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ABSTRACT: In this work, we describe the application of the
Zernike formalism to quantitatively characterize the binding
pockets of two sets of biologically relevant systems. Such an
approach, when applied to molecular dynamics trajectories, is able
to pinpoint the subtle differences between very similar molecular
regions and their impact on the local propensity to ligand binding,
allowing us to quantify such differences. The statistical robustness
of our procedure suggests that it is very suitable to describe protein
binding sites and protein−ligand interactions within a rigorous and
well-defined framework.

■ INTRODUCTION
Interactions between proteins and small molecules regulate
many fundamental biological processes, and hence, their
detailed description constitutes the basis for an efficient and
rational drug design.1 In particular, the analysis of the
chemical−physical properties of the binding site, as well as
structural properties such as geometry, shape, and size,
represents a crucial step to elucidate protein structure-based
ligand design.2,3

Protein−ligand interaction typically occurs in a protein
cavity, a specific region that is often not accessible to the bulk
solvent, although it can be hydrated or free from any solvent
molecule.1 Given a specific ligand, the identification of a
protein region characterized by favorable interactions with it
depends essentially on two factors.3,4 On one side, it is
essential to take into account the shape complementarity
between the binding site and the small molecule, in line with
the key-lock paradigm.5 On the other side, the comparison of
the physicochemical properties of the protein binding site and
the ligand represents an additional information layer for pocket
detection, which can be used to improve the estimation of the
ligand binding affinity and specificity.1

Furthermore, it is well known that the connection between
the structure and the function of a protein also relies on its
conformational dynamics.6−8 In this respect, molecular
dynamics (MD) simulations are a powerful tool that is able
to describe the structural−dynamical behavior of the system at
the atomic level of detail.9,10 Therefore, using MD-based
approaches, it is possible to analyze the time evolution of a
cavity by measuring its structural features, such as volume,
solvent accessibility, and geometry changes.
In the past, several algorithms have been proposed to detect

and describe protein cavities. According to the approach used,
they can be mainly grouped into three different classes:11−13

The first group is based on geometrical or shape character-
ization,2,14−18 while the second group is composed by energy-
based methods, which estimate probe-pocket interaction
energy.19−22 The last group is formed by sequence-based
methods exploiting the propensity of conserved residues
belonging to the binding site.23

Although a plethora of cavity descriptors have been
proposed, it is not easy to find a set of them that is able to
univocally describe the feature of the region of interest on a
more chemical−physical ground; that is, it is not easy to find a
set of them that is independent from the choice and
combination of specific descriptors. In fact, many of the
methods developed to identify and characterize binding sites
are based on a multiplicity of factors that are jointly considered
to define a single score for each residue, which represents its
binding propensity. Typically, the most used descriptors to
characterize a binding site are the site size, the donor/acceptor
character, the hydrophobic/hydrophilic properties, the meas-
ure of how the average site point interacts with the receptor via
van der Waals nonbonded interactions with a specific probe,
and the solvent exposure/accessibility. The binding site
characterization therefore is usually linked to both the weight
of each descriptor and how these weights are com-
bined.2,14,17,24−26

Therefore, the interest in alternative methods that are able
to characterize protein substrate recognition on a quantitative
and rational ground is very high. In addition, a useful
descriptor should be also able to give information onand
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possibly, to predictthe interactions between the cavity and
the interacting molecules.27,28 Here, we present a new
computational protocol that is able to quantitatively describe
both the shape and electrostatic properties of a given subregion
of a protein on a rigorous ground by means of a moment-based
approach using the Zernike polynomials.29−31

The main advantage of this method is its ability to describe
subregions of a molecular surface in a compact way using a
single vector of numbers to provide quantification of both the
geometrical shape and the electrostatic potential. This
characterization does not depend on any other measure and
does not need any arbitrary choice, thus representing a simple
descriptionstill quantitativeof the chemico-physical char-
acteristics of a molecular subregion.
The mathematical properties of the moment-based formal-

isms, and in particular, of the Zernike descriptors, allow
absolute characterization of the selected region of the
molecule, independent from the relative geometrical orienta-
tions of the protein or the ligand. Indeed, the approaches based
on the Zernike moments provide a superposition-free
description, which is invariant under rotation and translation.32

In particular, the method furnishes an ordered set of numbers
that describes the geometrical shape and the electrostatic
properties of the selected molecular surface, thus allowing us to
easily compare cavities formed by different numbers of
atoms.33

