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Proteins are among the most complex molecular structures, which have evolved to
develop broad functions, such as energy conversion and transport, information
storage and processing, communication, and regulation of chemical reactions.
However, the mechanisms by which these dynamical entities coordinate themselves to
perform biological tasks remain hotly debated. Here, a physical theory is presented to
explain how functional dynamical behavior possibly emerge in complex/macro molecules,
thanks to the effect that we term bilocalization of thermal vibrations. More specifically, our
approach allows us to understand how structural irregularities lead to a partitioning of the
energy of the vibrations into two distinct sets of molecular domains, corresponding to slow
and fast motions. This shape-encoded spectral allocation, associated to the genetic
sequence, provides a close access to a wide reservoir of dynamical patterns, and
eventually allows the emergence of biological functions by natural selection. To
illustrate our approach, the SPIKE protein structure of SARS-COV2 is considered.
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INTRODUCTION

In his seminal book “What is Life,” Erwin Schrödinger exposed his physical vision of modern
molecular biology by priorly emphasizing the intrinsically aperiodic character of living microscopic
systems (notably the nucleic acids). His vision arose from the observation that such biological
structures failed the physical theories of the time, which were centered, for the most part, on the
principle of the periodicity of crystal structures. Indeed, it was the introduction of the concept of
regularity (Gross, 1996) (or symmetries) that supported the development of a deep understanding of
the laws of quantum mechanics when they are applied to describe matter, its electronic and thermal
properties, and its relationship with radiation. Heat in solids corresponds to crystalline vibrations
defining quasi-particles called phonons (it is necessary to consider electrons in metals). Phonon
transport (heat flux) corresponds to the formation of wave packets that are subjected to dispersion
phenomena and propagate according to a mean-free path controlled by various relaxation processes
specific to the crystal structure. Heat capacity, thermal expansion or even thermal conductivity are
now quantities predicted with substantial precision (Ashcroft and David Mermin, 1976), thanks to
the well known physical concept of first Brillouin zone.

Conversely, the transport of energy and/or information in living systems is dominated by intricate
cascades of molecular interactions orchestrated by completely irregular structures called proteins.
Proteins are macromolecules derived from the translation of RNA into polymer chains of amino-acids
(AA), which fold to form unique and irregular structures (Hay and Scrutton, 2012). To operate,
proteins need motions. More specifically, this is achieved by the thermal environment: heat constantly

Edited by:
Marco Pasi,

École normale supérieure Paris-
Saclay, France

Reviewed by:
Luisa Di Paola,

Campus Bio-Medico University, Italy
Yves-henri Sanejouand,

Unité de fonctionnalité et Ingénierie
des Protéines (UFIP), France

*Correspondence:
Yann Chalopin

yann.chalopin@cnrs.fr

Specialty section:
This article was submitted to

Biological Modeling and Simulation,
a section of the journal

Frontiers in Molecular Biosciences

Received: 05 July 2021
Accepted: 20 October 2021

Published: 23 December 2021

Citation:
Chalopin Y and Sparfel J (2021) Energy

Bilocalization Effect and the
Emergence of Molecular Functions

in Proteins.
Front. Mol. Biosci. 8:736376.

doi: 10.3389/fmolb.2021.736376

Frontiers in Molecular Biosciences | www.frontiersin.org December 2021 | Volume 8 | Article 7363761

ORIGINAL RESEARCH
published: 23 December 2021

doi: 10.3389/fmolb.2021.736376

http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2021.736376&domain=pdf&date_stamp=2021-12-23
https://www.frontiersin.org/articles/10.3389/fmolb.2021.736376/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.736376/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.736376/full
http://creativecommons.org/licenses/by/4.0/
mailto:yann.chalopin@cnrs.fr
https://doi.org/10.3389/fmolb.2021.736376
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2021.736376


