for treating COVID-
19 patients.

After the four-months of combating COVID-19, China has accumu-
lated a lot of experience and lessons in preventive and therapeutic as-
pects. The Chinese government and medical scientists recommended
some drugs that are potentially useful for COVID-19 treatment. Among
them, several traditional Chinese medicine (TCM) prescriptions are
included [1]. More than 85 % of SARS-CoV-2 infected patients had

received TCM treatment in China [2].
TCM, a traditional medical system, has more than two thousand

years of clinical practice. Compared with modern medicine, the herb-
based TCM shows several advantages, including significant curative
effects, few side-effects, and low cost. Clinical practice showed that
early intervention by TCM is a practical medical way to improve the
cure rate, shorten the disease course, delay the disease progression, and
reduce the mortality rate [3,4]. However, the underlying mechanisms
remain unclear mainly due to the complicated ingredients of TCM. The
proposed mechanisms include blocking the SARS-CoV-2 infection,
balance the physiological activity, regulation of the immune response,
inhibition of the inflammatory storm, and promoting patient recovery
[3].

Pudilan (PDL) is a four-herb prescription that includes Pu Gong Ying
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(Taraxacum mongolicum Hand.-Mazz, Mongolian dandelion), Ku Di Ding
(Corydalis bungeana Turcz., Bunge corydalis), Ban Lan Gen (Isatis in-
digotica Fort., Indigowoad root), and Huang Qin (Scutellaria baicalensis
Georgi., Baikal skullcap). PDL has three pharmaceutical forms in China,
that are Pudilan Xiaoyan tablet, Pudilan Xiaoyan capsule, and Pudilan
Xiaoyan oral liquid. The traditional functions of PDL are Qingre Jiedu
(heat-clearing and detoxifying) and Kangyan Xiaozhong (anti-in-
flammatory and reduce swelling).

PDL was recorded in the Chinese Pharmacopoeia (2015 Edition) and
has been recommended as a preferred drug for the prevention and
treatment of H1N1 and hand, foot, and mouth disease (HFMD). PDL is
also useful in the treatment of COVID-19 and is recommended for SARS-
CoV-2 infection in children [5]. Our experimental studies using hACE2
mice and Vero E6 cells revealed that PDL oral liquid has a therapeutic
effect against SARS-CoV-2 by anti-virus, anti-inflammatory, and mod-
erate immunity [6].

To explore the molecular mechanism for PDL against COVID-19, we
tried to integrate the bioinformatics and network pharmacology tools to
predict the target genes and proteins and to analyze the interactions
between PDL ingredients with the targeted genes.

2. Methods

2.1. Ingredients targeted genes and functional analysis

The query four herbs of PDL were first transferred into a list of
compositive ingredients/ingredients based on the formula-herb-in-
gredient association data collected and integrated by the TCMID
(Traditional Chinese Medicine Integrated Database) database (http://
www.megabionet.org/tcmid) [7].

For each ingredient, candidate targets were predicted based on the
target prediction method of BATMAN-TCM (Bioinformatics Analysis
Tool for Molecular mechANism of Traditional Chinese Medicine,
http://bionet.ncpsb.org/batman-tcm), which is a bioinformatics tool
used for analyzing the molecular mechanism of TCMs by predicting the
potential targets of the ingredients of TCMs, and then performing
functional analyses on these targets including known ingredient-target
interactions, protein interaction networks, and KEGG pathway data [8].

2.2. Disease-associated gene mining

GeneCards (https://www.genecards.org) provides gene-centric in-
formation that is automatically mined and integrated from myriad data
sources, resulting in the web-based card for COVID-19 disease targeted
genes by searching the “novel coronavirus” in GeneCards and obtained
a list of COVID-19-targeted genes [9].

2.3. PPI and GSEA enrichment analysis

With STRING (https://string-db.org), we analyzed the co-targeted
proteins that are encoded by COVID-19-associated genes that interact
with PDL ingredient-targeted genes to explore their relationship within
a PPI network, GO, and Reactome pathway analysis [10]. WebGestalt
(http://www.webgestalt.org) was used as the enrichment method for
COVID-19 and PDL co-targeted GSEA [11]. The Reactome Knowl-
edgebase (https://reactome.org) provides molecular details of path-
ways and reactions in human biology. We used Reactome to draw two
pathways that COVID-19 and PDL co-targeted gene set enriched [12].
With pathway builder tool 2.0, we simulated the possible ways for PDL
treatment on COVID-19.