The selected region is thus described by three vectors of
numbers: the first describes the shape of the given patch; the
second and third are associated with positive and negative
electrostatic potentials, respectively. These vectors can be then
used to strikingly compare, for example, different pockets, a
pocket and a ligand, and the time evolution of a pocket. Such
an approach is applied here to (i) characterize the pocket
conformational changes along an MD trajectory and (ii)
evaluate the binding complementarity between a binding
pocket and its cognate ligand.
The characterization of the pocket evolution as described by

the Zernike polynomials has been applied to two members of
Src family protein kinases (SFKs), namely, c-Src and Lck. The
SKF proteins live at least in two conformations: the closed or
inactive conformation and the open or active conformation.34

In the open conformation, the active sitethe kinase domain
(KD)is more accessible to the substrate. Although c-Src and
Lck have a KD sequence identity of 50%, they interact with
different targets. In fact, c-Src is present in almost all cells, and
it is able to phosphorylate a wide number of intracellular
proteins. On the contrary, Lck is present only in T
lymphocytes, and it is specific to phosphorylate the immune-
receptor tyrosine-based activation motif (ITAM), located in
the zeta chains of the CD3 complex. Due to the intracellular
function specificity of Lck, we compared the active sites of
both proteins to predict a possible involvement of the pocket
shape and the electrostatics in this substrate selection.
The Zernike descriptor approach has also been applied to

describe the binding groove features of the major histocompat-
ibility complex (MHC) of class I. In this context, we focused
on human leukocyte antigen B*27 (HLA-B*27), which is
involved in ankylosing spondylitis (AS), an inflammatory
rheumatic disease affecting the axial skeleton.35,36 In particular,
the subtype HLA-B*2705 is the ancestral allele, which has
been found to be associated with AS in almost all investigated
populations. Some alleles, such as HLA-B*2709, act as a non-
AS-predisposing factor. The HLA-B*2705 and HLA-B*2709

alleles differ by the unique polymorphism at residue 116 (Asp
to His): this single substitution is critical for the structural and
dynamical features as well as for the T cell repertoire
distinguishing the two B27 alleles.37−39

Despite the fact that these two HLA-B*27 subtypes manage
to bind the same epitope, the 9-residue-long peptide
(RPPIFIRRL-pEBNA3A or 9-mer) is recognized by the
CD8+ T cell only if presented by HLA-B*2705.40 In a recent
work, we found that the introduction of a lysine in the N-
terminal region of the peptide allows the T cell receptor
(TCR)-mediated detection for both subtypes.40 Although our
previous results have shown a peptide-induced conformational
change of the binding groove, a detailed study of its shape and
electrostatic behavior is missing.

■ THEORY
The Zernike Descriptors. The geometrical and phys-

icochemical properties of the molecule can be represented as
three-dimensional functions through the voxelization proce-
dure.29 By such an approach, it is possible to summarize the
functions as an ordered set of Zernike descriptors.
Given a function , f(r, θ, ϕ), the Zernike formalism is based

on a series expansion in an orthonormal sequence of
polynomials

∑ ∑ ∑θ ϕ θ ϕ=
=

∞

= =−

f r C Z r( , , ) ( , , )
n l

n

m l

l

nlm nl
m

0 0 (1)

where Znl
m are the 3D Zernike polynomials, and the coefficients

Cnlm are the Zernike moments.
Selecting the order N at which the sum over n is truncated,

the level of the approximation is chosen. In this work, we
describe the functions representing the molecular shape and
surface electrostatic potential using N = 20, corresponding to
121 coefficients for each function.
Indeed, it is possible to define the 3D Zernike moments of a

function as
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where Z̅ is the polynomial complex conjugate.
To obtain the descriptors invariant under translation and

rotation, it is necessary to compute the norm (the sum over the
index m) of the Zernike moments. Therefore, the 3D Zernike
descriptors (3DZDs) are defined as

∑= =
=−

D C C( )nl nlm
m l

l

nlm
2

(3)

A more complete description of the Zernike formalism can
be found here.30,31

Despite the fact that 3D Zernike descriptors were
introduced in the field of structural biology only recently, a
significant number of works33,41−43 deal with them.
Initially, 3DZD has been applied to compare global protein

structures. The rotational invariance of 3DZDs allows a fast
comparison between structures as it essentially reduces to a
comparison between vectors.33,41 Moreover, the geometrical
and physicochemical comparison between different proteins
can help in identifying common features shared by different
protein pockets, thus allowing us to predict possible favorable
ligand−receptor pairs.42 The application of the Zernike
formalism is also well suited in the field of protein−protein
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docking43 as it allows us to quantitatively evaluate the
complementarity between protein patches.
Nevertheless, we apply here for the first time a Zernike-

based approach to describe the time evolutionas provided by
MD simulationsof important protein regions of c-Src kinases
and major histocompatibility complexes.