maintains proteins dynamics through thermal atomic
displacement fluctuations from the thermal bath (in most cases,
the solvent), at timescales ranging from the fs (e.g., proton transfer)
to the ms timescales (e.g., conformational changes) (Damry
et al., 2019). This dynamics plays for instance a determining
role in enzyme catalysis (Wolf-Watz et al., 2004; Yang and
Bahar, 2005; Henzler-Wildman et al., 2007; Boekelheide
et al., 2011; Callender and Dyer, 2015; Keul et al., 2018),
allostery (del Sol et al., 2007), and molecular recognition.
What we want to stress here is that a protein is an object that
results from a regular system’s distortion towards a
disordered/inhomogeneous structure or topology, because
we believe that the coexistence between structural order
and disorder produces dynamical patterns that have been
perceived as functional throughout natural selection (Keul
et al., 2018; Borgia et al., 2018). Why could it be so? Despite
the demonstrated importance of protein dynamics, the
interplay between the genetic sequence and the time
sequence of functional motions remains widely
undiscovered (Pancsa et al., 2016). Current efforts in
contemporary molecular biology focus particularly on
finding ways to describe proteins as structure-driven
dynamical entities. While it has long been a question of
how the structure dictates the function, the current
paradigm should be shifted towards quantitatively
describing function more as a result of dynamical
properties, which are themselves driven by shapes (Ishima
and Torchia, 2000). Unlike solids, we claim here from the
basis of mathematical arguments that living organisms
ultimately rest on the ability of evolution to shape
irregular molecular structures (Keul et al., 2018) to
produce functional dynamical patterns. Unfortunately,
developments in molecular biology and condensed matter
physics have made their way apart. Consequently, few studies
have apprehended proteins’ dynamics with a starting point
the entanglement between disorder (shape) and propagation
phenomena sustained by the environment (heat). The
transport of non-interacting electrons in disordered
structure has been extensively investigated (Filoche and
Mayboroda, 2012; Arnold et al., 2016; Lemut et al., 2020)
[the main known effect of which is Anderson localization
(Anderson, 1958)] while very few works have formalized
localization phenomena in phonon systems (Keppens
et al., 1998; Seyf et al., 2017; Juntunen et al., 2019; Zhou
et al., 2020). In this letter, we are inspired by a powerful
mathematical tool (Filoche and Mayboroda, 2012) to describe
a theory which offers the possibility to understand the
entanglement between microscopic lattice vibrations and
propagation phenomena in a complex topology, in order
to give meaning to the dynamics of proteins and enzymes.
The following study is based on a central assumption, which
is that such dynamical systems, potentially functional, arise
from sets of motions involving the largest number of different
domains, themselves associated to the most distinct
characteristic times and amplitudes to be selected
(McDonald et al., 2013). This leads us to address proteins’
functioning by formulating a question in physical terms: how

to reconstruct the functional dynamics -that is which linear
combination of normal modes-of a macro-molecule by
associating each characteristic time to a spatial domain,
from the knowledge of the 3D structure solely ? Finally,
once this quantity is mapped on proteins’ topology, what
is revealed ?

MATERIALS AND METHODS

A General Description of the Protein
Dynamics
Any periodic sequence composed of invariantly coupled degrees
of freedom universally leads to dispersive wave transport. Like
any other folded polymer system, a protein can be first
approximated as a linear chain of AA bonded between the
Cα atoms (backbone) as shown on Figure 1. However, these
covalent interactions are completed by noncovalent bonds
between the side chains: proteins fold, and consequently,
each degree of freedom of the BB has cohesive energy that is
no longer spatially homogeneous Figure 1. Based on these
physical considerations, we express the lagrangian of the
system as,

L � ∑N
i�1

1
2
_X
2

i − ∑
1≤i<j≤N

1
2
αij(Xi −Xj)2 (1)

which allows to extract the harmonic equations of motion of such
a dynamical system as

ω2Xi � ∑N
j�1

αij
⎛⎝ ⎞⎠Xi −∑N

j�1
αijXj (2)

where ω stands for the harmonic pulsation, Xi is the displacement
of atom i from its equilibrium position xi. The αij are constants
characterizing the strength of the bond between atoms i and j. We
see from this eq. that disorder (irregularity) is reflected by the
quantities αij which account for the nature of the interactions (ex.
angular or distant dependent) as well as the number of
“neighbors” included in the sum. We introduce the matrix
(operator):

−Δ : (δij) � ∑N
k�1

αij, if i � j.

−αij, otherwise.

⎧⎪⎨⎪⎩ (3)

such that the equations of motion are casted into an
eigenproblem in the form of a Laplace equation:

−ΔX � ω2X (4)

We consider vibrations defined at the zone-edge, by the
wavenumber k � π/a: ~Xj � ei

π
axjXj � (−1)jXj. We introduce a

real constant C, taken slightly greater than the greatest eigenvalue
ω2
max of − Δ and write

(C − ω2) ~Xi � C −∑N
j�1

αij⎛⎝ ⎞⎠ ~Xi +∑N
j�1

αij(−1)j−i ~Xj (5)
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with an operator Lh defined by:

Lh
~X � (C − ω2) ~X (6)

Localized Fast and Slow Motions and
Bilocalization Effects
A first frequency localization landscape (LL) uh is obtained from

Lhuh � (1), (7)

where (1) � (1,‥,1)T, which is termed high frequency LL for its
ability to capture the localization of the highest frequency modes
(Chalopin et al., 2019). In the case of a continuous elliptic
differential operator H on a domain Ω, it has been shown that
the localization landscape u defined as Hu � 1 on Ω satisfies
|Ψ(x)|
‖Ψ‖∞ ≤Eu(x) where Ψ is an eigenfunction of H with eigenvalue

E. We would then expect in our case to have
~Xi

‖ ~X‖∞ ≤ (C − ω2)ui for
every 1 ≤ i ≤ N. Unlike in the continuous case this is not generally
true. The maximum principle is indeed not true for the Lh
operator. Components of L−1h are then not strictly positive and
the inequality is false in general. However we numerically find
that this inequality is fulfilled on most cases. Therefore, high-
frequency modes are expected to be strongly localized on the
maxima of uh or equivalently on the minima of Wh � 1/uh.