2.4. Classic anti−COVID-19 prescription validation

TCM Anti COVID-19 (http://tcmatcov.bbtcml.com, TCMATCOV)
was a platform to predict the efficacy of the anti-coronavirus pneu-
monia effect of TCM. TCMATCOV is based on the interaction network
imitating the disease network of COVID-19 [13]. TCMATCOV utilizes a
quantitative evaluation algorithm to analyze disease network dis-
turbance after multitarget drug attacks to predict potential drug effects.
Based on the TCMATCOV platform, PDL was calculated and predicted
to have a high disturbance score and to account for a high proportion of
the classic anti−COVID-19 prescriptions used by clinicians.

2.5. Study design

The steps used in the entire analysis performed in this study are
shown in Fig. 1. COVID-19 disease targeted genes/proteins were mined
by GeneCards. The PDL ingredients were identified targeted by TCMID
and their targeted genes/proteins and pathways were identified by
BATMAN-TCM. These co-targeted genes/proteins were enriched by

Fig. 1. The flow chart of this whole analysis for this study.
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STRING, WebGestalt, and predicted by SwissDock, and TCMATCOV.

2.6. Statistical methods

All analyses were performed with the default values for each of the
tools used. Continuous variables were commonly described as the
median and range. The cutoff of the FDR value was set as 0.01. Only the
predicted candidate target proteins with scores>= 20 are presented
in the query results of BATMAN-TCM. All reported P values are two-
tailed, and P<0.01 was considered statistically significant.

3. Results

3.1. PDL ingredients targeted genes and functional analysis

The PDL ingredients were identified targeted by TCMID and their
targeted genes/proteins and pathways were identified by BATMAN-
TCM. PDL includes four kinds of herbs, which contain 181 ingredients.
Among them, 67 ingredients have no structural information, and thus
their targets could not be predicted. Finally, 114 ingredients were
predicted to interact with 1281 targeted genes, and 64 ingredients had
potential targets with scores larger than 20 (Supplementary Table S1).
The results of the PDL ingredients targeted gene-disease enrichment
analysis in TTD (Therapeutic Target Database) indicate that PDL might
treat some respiratory system disease including asthma, chronic ob-
structive pulmonary disease (COPD), obstructive airway disease, and
cough, which are closely related to COVID-19 (Table 1, P<0.01, En-
rich ratio< 1.5).

3.2. COVID-19 disease-associated gene targeted by PDL

COVID-19 disease targeted genes/proteins were mined by
GeneCards. We searched for “Novel Coronavirus” in GeneCards and
obtained 350 COVID-19 related genes with targeted scores
(Supplementary Table S2). Several TCM herb prescriptions, including
Lianhuaqingwen (LHQW), and Shufengjiedu (SFJD) were reported to be
useful for the treatment of COVID-19, similar to PDL. We compared
their targeted genes and the data are shown in Fig. 2A. The 68 co-
targeted genes that were among both the PDL targeted genes and the
COVID-19 disease-associated genes are shown in the Venn diagram of
Fig. 2A and Fig. 2B. Sixty-eight genes were identified as the COVID-19,
PDL, LHQW, SFJD co-targeted genes. These genes may be the hub genes
involved in the therapeutic effects of PDL, LHQW, and SFJD on COVID-
19.

Table 2 showed the top 10 target prediction results for COVID-19
disease-associated genes interaction with PDL ingredients with pre-
dicted scores. Among which, ACE2 is the receptor for SARS-CoV-2 entry
into cells. TNF, SPIDR, IFN-γ, IL-6, TP53, CRP, EGFR, and CCL5 proteins
play important roles in the pathogenic process of COVID-19. The result
may explain the efficacy of PDL oral liquid therapy in COVID-19 pa-
tients.

3.3. The association networks of PDL targeted functional proteins

Using STRING, we analyzed the interactions of 68 proteins that are
COVID-19-associated genes interaction with PDL ingredient-targeted
genes, and the multiple proteins to protein interaction (PPI) enrichment
were obvious (P<1.0e−16) (Fig. 2B). Separate interaction scores are
available as well as part of the underlying evidence. The interaction
scores from STRING represent the expression of approximate con-
fidence that the association is true given all the available evidence.