■ METHODS

Molecular Dynamics. After sensitivity analysis, our
approach has been applied to a set of 400 representative
structures, as extracted from previous MD simulations.40,44,45

The details of the MD simulations are provided in our recently
published works.40,44,45 A summary of these simulations is
reported in the next two subsections. All the analyses repeated
on a duplicate set of MD simulations confirmed our findings
(see Figures S4 and S5 in the Supporting Information).
c-Src and Lck Kinase Domain Simulations. Starting

from the crystallographic open structures (PDB IDs: 1y57 and
3lck for c-Src and Lck, respectively), 200 ns-long MDs were
run using the Amber99sb force field and the SPC water model.
The Verlet cut-off scheme was used and long-range electro-
static interactions were treated by means of the particle-mesh
Ewald method. The velocity rescale algorithm was used to keep
the temperature constant (300 K). The Gromacs software
package version 5.0.5 and version 2016.4 were used for c-Src
and Lck simulations, respectively.
HLA-B*27 Subtype Simulations. We performed molec-

ular dynamics simulations for each HLA-B*27 subtype in
complex with the corresponding 9-mer and 10-mer peptides
(pEBNA3A with amino acid (a.a.) sequence RPPIFIRRL;
pKEBNA3A with a.a. sequence KRPPIFIRRL).40 The
Gromacs software package version 5.0.746 and the OPLS-AA
force field were used.47 All the simulations, lasting ∼200 ns
each, were performed in a cubic box with the SPC/E water
model.48 The systems were neutralized and simulated at a
physiological concentration of Na+ and Cl− (0.15 M). The
temperature and pressure were kept constant by means of the
velocity rescale algorithm and the Parrinello−Rahman barostat,
respectively. The crystallographic structures (PDB codes:
1OGT for B*2705 and 1OF2 for B*2709) were used as
starting structures for the MD simulations of the 9-mer and 10-
mer complexes.40

Construction and Comparison of Zernike Descrip-
tors. First, we calculated the electrostatic potential by
assigning to each atom of the system a partial charge, as
obtained using the PDB2PQR algorithm.49 For each structure
sampled by the MD simulations, we estimated the solvent-
accessible surface (SAS) of the chosen set of atoms by defining
the protein region to be described by the 3DZD. The regions
selected in this work are reported in Table 1.
By such an approach, the geometrical and electrostatic

properties of the surface generated by the selected set of atoms
are described by the 3DZD.

In line with our previous work,29 we choose to use 20th-
order polynomials, resulting in three 121-dimensional vectors
of numbers. A vector describes the shape properties, while the
other two describe the positive and negative contributions of
the electrostatic potential, respectively. Note that we need to
treat separately the two electrostatic contributions since the
Zernike formalism does not differentiate positive and negative
values but only patterns of nonzero values.42,50

Such representation makes it possible to easily compare
protein regions even if they differ in terms of orientation and/
or number of atoms. To this end, the Manhattan distance has
been used as a metric to compare different 3DZDs. Given two
vectors T and V of 121 components, the Manhattan distance
between them is defined as

∑= | − |
=

D T V( , ) T V
i

i
1

121

i
(4)

Given two patches, A and B, and establishing the Manhattan
distance as the metrics between 3DZDs, when we analyze the
similarity between protein pockets, we have

[ − ] = DA B (X , X )shape shape
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shape
B

(5)
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where Xshape, Xelec
+ , and Xelec

− are, respectively, the shape, the
electrostatic positive potential, and the electrostatic negative
potential 3DZDs. Therefore, the shape similarity is defined as
the distance between the shape 3DZDs, and electrostatic
similarity is nothing but an average between positive potential
similarity and negative potential similarity.
On the other hand, when we study binding complementar-

ity, the electrostatic surface comparison is slightly different
because, to achieve high complementarity, the 3DZD
describing the positive potential of one patch has to be similar
to the negative potential 3DZD of the interacting patch (and
vice versa). Therefore, using the same notation than before, the
complementarity between the patches A and B is defined as
follows

[ − ] = DA B (X , X )shape shape
A

shape
B

(7)