In a discrete disordered system the dispersion relation is no
longer monotonous: wave-vectors at the zone edge are no longer
systematically associated with the highest frequencies. For this
reason low frequency modes are expected to be localized too. We
introduce a complementary localization landscape that captures
low frequency localization at the zone edge.

FIGURE 1 | The Spike (S) protein as an example of a disordered system (A) consists of three monomers (B), white, blue and red. Each monomer is a periodic chain
of amino acids with a period of 0.38 nm (C). A protein is a folded chain where order and disorder intermingle.

FIGURE 2 | The effective confining potential of high frequencies. The
high frequency confinement predicted by Wh is in agreement with the
structure of the density of vibrational states (here X2

i ) on a band corresponding
to the highest frequencies (A). 3D representation ofWh for the complete
protein (S) (B) with a zoom on the first monomer (C).
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We reconsider the dynamics of the system written as:

(ω2 + ϵ) ~Xi � ϵ +∑N
j�1

αij
⎛⎝ ⎞⎠ ~Xi −∑N

j�1
αij(−1)j−i ~Xj (8)

and introduce the operator Ll:

Ll
~X � (ω2 + ϵ) ~X (9)

which is positive definite with ϵ a small constant. The low
frequency localization landscape ul is straightforwardly
obtained from:

Llul � (1) (10)

As previously the inequality
~Xi

‖ ~X‖∞ ≤ (ω2 + ϵ)ui is not generally
true but happens to be true on most cases. On Figure 2 the
effective confining potentialWl � 1/ul (red) of the Spike protein of
SARS-Cov2 is displayed. One can clearly see that low frequency
modes are localized on the minima of Wl. As it can be seen on
Figure 3, the 2 localization landscapes happen to be
complementary: the minima of the high frequency LL are
located on the same sites as the maxima of the low frequency
LL and conversely. This can be explained by a simple relation
between operators Lh and Ll:

Lh � (C + ϵ)IN − Ll (11)

where IN denotes the N × N identity matrix. Ll being symmetric
and positive definite, there exists an orthogonal matrix O and a
diagonal matrix Σ with strictly positive eigenvalues such that:

Ll � OΣOT (12)

Note that matrix O can be chosen such that it is the matrix of
change of basis from the canonical basis to the basis of envelopes
at k � π/a (which are eigenvectors of Ll). Localization landscapes
are defined as:

Lhuh � (1)
Llul � (1){ (13)

We now use the diagonalization of Ll in these two expressions:

((C + ϵ)IN − OΣOT)uh � (1)
OΣOTul � (1){ (14)

0
(OT(C + ϵ)IN − ΣOT)uh � OT(1)
ΣOTul � OT(1){ (15)

0
((C + ϵ)IN − Σ)u*

h � (1)*
Σu*

l � (1)*{ (16)

where we have denoted v* � OTv for any column vector v and we
have used the fact thatOT and (C + ϵ)IN commute. Thus we have:

((C + ϵ)IN − Σ)u*
h � Σu*

l (17)

Matrices Σ and (C + ϵ)IN − Σ being diagonals we have for
every 1 ≤ i ≤ N:

(u*
h)i �

Σii

C + ϵ − Σii
(u*

l )i

where we have denoted (v)i the ith component of a column vector
v. The Σii are eigenvalues of matrix Ll so we have Σii � ω2

i + ϵ for
every 1 ≤ i ≤ N. Eventually we obtain a very simple relation
between components of the localization landscapes in the basis of
envelopes at k � π/a:

(u*
h)i �

ω2
i + ϵ

C − ω2
i

(u*
l )i (18)

Recall that we choose constant C slightly greater than the
greatest eigenvalue ω2

max of − Δ. Therefore, for low frequency ωi

Eq. 18 implies (u*h)i ≪ (u*l )i. For high frequency ωi Eq. 18
implies (u*l )i ≪ (u*h)i.

How to Look at the Structural Disorder as
Quantum-Like Confinement Potentials
Here we describe how the inverse quantities for both landscapes
(1/u) shall be regarded as effective confining potentials (CP). This
important quantity (CP) has been priorly introduced to
succesfully describe confinement of electronic wavefunctions
(Arnold et al., 2016).