With PDL ingredient-targeted genes, we performed GO enrichment
analysis. The GO enrichment analysis identified the cellular response to
chemical stimulus (GO:0070887), regulation of biological quality
(GO:0065008), regulation of cell death (GO:0010941), response to or-
ganic substances (GO:0010033), cellular response to organic substances
(GO:0071310), and regulation of apoptotic process (GO:0042981), etc
(Table 3). The major pathology of COVID-19 is viral pneumonia with
pulmonary edema and patchy inflammatory cellular infiltration. The
above biological processes or activities may infer in the pathogenic of
COVID-19 and these pathological changes may be treated by PDL.

3.4. Prediction of PDL−COVID-19 disease treatment by TCMATCOV

With TCMATCOV, Fig. 2C showed the network of PDL ingredient-
drug target-DEGs consists of ingredient-target relations (from
BATMAN-TCM, confidence score ≥ 20), and drug target-disease pro-
tein relations (protein-protein interaction from the string, confidence
score = 0.4). Fig. 2D is the enlarged part of the TCMATCOV network
from Fig. 2C.

The influence of drug target on the topological characteristics of the
disease network is used to evaluate the intervention effect of drugs on
disease network constructed using COVID-19 based SARS transcriptome
data. The cutoff of the protein-protein interaction confidence score was
0.4. The data showed that the PDL therapeutic effect on COVID-19 was
very close to the positive control (HSZF), which had been reported to be
useful in clinical (Table 4, P = 0.0007). We also validated the four
herbs in PDL prescription by TCMATCOV platform, and the data
showed that Ban Lan Gen, Ku Di Ding and Huang Qin are the more
therapeutic herbs for the COVID-19 treatment than Pu Gong Ying
(Table 4, P = 0.0001). The results were consistent with that in Table 2.

3.5. Reactome pathways enrichment and simulation diagrams

Using STRING, we also analyzed the PDL ingredient-targeted
Reactome pathways enrichment. The results indicated that the path-
ways were enriched in cytokine signaling in the immune system, sig-
naling by interleukins, the immune system, interleukin-4, and inter-
leukin-13 signaling, signal transduction, and interleukin-10 signaling
among other pathways (Table 5). These pathways are important in
cytokine storms caused by COVID-19. With the Reactome knowledge-
base, we draw the simulation diagrams for PDL treatment during SARS-
CoV-2 infection in cytokine signaling in the immune system (HSA-
1280215, Fig. 3A) and signaling by interleukins (HSA-449147, Fig. 3B),
which showed the possible targets for PDL and SARS-CoV-2 with hit
gene numbers and false discovery rate (FDR) scores. These simulation
diagrams have vividly illustrated the mechanism of PDL treatment for
COVID-19.

3.6. The GSEA enrichment of PDL−COVID-19 co-targeted genes

To make a GSEA pathway enrichment, we used WebGestalt as the
enrichment tool with COVID-19 and PDL co-targeted genes with scores
for GSEA enrichment. The GSEA enrichment results are shown in
Fig. 4A–B and the gene set enrichment plots with P values and en-
richment scores were listed in Fig. 4C. As the results showed, the 68
PDL−COVID-19 co-targeted genes were enriched. Ten positively re-
lated categories were identified, including tuberculosis, human

Table 1
PDL ingredients targeted genes enrichment analysis in TTD related to COVID-
19.

Term description p-value Enrich ratio

Asthma 2.41e−03 1.8
Chronic Obstructive Pulmonary Disease (COPD) 2.45e−03 3.8
Diabetes Mellitus Type 2 7.02e−03 3.3
Inflammatory Bowel Disease 7.44e−03 2.4
Dyspnea 1.05e−02 4.6
Malignant Hyperthermia 1.05e−02 4.6
Pulmonary Hypertension 3.51e−02 3.4
Chronic Rhinitis 4.80e−02 4.6
Obstructive Airway Disease 4.80e−02 4.6
Cough 4.80e−02 4.6

Q. Kong, et al. Biomedicine & Pharmacotherapy 128 (2020) 110316

3



cytomegalovirus infection, C-type lectin receptor signaling pathway,
and Influenza A. Four negatively related categories were also identified,
including cholinergic synapse, inflammatory mediator regulation of
TRP channels, cAMP signaling pathway, and metabolic pathways.