[ − ]
++ − − +D D
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2elec
elec

,A
elec

,B
elec

,A
elec

,B

(8)

Therefore, the shape complementarity between two
molecular patches is defined as the distance between their
3DZDs, while the electrostatic complementarity is defined as
the cross-average distance between positive and negative
potential 3DZDs. Note that both high similarity and high
complementarity are achieved when these distances are small.
Given a molecular dynamics trajectory, we calculate the

Zernike coefficients for each selected patch at different frames.
Therefore, each patch has been described by a set of vectors,
and each of these vectors corresponds to a conformational
state, as given by molecular dynamics. The comparison
between two protein regions is then realized by comparing
all the patch conformational states, giving rise to a distribution
of Zernike distances.
To compare a pair of Zernike distance distributions, the

overlap coefficient has been used.51 The overlap represents the
fraction of distribution density area of one distribution

Table 1. List of the Residues Used To Define the Binding
Sites

Src binding site 252−257; 275−291; 339−36234

Lck binding sites 274−279; 297−313; 384−42134

HLA-B*2705(2709) binding sites 5−17054

(pEBNA3A or 9-mer) sequence RPPIFIRRL
(pKEBNA3A or 10-mer) sequence KRPPIFIRRL
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common to the other. It intuitively follows the value of overlap
being between 0 ( when the two distributions are disjoint) and
1 (when the two distributions are identical).
To automatically determine which distributions is charac-

terized by higher values, a sign to the overlap coefficient has
been assigned (the sign of overlap is positive/negative if the
mean of the first distribution is higher/lower than the mean of
the other one). Therefore, given two density functions, f1(x)
and f 2(x), the overlap coefficient is defined as

∫= [ ]

>

¯

¯

f x f x

f x f x x f x

f x

OVL( ( ), ( ))

min ( ), ( ) d if ( )

( )

R

1 2

1 2 1

2 (9)

∫= − [ ]

<

¯

¯

f x f x

f x f x x f x

f x

OVL( ( ), ( ))

min ( ), ( ) d if ( )

( )

R

1 2

1 2 1

2 (10)

The Manhattan distance between two sets of Zernike
descriptors and the overlap coefficient between a pair of
Zernike distance distributions have been computed using the
“dist” and “density” functions of “stats”52 R package,
respectively.

The calculation of the Zernike coefficients is made using the
Python code described in ref 53.

■ RESULTS

The purpose of this work is to use the Zernike formalism to
provide a quantitative and physically sound description of the
protein pockets, allowing us (i) to characterize their time
evolution, (ii) to compare different protein pockets, and (iii)
to gain insight into the complementarity between pockets and
ligands.
In particular, we present the application of the Zernike-based

description to characterize the binding sites of two kinases as
well as to highlight how the substitution of a single a.a. residue
can affect the ligand−receptor complementarity in the major
histocompatibility complex (MHC).

Src and Lck: The Analysis of the Binding Sites. We
used the 3DZDs to describe the binding pockets of two kinases
(c-Src and Lck), which are very similar in terms of both
structure and sequence, at both global and local (pocket)
levels. For each frame of the MD trajectories, the shape and
electrostatic 3DZDs have been computed using the list of
residues defining the binding region (see Table 1).
To study the time evolution of these patches, we analyze the

distance between the shape and electrostatic Zernike vector
along the MDs and the reference Zernike vector of the starting
geometry.
We observe that both proteins explore, along the trajectory,

a single state, as defined by the electrostatic 3DZD.

Figure 1. Representations of Zernike along the Lck and Src molecular dynamics simulations; the figures are obtained using distances, in terms of
3DZD, between the Src and Lck binding sites. (A, C) Distances between the binding site of the starting structure and the binding site at the ith
frame. (B, D) Distributions of the distances as obtained from the MD frames.
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Interestingly, the Lck binding pocket shows a bimodal
distribution of the shape 3DZDs, indicating two slightly
different states (Figure 1).
This analysis, in analogy with usual root-mean-square

deviation of the atomic positions, provides the equilibrium
behavior of local properties, which are supposed to play a
major role in the binding behavior.
To better characterize the differences between Src and Lck

pockets, we projected each Zernike vector obtained for each

MD frame into the essential space defined by the first two
eigenvectors as given by principal component analysis (PCA)
of the 3DZD vectors. The projection of the 3DZD vectors on
the two eigenvectors associated with the largest eigenvalues
(describing the 73% of the total variance of the data) clearly
shows that the two pockets explore different regions within
such a subspace (Figure 2A,C).