We demonstrate that in discrete phonon systems, any
localization landscape aforementioned (e.g ul) also leads to the
apparition of an effective potential (Wl � 1/ul) in the equations
of motion (Eq. 25), which take a form similar to the Schrödinger
equation describing a free particle (e.g electron) in an irregular
quantum well.

We start with the equation defining the operator Ll:

Ll
~X � (ω2 + ϵ) ~X, (19)

which can be expanded in the continuous limit as

FIGURE 3 | Effective confinement potentials.
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−[div(A∇) + V] ~X � (ω2 + ϵ) ~X (20)

We introduce ~X � uϕ to account for the modulation of the
mode with an envelop defined by u � ul. This provides:

−div(Au∇ϕ) − div(Aϕ∇u) + Vuϕ � (ω2 + ϵ)uϕ. (21)

Using the Leibniz Formula

div(a �x) � a∇ · �x + �x · ∇a (22)

we obtain

−u∇ · (A∇ϕ) − (A∇ϕ) · ∇u − ϕ∇ · (A∇u) − A∇u · ∇ϕ + Vuϕ

� (ω2 + ϵ)uϕ − u∇ · (A∇ϕ) − 2A∇u · ∇ϕ + ϕ(−∇ · (A∇u)
+ Vu)

� (ω2 + ϵ)uϕ − ∇ · (A∇ϕ) − 2A
∇u
u

· ∇ϕ − ϕ

u
� (ω2 + ϵ)ϕ

(23)

where we used the fact that − ∇· (A∇u) + Vu � 1. Eventually
we get

FIGURE 4 | Bilocalization effect The modulus of the normal modes are plotted and shifted according to their eigenvalues by C − ω2 (dark points). The confinement
potentials corresponding to high (red) and low frequency modes (blue) are spatially complementary. The modal amplitude decays exponentially inside the potential.
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−∇ · (u2A∇)
u2

+ 1
u

[ ]ϕ � (ω2 + ϵ)ϕ (24)

replacing by the vector X, we obtain

− 1
u2
l

div(u2
l A∇X) + X

ul
� ω2

nX. (25)

To illustrate this feature, the high frequency confinement
potential has been color-coded in 3D on Figure 2.

This analogy leads to introduce the concept of effective barrier
through the quantity Wh − (C − ω2). Consequently, phonons
wavenumbers become purely imaginary where (C − ω2) −Wh < 0,
that is wave amplitudes vanish with exponential decays (Figure 3
and Figure 4). This later aspect is crucial for understanding how a
protein operates from the knowledge of its energy partition.

In this work, most the discussion is exemplified on the SPIKE
(S) protein of SARS-CoV-2, which is a molecule that plays a key
role in the virus replication (Turoňová et al., 2020). Without
providing too much details, one can simply recall that it serves as
a receptor to bind to the angiotensin 2 converting enzyme of the
host receptors, while initiating a binding with the cell membrane
before fusing with the latter (S) is formed by three chains (a
trimer) of polypeptide polymers (Figure 1B). Each chain
(monomer) consists of a sequence of amino acids regularly
spaced by 0.38 nm (see Figure 1) while the folded structure
(3D) form a very irregular object. Its dynamical properties
(vibrations) play a crucial role in understanding how the virus
interacts with its host (Di Paola et al., 2020). The normal modes
are calculated from − Δ considering a parameter free elastic
network model (pfENM-GNM) (Yang et al., 2009) as shown in
Figure 3. The effective high-frequency localization potential
obtained from Eq. 7 is also embedded in the figure to
highlight confinement effects by the potential: just like
Anderson localization, phonon confinement manifests itself by
an exponential modal decay upon the effect of an effective barrier.
However, Wh does not completely describe the whole spectrum
(i.e., low-frequency motions). When the effective energy C − ω2

rises above the maxima of the potential Wh, novel localizing
regions appear where the dynamics were priorly forbidden.
Interestingly, each site that is “frozen” within a given
frequency band switches to a dynamically active domain, once
driven in the complementary frequency band. Figure 3 and
Figure 4 illustrate this complementary relationship between
Wl and Wh as predicted by Eq. 11. These potentials are said
reciprocal, and the dynamical result of their interplay is termed
bilocalization.

