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Putting memories on paper
Muhittin Mungana,1

Consider a mechanical kitchen scale with a spring that com-
presses in proportion to the weight placed on it. Removal
of the weight makes the scale return to its initial position.
Reversibility is an essential feature for this device to func-
tion. Now, assume that instead of the kitchen scale you use
a sandbag. A weight placed on the sandbag will compress its
surface in proportion to it; however, the sandbag lacks the
feature of reversibility. Not only will removal of the weight
fail to cause a reversion of the bag to its initial shape, but
subsequent weights put on the bag will change the current
deformation state little, unless you place a heavier weight
on it. However, the sandbag does measure something: the
largest deformation it has been subjected to in its past.
Thus, while the kitchen scale measures a state, the shape
of the sandbag provides information about its deformation
history. It is a conceptually simple example for memory
formation in matter (1) and demonstrates that the disorder
of the grains, as well as the dissipation of energy when the
sandbag is deformed, play an essential role in its irreversible
behavior. On the other hand, it is precisely this irreversibility
which permits one to go from measuring states to mea-
suring histories and thereby encoding memory. In PNAS,
Shohat et al. (2) investigate memory formation in crumpled
sheets of paper. Exploring the complex interplay of the ge-
ometry and mechanics of wrinkled paper, they demonstrate
how memory emerges from the interactions of bistable
mechanical instabilities formed by its folds and creases.
The findings of Shohat et al. (2) are remarkable, since they
demonstrate in an explicit and experimentally accessible
manner how memory can emerge in everyday systems
such as a crumpled sheet of paper, thereby contributing
toward our understanding of memory formation in driven
disordered systems.

Memory-recording mechanical devices can be con-
structed from bistable elements (3) such as origami bellows
(4), corrugated elastic sheets (5), and, more generally,
mechanical metamaterials (6). Under a compression, a
bistable element remains in one of its stable states, call it
“0,” until the force rises above a threshold level F+, upon
which a fast relaxation snap event causes a transition
into the other state, “1,” as shown in Fig. 1 A, Top Left.
Subsequently reducing the forcing, a transition back into
state “0” will occur when the force falls below a threshold
level F−. Hysteresis emerges when the two switching fields
F± are such that F− < F+, so that for values between these
two thresholds the actual state of the bistable element
depends on the history of the forcing. Such elementary
units of hysteresis are called Preisach hysterons (7–9).

Consider now a collection of N hysterons, each with a pair
of threshold forces F±

i , and each coupling independently to
the applied force F . One can construct a history-recording
device by ordering the threshold forces as F+

1 < F+
2 < . . .

< F+
N and F−

1 > F−
2 > . . . > F−

N , as sketched in Fig. 1A, Lower
Right. Initializing the device in a configuration where each

hysteron is in its “0” state, upon increasing the force they
will change states one by one in the order 1, 2, . . . , N. Due
to the choice of ordering the F−

i , this will be also the same
order in which the elements return from their “1” to their
“0” state. A state transition graph of this system for the case
N = 4 is shown in Fig. 1A. Here, gray/black (orange/red)
arrows indicate transitions when the force has just in-
creased (decreased) enough so that one element becomes
unstable and changes state.

Note the nesting of cycles in Fig. 1A: Starting from the
state 0010, a sequence of gray/black arrows followed by
orange/red arrows leads via 1110 back to 0010, forming
a graph cycle, which in turn is nested within the cycle
between states 0000 and 1110, etc. Observe also that from
any state in the graph, by lowering the forcing sufficiently
we can “reset” the system by bringing it back to the state
0000. The hierarchical nesting of cycles within cycles is a
characteristic feature associated with return-point memory
(RPM) (10), which emerges in the hysteretical magnetization
response of magnets to an applied magnetic field. In the
transition graph setting, the nesting feature is a topological
property of the transitions between hysteron states, which
is referred to as loop RPM (11). Assume now that starting
in state 0000 a sequence of forcings leads the system to
state 0101. The hierarchical nesting of cycles constrains the
possible trajectories that the system must have followed in
order to reach 0101 from the zero state: In particular, in the
recent past the force must have risen above the value of
F+

3 , subsequently fallen, but not below F−
3 , then risen again

to a value between F+
2 and F+

3 , etc. The shortest trajectory
from 0000 to 0101 has been highlighted by the red and black
arrows in Fig. 1A.

Remarkably, mechanical instabilities, which give rise to
hysteresis in the form of near-perfect RPM with a hierarchy
of nested hysteresis cycles, are rather ubiquitous. They
are found in the athermal quasi-static response of various
driven disordered systems, such as simulations of amor-
phous solids under shear strain (12) and experiments on
sheared colloidal suspensions (13) as well as jammed gran-
ular particles under uniaxial compression (14). In all these
systems thermal effects are negligible, and the mechanical
instabilities are due to spatially localized plastic events,
called soft spots (15–17), which effectively respond as
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Fig. 1. (A, Top Left) Elementary hysteresis cycle of a Preisach hysteron resulting from a bistable mechanical element with states 0 and 1 under force F . The
hysteron can be in state 1 for F > F− and state 0 for F < F+. In the interval F− < F < F+ the state depends on the history of the forcing. (A, Center) The
state transition graph of four hysterons each coupling independently to the driving F . (A, Lower Right) The ordering of the switching fields F±

i is as indicated.
Black/gray (red/orange) arrows indicate state changes of the corresponding hysteron i when F is just above (below) F+

i (F+
i ). A possible trajectory from 0000 to

the state 0101 is shown by the black and red arrows. (B, Top Left) The experimental set up of ref. 2 for a crumpled sheet of paper driven by a variable strain Δ.
(B, Center) The force–strain response under cyclic straining, once a periodic cycle has set in (yellow cycle). A subsequent driving protocol of the form shown in
the lower right inset results in the subcycles shown. Adapted from Shohat et al. (2). The transition graph (A) and the cyclically sheared paper response (B) reveal
a hierarchy of nested cycles characteristic of RPM.