3.7. Molecular docking

CRP, IL-6, IL-10, and TNF-α were remarkably higher in severe cases
than in moderate cases of COVID-19 [14]. We selected 6 more potential
PDL and COVID-19 co-targeted proteins with ingredients for molecular
docking using the SwissDock server. The data show these PDL in-
gredients are well docking with PDL and COVID-19 co-targeted proteins
(Fig. 5A–F). Among them, IL-6 is an important factor elevated during
the pathology of COVID-19 with a cytokine storm [15]. The percentage
of IFN-γ producing CD4+ T cells and CD8+ T cells was increased in

severe patients of COVID-19 [16]. Among the PDL ingredients, quina-
zolinone, and oxysophocarpine may be useful in the treatment of
COVID-19. These results can prove that PDL ingredients work with
COVID-19 targeted proteins in molecular docking simulation. The re-
sults may serve as the validation of the activity of the single substance
components of the herb mixture.

4. Discussion

Our previous study analyzed the importance of ACE2 and TMPRSS2
in the susceptibility of SARS-CoV-2 infection [17].Other reports also
supposed that integrins [18] and CD147 [19] might be the potential
receptors of SARS-CoV-2, and integrins were targeted as the COVID-19
targeted genes, but they were not predicted in PDL−COVID-19 co-
targeted genes. Therefore, PDL might have not effect on integrins and

Fig. 2. An association network of PDL targeted proteins associated with COVID-19. (A) Venn diagram of COVID-19, and TCM herbs of PDL, LHQW, SFJD targeted
genes; (B) The network for 68 co-targeted genes/proteins had been selected as input for PPI analysis in STRING. Their size is proportional to the enrichment measure
(PPI enrichment p-value< 1.0e-16) provided by STRING; (C) TCMATCOV network of ingredient-drug target-DEGs, that consists of ingredient-target relations (from
BATMAN-TCM, confidence score 20), and drug target-disease protein relations (protein-protein interaction from the string, confidence score 0.4); (D) Enlarged part
of TCMATCOV network from Fig. 2C.
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CD147.
PDL, a famous TCM formula recorded in Chinese Pharmacopeia, is

widely prescribed for the treatment of acute and chronic inflammation.
The reported side effects of PDL include gastrointestinal symptoms and
allergic reactions. PDL oral liquid alleviates LPS-induced respiratory
injury by decreasing nitroxidative stress and blocking toll-like receptor
4 (TLR4) activation along with nuclear factor kappa B (NF-κB) phos-
phorylation in mice [20,21], and reduces the levels of pro-in-
flammatory mediators including IL-10, TNF-α, and NF-κB in serum

[22].
Pudilan (PDL) is a four-herb prescription, among which Pu Gong

Ying could alleviate inflammatory injury by inhibiting phosphorylation
of NF-κB and TLR4/NF-κB signal pathway [23]. Ku Di Ding could in-
hibit the protein expression of iNOS, TNF-α, IL-6 and IL-1β in vitro and
in vivo [24]. Ban Lan Gen could dose-dependently inhibited cleavage
activity of the 3C-like protease (3CLpro) of SARS-coronavirus [25].
Baicalin is a bioactive flavone extracted from the Huang Qin was pre-
dicted to inhibit the activity of SARS-CoV-2 [26]. The study of the

Table 2
Target prediction result for COVID-19 disease-associated genes interaction with PDL ingredients with predicted scores (top10).

Co-targeted genes Gene description Disease relevance
score

Predicted ingredients (score) TCM Herbs

ACE2 Angiotensin I Converting
Enzyme 2

28.74 (E)-4-Phenyl-3-Buten-2-One(22.373) Huang qin
Indigotin(22.373);Indigo(22.373); Tryptanthrine(22.373) Ban lan gen

TNF Tumor Necrosis Factor 17.68 Isoacolamone(22.373);Adenosine(22.373);Quinazolinone(80.882);Salicylic Acid
(22.373);Dihydro-Beta-Ionone(22.373)

Ban lan gen

Oxysophocarpine(22.373) Ku di ding
Sucrose (48.000) Huang qin

SPIDR Scaffold Protein Involved In
DNA Repair

17.5 Indole(22.373) Ban lan gen

IFN-γ Interferon Gamma 14.91 Quinazolinone(22.373);Salicylic Acid(23.000) Ban lan gen
Sucrose (48.000) Huang qin
Caffeicacid (23.000) Pu gong ying

IL-6 Interleukin 6 14.2 Quinazolinone(22.373) Ban lan gen
TP53 Tumor Protein P53 11.8 Isoacolamone(22.373);Salicylic Acid(48.000); Dihydro-Beta-Ionone(22.373) Ban lan gen