This observation leads to the next question: estimating the
density of states (DOS) without solving the eigenvalue problem.
Weyl’s law offers an asymptotic estimate of the DOS, and it has
been successfully employed in the case of electronic
wavefunctions (Arnold et al., 2016) where the number of
modes with energy lower than E is estimated as

N(E) ≈ NW(E)
� (2π)−n∫

k2+W(x)≤E
0nx0nk (26)

WhereW corresponds to the localization landscape for electrons
in a random potential and E the effective energy. In our case,
since normal modes are localized in space, by Fourier properties
their width in k-space is expected to be large. Thus, one may
assume that all wave vectors are accessible to a state localized on
a scale of few DOF. Instead of summing over the volume of
phase space such that k2 +Wh(x)≤C − ω2

0 we sum over all wave
vectors of the Brillouin zone and only impose a condition on
position:Wh(x)≤C − ω2

0. To go from a continuous integral to a
discrete sum we use 0k→ π

Na, 0x→ a and ∫→∑. The estimation
is then:

N(C − ω2
0) ≈ NWh

(C − ω2
0)

� 1
2π

∑
xi,kn

Wh(xi)≤C−ω20

π

Na
a

� 1
2N

∑
xi

Wh(xi)≤C−ω2
0

∑
kn

1

� 1
2N

∑
xi

Wh(xi)≤C−ω2
0

2N

� ∑
xi

Wh(xi )≤C−ω2
0

1

(27)

N(x) corresponds to the number of modes having a frequency
such that C − ω2 ≤ x and should be termed the eigenvalue
counting function (Arnold et al., 2016). Figure 5 shows
comparison of this estimation and the true counting function
N(C − ω2

0) for (S).
Eq. 27 tends to overestimate the number of high-frequency

modes but gives a fair approximation of the density of states.
What emerges from these results, which can be generalized for
any discrete disordered dynamical system, is that.

1–Disordering a molecular crystal produces two localized
energy bands predicted by a double wave confinement potential.
These potentials have the particularity of being complementary in
the sense that (Eq. 1) temporally, they predict the locations of slow
(ul) and fast (uh) motions, moreover (2) the domains associated
with each temporally distinct landscapes are spatially
complementary: their association reproduces the molecular
domain as a whole (Figure 4).

2–The localization potential of slowmotions is a reading of the
local rigidity (see Sup. Mat.). Thus, any mode of effective energy
higher than the quantity ∑αij is no longer influenced by Wl.
Above a threshold corresponding to the maximum of theWl, the
localization potential Wh takes over.

3–The localizedmodes are subject to uncertaintyΔx ·Δk ≥ 2π, so
any strong localization of the energy of a mode implies a broadening
of the spectrum associated with the spatial frequencies. Disorder
effect on dispersion can be approximated by themodes’ projection at
the edge of the BZ. Figure 5 illustrates this aspect.

4–Complementarity implies that whatever the characteristic
time considered, for each DOF, there is always a cutoff frequency
below which the dynamics will be inhibited and vice-versa. The
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concept of bi-localization implies that there are no frozen
domains. Being active or at rest, this only occurs on a limited
frequency band. This description is consistent with the
equipartition theorem of energy.

DISCUSSION

Whether a many-body disordered system can be thermalized is a
question that has remained unanswered for a long time (Wang
et al., 2020). We show here that any coherent transport regime,
integrated into a discrete disordered structure, produces two
distinct broadband localization effects similar to Anderson’s
localization but contrary to the case of non-interacting electrons
(Lyra et al., 2015), strong localization occurs at the zone edge for
high and low energies. Such partition of energy spectrum into
two spatially complementary subdomains avoids the freezing of
a DOF when the system is set in contact with a thermostat.
Therefore bilocalization establishes a prerequisite for energy
equipartition in phonon systems. In other words, discrete
disordered systems at the equipartition produce a rich
dynamics, i.e., involving motions in many subdomains and
this at very different characteristic times. These two