hysterons. However, in contrast to the collection of nonin-
teracting Preisach hysterons, these soft spots interact with
each other via long-range elastic deformations. As a result,
the state change of one soft spot can alter the switching
fields of the other, but it can also give rise to new soft
spots or deactivate existing ones by disabling their switch-
ing behavior. Overall, these interactions can give rise to
highly complex dynamics, including avalanches where the
instability of one soft spot triggers instabilities of multiple
others, and more generally dynamically critical phenomena,
such as yielding. The Preisach model, due to the absence of
interactions, lacks all this complexity. Nevertheless, it is a
conceptually simple model to illustrate key mechanisms of
memory formation, such as RPM, serving a role similar to
the ideal gas in statistical mechanics.

The interactions between hysterons turn out to be both
a blessing and a curse. They are a curse since in principle
interactions can destroy the hierarchical RPM-type nesting
of hysteresis cycles and hence adversely affect the capa-
bility of memory formation. They are a blessing since the
interactions permit a degree of “programmability”: Cyclically
driving the system until a periodic response has set in
is tantamount to selecting a set of interacting soft spots
that “play nice” with each other, i.e., they only moderately
influence or impede each other’s switching behavior so
that an RPM-like hierarchy of nested cycles remains largely
intact.

Surprisingly, many of the driven disordered systems
mentioned above achieve both the programmability and
nesting of hysteresis cycles, and the reasons for this are still
not sufficiently understood. Now the paper by Shohat et al.
(2) adds one more such system to the fray: a thin sheet
of crumpled paper subject to driving via stretching and
unstretching it (Fig. 1B). The relation between the complex
geometry of folds and creases of a crumpled sheet of paper
and its mechanical response to external driving has so far
been largely unexplored. By combining cyclic stretching
protocols with three-dimensional (3D) imaging, Shohat et al.
(2) are able to correlate the mechanical response of the
sheet to its local geometrical transformation.

Shohat et al. (2) find that when the sheet is cyclically
strained it settles into a near-perfect periodic force–strain

hysteresis cycle dotted with a large number of abrupt force
jumps. Using 3D imaging, Shohat et al. (2) are able to
trace the force jumps to localized plastic events in the
sheet, originating from the snapping of vertices formed by
the crossings of ridges (18). Shohat et al. (2) demonstrate
that these mechanical instabilities behave as hysterons that
interact with each other. As in the sheared amorphous
solids, depending on the locations and states of the other
hysterons, the interactions can facilitate or impede each
other’s switching behavior. The sheet of paper has become
a mechanical realization of a spin glass, an archetypical
model for understanding the emergence of complexity in
disordered systems (19).

These findings set the stage for a thorough investigation
of memory formation. First, Shohat et al. (2) “program”
their sheet of paper by applying cyclic strain over a strain
range [Δmin

0 ,Δmax
0 ] until a periodic response is attained in the

force–strain response of the sheet (Fig. 1B). The response
to cyclic deformation has all the hallmarks of RPM. Once
a periodic response has set in, a subsequent reduction of
Δmax

0 to Δmax
1 results in force-versus-strain subcycles of the

original hysteresis cycle, as depicted in Fig. 1B. In fact, the
amplitude Δmax

1 can be lowered and raised as long as Δmax
1 ≤

Δmax
0 , i.e., it does not exceed the value at which the original

hysteresis cycle was obtained. Raising Δmax
1 back to Δmax

0 ,
the original cycle is recovered. Thus, applying oscillatory
shear to the crumpled paper has led to the selection of
an interacting hysteron system that supports a hierarchy of
cycles and subcycles, as shown in Fig. 1B. As in simulations
of sheared amorphous solids (12), the emergence of the
interacting hysteron system is at the heart of the memory
that is imprinted into the disordered system as a result of
cyclic loading. In fact, raising Δmax

1 to a value above Δmax
0 and

then back to Δmax
0 , Shohat et al. (2) show that this memory

is erased.
The relative ease with which the interacting hysterons of

a driven disordered system establish a hierarchy of nested
hysteresis cycles suggests that this may not have to be a
consequence of the cyclic driving. The approximate rate
independence of the response implies that the duration of
the driving cycle is not important, while the hierarchy of
nested cycles suggests that the driving need not be periodic,
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as long as it is confined to some range, e.g., the interval
[Δmin

0 ,Δmax
0 ] in the case of the crumpled sheet. It is therefore

conceivable that a random driving protocol confined to a
range of values may produce a similar hierarchy of nested
cycles and perhaps even enforce that the emerging set
of soft spots “play nice.” If so, this implies that memory
formation in athermal systems is more abundant in na-
ture then one might have suspected, since the interactions
of these systems with their fluctuating environment may
suffice. One could thus regard these systems as simple
and ad hoc sensors of their environment with the hysteron
configurations serving as its representation. Seen in this
way, the kitchen scale has a rather narrow representation of
its environment in terms of the instantaneous displacement
of its plate. On the other hand, a driven disordered system

whose response to driving is capable of self-organizing
into a hierarchy of nested hysteresis cycles establishes a
complex representation of its environment and captures
thereby certain features of the environment’s history.

We tend to associate memory formation with elaborate
processes of engineering design or long-term evolution. The
work of Shohat et al. (2) provides a rather elegant and
accessible table-top demonstration that this need not be
the case. Memory formation in matter—at least in its most
basic form—seems to be abundant, emerging rather easily.
So, next time you crumple a piece of paper and throw it
away, be aware. You may have created a memory.
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