Figure 2. Differences in terms of Zernike descriptors between the Src and Lck binding sites. (A, C) Projections of the Lck and Src 3DZD vectors
on the first two principal components. (B, D) Distance distributions of the binding pocket of Src and Lck: D-IntraSrc, D-IntraLck, and D-InterSrc‑Lck.
Top (A, B) and bottom (C, D) panels refer to the shape and electrostatic 3DZDs, respectively.

Table 2. Shape and Electrostatic 3DZD Overlaps between
the Distributions of the Distances of Src and Lck Binding
Pocketsa

distance IntraSrc IntraLck InterSrc‑Lck

shape IntraSrc 1 −0.66 −0.02
IntraLck 0.66 1 −0.05
InterSrc‑Lck 0.02 0.05 1

elec IntraSrc 1 −0.83 −0.21
IntraLck 0.83 1 −0.28
InterSrc‑Lck 0.21 0.28 1

aThese data are obtained from the distributions reported in Figure 2.

Table 3. Shape and Electrostatic Overlaps between the
Distribution of the Distances of HLA-B*2705 and HLA-
B*2709 Binding Sites as Provided by Molecular Dynamics
Simulationsa

distance Intra2705 Intra2709 Inter2705−2709

shape Intra2705 1 −0.68 −0.38
Intra2709 0.68 1 −0.69
Inter2705−2709 0.38 0.69 1

elec Intra2705 1 −0.80 −0.35
Intra2709 0.80 1 −0.52
Inter2705−2709 0.35 0.52 1

aThese data are extracted from the distributions reported in Figure 3.
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A more direct comparison of patch variability in molecular
dynamics has been performed by considering the distributions
of the distances between the 3DZDs, as obtained by the
comparison between all the possible pairs of frames of the
three simulations. That is, the 3DZD vector comparison has
been performed between Lck and Src as well as within the
same proteins. The distance distribution between patches
exclusively belonging to Src (Lck) is named D-IntraSrc (D-
IntraLck). Similarly, the distribution obtained by calculating the
distance between each Zernike vector of the Src patch with
each Zernike vector of the Lck patch is called D-InterSrc‑Lck.
As expected, the distances between the Src and Lck pockets

(D-InterSrc‑Lck distribution) are higher, on average, than those
observed within the same protein (D-IntraSrc and D-IntraLck
distributions) (Figure 2B,D).
To quantify the difference between two pockets during the

simulations, we compare all the distributions by considering
their overlap (see Methods), which is defined as the area under
the curve that is shared by two distributions (i.e., overlap = 1, 0

indicate identical and completely different distributions,
respectively).
The results shown in Table 2 underline the fact that the

Zernike distances between different pockets are significantly
higher than the distances between the same pockets, as
observed along the MD trajectory. On the other hand, the
comparison between IntraLck and IntraSrc (or vice versa) shows
that the magnitude of the pocket variations in both kinases is
analogous.
Such a result suggests that our approach is able to pinpoint

differences between similar protein regions and to provide a
quantitative measure of such differences, as provided by the
Zernike distance trajectories. It is likely that such differences
can play a role in the molecular recognition of specific
substrates.

HLA-B*27 Subtypes and Ligand Peptides: Shape and
Electrostatics of Pocket Similarity and Protein−Peptide
Complementarity. In this section, we report on the Zernike
moment-based method applied to the evaluations of small
structural changes as those determined by a single poly-

Figure 3. Differences in terms of Zernike descriptors between the HLA-B*2705 and HLA-B*2709 binding sites. (A, C) Projections of the HLA-
B*2705 and HLA-B*2709 3DZD vectors on the first two principal components. (B, D) Distance distributions of the binding pocket of HLA-
B*2705 and HLA-B*2709: D-IntraHLA‑B*2705, D-IntraHLA‑B*2709, and D-InterHLA‑B*2705‑HLA‑B*2709. Top (A, B) and bottom (C, D) panels refer to the
shape and electrostatics, respectively.
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morphism. To this end, we focused our analysis on two
subtypes of HLA (namely, HLA-B*2709 (HIS 116) and HLA-
B*2705 (ASP 116)) bound to two peptides (namely, 9-mer
and 10-mer), resulting in four different peptide−HLA
complexes.
In particular, we first compared the binding region of the

two subtypes bound to the 9-mer peptide by performing the
analysis applied to the Src kinases (see previous section).
In a recent published work,40 we found that the bound