localization effects imply a broadening of the spatial
frequency spectrum resulting in zero group-velocity modes
(Arregui et al., 2019), which dramatically reduces the heat
flux. Although this subject is out of the scope of the paper,
the reduction in thermal conductivity observed in disordered
solids (Keppens et al., 1998; Seyf et al., 2017; Juntunen et al.,
2019; Zhou et al., 2020) must therefore be understood as the
consequence of a projection of the phonon dispersion relation at
the zone-edge. Nature, for its part, can take advantage of such
dynamical effects associated to wave localization. Proteins
appear to be thermally driven nanomachines: slow modes at
the ns to ms timescales (also termed conformational dynamics)
correspond to conformation changes of large molecular
domains, they are of fundamental importance and therefore
extensively studied (Bahar et al., 1999; Henzler-Wildman et al.,
2007; Callender and Dyer, 2015; Damry et al., 2019). Their
biological functions often lie in the establishment of
characteristic times associated with the regulation of chemical
reactions such as enzymatic catalysis (Wolf-Watz et al., 2004) as
well as allostery (del Sol et al., 2007). Large scale dynamics is well
predicted by the landscape Wl. The application of this
framework of analysis on (S) allows highlighting the
flexibility at the level of contact with the viral membrane,
which allows the latter to orient itself effectively to scan the
host cell surface as well as to bind ACE2 (Turoňová et al., 2020).
The conformational movements called “up” and “down” are also
well described (Huang et al., 2020; Walls et al., 2020) by the
landscape Wl. The faster functional motions (on the ps time
range) are termed rate-promoting vibrations (RPV) (Henzler-
Wildman et al., 2007; Hay et al., 2010; Hay and Scrutton, 2012;
Schramm and Schwartz, 2018). They play the role of increasing
the kinetics of chemical reactions at the level of active sites.
Their physical origin has been extensively debated (Schramm
and Schwartz, 2018; Antoniou and Schwartz, 2001). The
geography of hot-spots hosting fast localized motions is very
well reproduced by theWh potential (Chalopin et al., 2019). For
(S), these hot spots reveal cavities corresponding to the fusion
machinery. The bond cleavage occurring at the fusion-peptide
region (Walls et al., 2020) collocates with a domain of fast
compressive vibrations (as seen on Figure 6 in red) to activate
the protein for membrane fusion. All localization hot-spots
revealed by both landscapes correspond to functional
domains considered as potential therapeutic targets (Di Paola
et al., 2020; Huang et al., 2020; Walls et al., 2020). These two-
folded localized dynamics, evolving at two distinct timescales,
are likely functionally relevant, and at least universally present
in enzymes and all proteins in general. For a function to emerge,
something has to be selected. If all the DOFs of a molecule, such
as a non-folded polymer, move coherently in time and space,
then there is no machinery to select. It is the association of as
many frequencies as possible with different domains that
produces the richest dynamics. Bilocalization can therefore be
perceived as a way to increase the variability of the distribution
of these characteristic times over different domains of the
molecule.

This demonstrates that the coexistence of order and disorder
tends to produce systems capable of evolving with an enhanced

FIGURE 5 | Localization and reciprocal space Top: Localized wave and
the reciprocal spaces (A) Dispersion relation of (S) compared to a perfect
chain of the same size (red) (A). The range of the power spectral density of a
localized mode is enlarged (C) compared (B) to a delocalized mode
(standing wave). Bottom: The eigenvalues counting function predicted by the
effective potential (dark) as well as that obtaiFed from the eigenvalues of Λ.
Their derivative correspond to the DOS (Inset).
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variability of dynamical patterns, offering to evolution a
possibility to achieve molecular functionalities by selecting the
3D topology. Is that all ?

This particular description of the energetic properties
exposed here must be further discussed and confronted with
previous studies. It is therefore appropriate to present in
particular the work of Leitner et al. (2015) with whom we
share this idea that the origin of the functional properties of
proteins and enzymes is intrinsically associated with the way in
which a given structure is able to diffuse heat in the molecular
scaffold (Leitner and Yamato, 2020). His approach consists in
calculating the local (i.e., residue scale) diffusion on the basis of
atomistic simulations such as molecular dynamics. The
considerable value that Leitner brings to this problem lies in
the ability to relate the transport coefficients (Yu and Leitner,
2005) to the reaction rates by the so-called Master equation
(Leitner et al., 2015). We quote here in a non-exhaustive way
some works that resonate perfectly with our description. First of
all, we fully agree that in these systems, the diffusion of energy
does not take place homogeneously, but rather along distinct
paths connecting sub-regions of the protein (what we call here
the valleys of confinement potential) giving rise to a transport by
percolation (Leitner and Yamato, 2020; Leitner, 2008). That is,
energy can propagate from residue A to residue B if and only if
these residues are part of a connex network defined by their

mechanical coupling (cohesive energy). We believe that hoping
transport occurs between different localization valleys through a
universal phenomenon knbown as tunneling effect by
evanescent waves. Secondly, we share the conclusion that the
transport is anisotropic (Leitner, 2008) since these localization
spots are not uniformly distributed in the protein.

Furthermore, Leitner’s works also showed that energy
percolation between a catalytic residue and other distant
residues allows the modulation of chemical bonds through
thermal fluctuations (which results in the fluctuations in the
length of hydrogen bonds) and that the corresponding network of
connected residues correlate well with the mapping of energy flow
(Leitner and Yamato, 2020).

We also agree that the role of contacts is preponderant
(Leitner et al., 2019; Yamashita et al., 2018). As shown in our
model, re-strengthening the cohesive energy locally induces the
formation of hot spots (Chalopin, 2020) which can be used as a
“hub” (see for instance the litterature dealing with graph
centrality).