Oxysophocarpine(22.373) Ku di ding
CRP C-Reactive Protein 9.83 Isoacolamone(22.373);Gamma-Aminobutyric Acid(22.373);Adenosine

(22.373);Quinazolinone(22.373);Dihydro-Beta-Ionone(22.373)
Ban lan gen

Choline(22.373) Pu gong ying
Oxysophocarpine(22.373) Ku di ding

EGFR Epidermal Growth Factor
Receptor

9.24 Indole(22.373);Indigotin(22.373);Indigo(22.373);Tryptanthrine
(22.373);Tryptanthrin(22.373)

Ban lan gen

(E)-4-Phenyl-3-Buten-2-One(22.373) Huang qin
CCL5 C-C Motif Chemokine Ligand 5 8.43 Indigotin(22.373);Indigo(22.373); Tryptanthrine(22.373) Ban lan gen

(E)-4-Phenyl-3-Buten-2-One (22.373) Huang qin
IL-1β Interleukin 1β 5.41 Salicylic Acid(55.444); Isaindigodione(22.373); Quinazolinone(22.373) Ban lan gen

Stigmasterol(22.373);Nothosmyrnol(22.373) Huang qin

Table 3
PDL and COVID-19 co-targeted genes ontology (GO) enrichment analysis of the biological process (top10).

GO-term Description PDL and COVID-19 co- targeted 68 proteins (FDR) COVID-19 350 proteins (FDR)

GO:0070887 cellular response to chemical stimulus 1.12e−30 1.24e−81

GO:0065008 regulation of biological quality 1.12e−30 2.30e−37

GO:0010941 regulation of cell death 9.13e−29 1.06e−43

GO:0010033 response to organic substance 1.70e−28 1.01e−74

GO:0071310 cellular response to organic substance 2.27e−28 4.38e−75

GO:0042981 regulation of apoptotic process 5.12e−28 4.65e−42

GO:0006950 response to stress 5.12e−28 5.61e−81

GO:0042221 response to chemical 7.51e−28 2.58e−71

GO:0048583 regulation of response to stimulus 7.55e−27 8.78e−63

GO:0009893 positive regulation of metabolic process 7.55e−27 2.23e−37

FDR: false discovery rate.

Table 4
PDL (herbs) and related TCM prescriptions validation results by TCMATCOV platform.

TCM herbs Sum score Average Degree Average shortest path Degree centrality Closeness centrality

Negative Control (BXTM) 12.59 −1.84 3.53 −0.76 −6.46
Positive Control (HSZF) 20.85 −4.09 9.01 −1.12 −6.63
LHQW 24.13 −4.63 11.73 −1.32 −6.45
SFJD 23.35 −4.76 10.85 −1.30 −6.44
PDL 18.67 −4.83 6.37 −1.15 −6.32
Ban Lan Gen (herb) 18.97 −5.4 5.87 −1.28 −6.43
Ku Di Ding (herb) 17.61 −3.97 3.87 −3.68 −6.1
Huang Qin (herb) 16.79 −4.38 2.19 −4.28 −5.94
Pu Gong Ying (herb) 3.99 −0.31 −1.64 0.57 −5.89

Note: BXTM: Ban Xia Tian Ma Bai Zhu Tang; HSZF: Han Shi Zu Fei Fang.

Q. Kong, et al. Biomedicine & Pharmacotherapy 128 (2020) 110316

5



molecular mechanism for PDL and COVID-19 interactions has con-
tributed extensively to the understanding of PDL therapeutic effect on
COVID-19 including inflammatory cytokines.

Acute respiratory distress syndrome (ARDS) with cytokine storms
might be the main cause of death due to COVID-19. Many inflammatory
cytokines (IFN-α, IFN-γ, IL-1β, IL-6, IL-12, IL-18, IL-33, TNF-α, and
TGFβ) and chemokines (CCL2, CCL3, CCL5, CXCL8, CXCL9, and
CXCL10) were detected in COVID-19 patients [27]. Human

coronaviruses (HCoVs) may modulate various cellular processes, such
as apoptosis, innate immunity, mitogen-activated protein kinase
(MAPK) pathway, and nuclear factor kappa B (NF-κB) pathway [28].
When the host immune system is exposed to viral pathogens, it reacts
straightaway by triggering a diverse array of defense mechanisms to
establish a more efficacious shield, as characterized by the increased
production of type I interferons (IFN-α and IFN-β) and other in-
flammatory cytokines. The cytokine family of interferons is dedicated

Table 5
PDL and COVID-19 co-targeted genes Reactome pathways enrichment analysis(top10).