peptide induces some conformational changes in the binding
pocket, which provide a different ligand presentation to the T
cell receptor. Our results point out that, despite the fact that
the differences between these two regions are due to a unique
a.a. residue, both the PCA and the distribution distances can
capture the differences between the two binding pockets (see
Table 3 and Figure 3).
As mentioned above, the Zernike description of the

molecular surface can be also used to estimate the
complementarity between interacting patches.
To this end, we estimate the complementarity between two

patches by calculating the difference between their 3DZD

vectors. Indeed, since the Zernike polynomials are invariant by
rotation and translation, the higher the complementarity
between two patches, the lower the distance between their
corresponding Zernike vectors (see Methods). On the other
side, the electrostatic compatibility (or the complementarity
between the two electrostatic potential functions) is achieved
when the 3DZDs describing the positive potential of one patch
are similar to the negative potential 3DZDs of the other patch.
To quantitatively estimate the interaction behavior between

two (part of) molecules, we evaluated the complementarity
as provided by the Zernike descriptors (see Methods)−
between the binding regions of HLA-B*27 and the
corresponding peptide.
Interestingly, our data report that HLA-B*2705 shows a

higher complementarity with the 9-mer peptide than HLA-
B*2709, as shown in Figure 4 and quantified by the overlap
(see Table 4). Indeed, both in terms of shape and
electrostatics, the complementarity is higher when 9-mer
interacts with B*2705 than when 9-mer interacts with B*2709.
Then, we studied the difference in complementarity when
HLA-B*2709 is in complex with 9-mer or 10-mer, and both
the shape and electrostatic 3DZDs detect a higher
complementarity when 10-mer is bound with the analyzed
HLA-B*27 subtypes (Figure 4).
We finally compared the complementarity of 10-mer with

the two HLA-B*27 subtypes. Interestingly, the shape 3DZD
assigns a very similar complementarity value to these two
molecular complexes, in line with experimental activity,40 even
if the electrostatic 3DZD description highlights a preference in
binding between 10-mer and HLA-B*2709 with respect to
HLA-B*2709 (see the Supporting Information).

Figure 4. Complementarity distance between HLA and the associated peptides. The dashed lines represent the mean values of distances. Left:
HLA-2705 and HLA-2709 bound to 9-mer. Right: HLA-B*2709 bound to 9-mer and 10-mer. Middle: Molecular representations of HLA (blue)
bound to 9-mer (red).

Table 4. Shape and Electrostatic 3DZD Overlaps between
HLA-B*2705/9-mer and HLA-B*2709/9-mer (First Two
Rows) and HLA-B*2709/9-mer and HLA-B*2709/10-mer
(Last Two Rows)a

complementarity distance 2705−2709

9-mer shape −0.70
electrostatics −0.84

complementarity distance 10-mer−9-mer

HLA-B*2709 shape −0.59
electrostatics −0.67

aThe associated distributions are shown in Figure 4.
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■ CONCLUSIONS
In this work, we applied the Zernike formalism on molecular
dynamics data to represent the properties of specific molecular
regions in a very compact form.
Once the residues defining the region of interest are

identified, the overall shape and electrostatic characteristics are
summarized in 121 ordered numbers, that is, the norm of the
coefficients of the Zernike expansion. Such a compact
description of the molecular patches consent to easily calculate
the distance between any possible pair of vectors (correspond-
ing to different surfaces) and their behavior along an MD
trajectory.
This method, not requiring any preliminary structural

superposition, provides a description, which does not depend
on the dimension of the region of the molecule described; that
is, it allows us to compare regions of different sizes in terms of
number of residues and residue type.
We showed that 3DZD can be used to detect shape

similarity as well as to analyze the complementarity between
interacting molecular partners. We investigate how the
structural−dynamical evolution of the systems modifies the
shape and the electrostatic properties of a protein region,
eventually affecting the binding with its molecular partner.
Moreover, the application of the Zernike formalism to an

extended region of the conformational space provides
statistically significant results, thus increasing its reliability
and robustness with respect to single-structure calculations.
The application of the method to different biologically

relevant systems shows that is possible to identify differences
even between very similar pockets, such as in the cases of the
HLA-B*2705 versus HLA-B*2709 and Src versus Lck. Our
data suggest that the shape complementaritymore than the
electrostaticscould contribute in determining a diverse
presentation of the epitope to the TCR. For all the proteins
in the study, the shape complementarity seems to play a major
role in characterizing the molecular interaction behavior in
these systems.
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