To demonstrate the adequacy between these well established
results and our fundamental description of these transport
phenomena, we have performed non equilibrium molecular
dynamics simulations using the velocity verlet technics
coupled to a pfENM hessian (ANM) (Yang et al., 2009). To
simplify our discussion as much as possible without diminishing

FIGURE 6 | The fold encoded functional dynamics of SARS-Cov2 Spike protein The translation of the RNA into a protein structure gives rise to two hidden
landscapes of localized modes corresponding to fast and short timescales. The localization landscapes allow to predict functional domains such as the fusion machinery
(FM) as well as the bond cleavage (BC) (Walls et al., 2020), the scanning (Turoňová et al., 2020) as well as the binding (AC) with the host cell surface (Huang et al., 2020),
the binding with potential neutralizing antibodies (BA). Other soft domains, allow to facilitate motions interfering with antibody (MA) (Turoňová et al., 2020) and
subjected to several mutations. This illustrates the quantitative relationship between the expression of the DNA code and the physical origin of functional domains.
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the general scope of our remarks, we have chosen a much
smaller system than SPIKE trimer such as the HIV1-protease
enzyme (PDB id:1rx7) and calculate the confinement potential
of the dimer. The corresponding plot (top of Figure 7) allows us
to identify the valleys of the confinement potential in which the
energy must remain confined or a contrario the collars which
will allow the isolation of the high frequency domains. We have
chosen two sites (a collar C) and a valley (V, corresponding to
the active sites) and we parametrically excite an AA in each of
these domains, at the fastest frequency of the system (here
3 THz).

From this selective excitation on the AAs, we follow
temporally how the locally injected energy propagates in the
scaffold of the protein (Figure 8). On the first plot (right), we
notice that when we excite the system in a domain that does not
correspond to a confinement potential well, the energy does not
propagate in the system but remains localized at the level of the
excitation (C and D). However, when this excitation is
performed at the level of the active sites (left), which
correspond to the most confining domains, we notice that
the energy propagates in an dramatically more efficient way
in the whole system (A and B). This numerical experiment
allows to emphasize unequivocally that the transport is indeed
anisotropic and that this anisotropy is prescribed by the
localization landscape, thus generalizing Leitner’s results
under a broader physical picture. In order to compare our
approach to the state of the art, we calculated the degree of
centrality of the system and compared it to the localization

landscape (bottom of Figure 7), thus revealing a correlation
factor between the two quantities that amounts to 0.9. This last
result allows us to claim that rigidity, connectivity or degree of
centrality are quantities that relate to the same fundamental
physical effect, that is the vibrational confinement potential.
Thus, it becomes possible to associate these quantities to
strongly anisotropic energy transport properties, and that this
is this particular transport mechanism (associated to the
percolation through confined subregions) governs the
possibility of having locally various functional dynamics.

However, there is an additional concept often recalled in the
literature to describe the diffusion of energy which is the mean
free path. We believe, on the basis of the physical description
presented here, (i.e., that a protein can be seen as a set of
potentials wells) that this particular vision of transport is
erroneous and here are the reasons for this. The mean free
path considers that energy is exchanged through quasiparticles
propagating for a certain time or along a certain distance before
undergoing a collision inducing a loss of phase of the wave
packet and leading in some cases to energy loss or relaxation
mechanisms. This view implies that the size of the system is very
large compared to the coherence length of the wave packets
describing these quasiparticles. We have shown here that the
localization is an interferential phenomenon, where the waves
propagating in the complex medium will create reflection/
transmission phenomena giving rise to the localization spots.
Clearly in this type of regime, the coherence length of the waves
is of the order of the size of the system otherwise no localization
phenomenon could be observed. We therefore believe that the
transport in the protein is not a classical scattering phenomenon
but rather a hopping transport phenomenon, induced by the set
of weak or resonant couplings between localizing subdomains
resulting from wave interferences.

Summary of the Main Results
Bilocalization, as it is presented here, is a theory that allows to
describe in a condensed and quite robust way the dynamics of
proteins, that is the evolution of the positions of the degrees of
freedom in space and in time, at the two limits of the slowest and
fastest time scales. This tool can be adapted to any cohesion
model, atomistic or coarse-grained. If it is well known that a
protein is a dynamical object with multiscale behaviors, there
are in fact no tools that surpass the traditional normal mode
analysis to highlight the domains characterizing the motions at a
given frequency/time period. The normal mode approach
widely developped in the litterature, is neither rigorous nor
sufficient to establish a complete picture of proteins and
enzymes dynamics. Indeed, computing eigenmodes consists
in accessing to the vector space that allows to decompose
each motion with a well defined orthonormal basis. In other
words, the motion of each atom/AA is a linear combination of
the eigenmodes. If it is possible to access to this basis by solving
an eigenvalue problem, we learn nothing about the combination
of these modes (i.e., we do not know the coefficients that define
the linear combination, nor the phase shifts between these
modes), thus the information we have access to is partial,
and one cannot rigorously predict an observed motion on the