Pathway Description PDL and COVID-19 co- targeted 68 proteins (FDR) COVID-19 350 proteins (FDR)

HSA-1280215 Cytokine signaling in immune system 1.45e−24 1.18e−74

HSA-449147 Signalling by interleukins 1.55e−22 1.54e−51

HSA-168256 Immune system 1.36e−18 1.35e−74

HSA-6785807 Interleukin-4 and interleukin-13 signalling 1.58e−17 7.62e−25

HSA-162582 Signal transduction 1.39e−12 1.14e−19

HSA-6783783 Interleukin-10 signalling 1.15e−09 4.70e-18
HSA-109582 Hemostasis 2.21e−09 2.64e−24

HSA-76002 Platelet activation, signalling and aggregation 9.85e−09 4.83e−22

HSA-9006925 Intracellular signaling by second messengers 1.85e−08 1.30e−10

HSA-9027276 Erythropoietin activates Phosphoinositide-3-kinase (PI3K) 1.68e−07 5.34e−05

FDR: false discovery rate.

Fig. 3. Simulation diagram for PDL treatment during SARS-CoV-2 infection. (A) PDL treatment in cytokine signaling in the immune system (HSA-1280215); (B) PDL
treatment in signaling by interleukins (HSA-449147).
Acknowledgment: These pictures were drawn based on the database of Reactome.
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to the conveyance of the presence of infection [29].
As reported, anti-inflammatory drugs (such as hormones and other

molecules), and TCM (such as LHQW capsules and SFJD capsule), are
the drug treatment options for COVID-19 [3,30]. Based on the bene-
ficial effects of clinical practices in treating COVID-19 patients, some
TCM prescriptions are on clinical trials against COVID-19 in China
(www.chictr.org.cn/), including LHQW, Re Du Ning injection, Shen Fu
injection, etc.. The reported clinical evidence has shown the beneficial
effect of TCM on the treatment of COVID-19 patients in China [4].

LHQW significantly inhibited SARS-CoV-2 replication in Vero E6
cells and remarkably reduced pro-inflammatory cytokine (TNF-α, IL-6,
CCL-2/MCP-1, and CXCL-10/IP-10) expression at the mRNA level [30].
A recent report indicated that these herbal products could markedly
relieve major symptoms such as fever and cough and could promote the
recovery. For example, Shen Fu injection inhibited the lung in-
flammation and decrease the levels of IL-1β, IL-6, and other cytokines
[4]. Re Du Ning injection markedly reduced the levels of IL-1β, TNF-α,
IL-8, and IL-10 in acute lung injury in a rat model [2].

PDL was recommended in the treatment for COVID-19, due to its
anti-inflammation effects, its capability to reduce fever and to clear the
infection, especially in children [5,31]. PDL also exhibited potential
treatment for COVID-19 and produced good outcomes in the hACE2
mouse model and Vero cells with SARS-CoV-2 infection [6].

In the network pharmacology analysis, 68 co-targeted genes/pro-
teins were selected as targets of both PDL and COVID-19. PDL works
efficiently to block SARS-CoV-2 entry into cells by blocking the ACE2
protein.

Sixty-eight genes were identified as COVID-19, PDL, LHQW, and

SFJD co-targeted genes, including ACE2, TNF, IFN-γ, IL-6, TP53, CRP,
EGFR, CCL5, IL-10, TGFβ1, BCL2, HSPA5, BAX, IL-1β, PIK3CA, and
other genes. Many of these genes were inferred to be involved in the
ARDS and cytokine storms. PDL may attenuate cytokine storms by af-
fecting TNF, IFN-γ, IL-6, CRP, EGFR, CCL5, IL-10, TGFβ1, and other
genes. These genes may be the hub genes involved in the effects of PDL,
LHQW, and SFJD on COVID-19.

5. Conclusions

In conclusion, our study showed that PDL, a TCM formula, might be
useful in the treatment of COVID-19 through regulating and targeting
many cytokines and chemokines. PDL could balance the physiological
activity, regulate the immune response, inhibit the inflammatory storm
in animal and cell experiments. However, these potential targets pre-
dicted by bioinformatic and network pharmacology tools need further
investigation to confirm.
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