FIGURE 7 | Network centrality, rigidity and localization landscape The
inherent ability of a protein structure to generate confining potentials (top
plot)–which in turn will define energy transport properties–is intrinsically linked
to its rigidity (grey), which in turn can be seen as a modulation of
connectivity or centrality (red and blue).
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sole knowledge of the eigenvectors. In addition, if we want to
study large systems like the SPIKE protein or RNA-polymerase
(roughly 5000 AA), it is almost unmanageable to manipulate
15 0,000 eigenvalues with eigenvectors distributed over 50,000
amino acids. In most works, the analysis is often restricted to the
few lowest energy mode, which form a too small fraction of the
full eigenmodes spectrum. By solving the linear system LU � 1,
with the right localization operator L, i.e,. by extracting a single
quantity, associated to each degree of freedom, one gets a more
accurate information roughly 100 times faster to calculate
because solving a linear system is much easier in terms of
algoritmic complexity than calculating the full spectrum of
an operator.

The analysis proposed here is not only interesting to predict
rigorously the predominant motions observed in these systems,
but it also allows to understand the way energy flows in the latter.
That is, which domains are energetically coupled and which are
isolated (Chalopin et al., 2019).

In addition, bilocalization also offers a deep description of the
underlying physical mechanisms that allow to universalize the
formation of a partitioning/confinement of vibrations in
proteins’ domains. To this end, we have established an
analogy with quantum mechanics by showing that the
structural disorder of the protein, which translates into an
inhomogeneity of its rigidity, produces a confinement
potential for the phonons (vibration modes) of the system
just as a crystal produces a potential barrier for an electron
(Filoche et al.). We will see later on, how this physical
description allows to unify the set of well known methods
such as the analysis of proteins by contact network, the long

range transmission mechanisms induced by rigidity, which are
in fact metrics that have some efficiency, but do not share any
common physical picture of the exchange processes involved.

CONCLUSION

We have developed a theory to link the topological structure of a
molecule (genetically encoded) and its function by studying the
(coherent) motions imposed by its complex form. We have
shown that structural disorder produces de facto a
partitioning of its slow and fast motions into several
molecular subdomains. Two complementary effective
confinement potentials predict these features. At the energy
equipartition, each molecular domain is identified by a
localized motion of characteristic frequency. This one to one
correspondence between topological irregularities and
dynamical patterns allows the exploration of large dynamical
variability. Regarding the dynamics of a homogeneous collection
of harmonic oscillators, disorder/randomness thus appears as a
prerequisite to produce a function, that is to say, an efficient
temporal and spatial coordination of atomic motions, suited to
accomplish a function in a particular environment. This
quantitative analysis of this structure-function dynamical
interplay forms the basis of a new paradigm for
understanding how nature accomplishes molecular design,
that is to say, from which generator of properties, evolution
manages to select biological functions from an easily modifiable
reservoir of dynamical patterns. These localizing properties can
be observed experimentally by looking at the rigidity (or its

FIGURE 8 | Selective parametric excitation and anisotropic heat transport. A parametric excitation at the highest frequency (A) and (C) produces a non-equilibrium
transport phenomenon. Tracking the progression (B,D) of heat fields bymolecular dynamics depending on whether the system is excited in a region of high (A) or low (B)
potential (or connectivity) localization illustrates the anisotropic nature of the thermal relaxation.
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temperature factor) or by measuring the thermal transport which
takes place in these systems and which must appear as highly
anisotropic, due to the percolation phenomena produced by the
effective confinement potential produced by the disorder.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

YC has conceived the idea and performed the numerical calculations.
YC and JS have developed the derivations, analyzed the data, co-wrote
the manuscript and finally agree to its content.

ACKNOWLEDGMENTS

The author (YC) would like to thank M. Filoche for usefull
discussions at the early stage of this work.

REFERENCES

Anderson, P. W. (1958). Absence of Diffusion in Certain Random Lattices. Phys.
Rev. 109, 1492–1505. doi:10.1103/physrev.109.1492

Antoniou, D., and Schwartz, S. D. (2001). Internal Enzyme Motions as a Source of
Catalytic Activity: Rate-Promoting Vibrations and Hydrogen Tunneling.
J. Phys. Chem. B 105, 5553–5558. doi:10.1021/jp004547b

Arnold, D. N., David, G., Jerison, D., Mayboroda, S., and Filoche, M. (2016).
Effective Confining Potential of Quantum States in Disordered media. Phys.
Rev. Lett. 116, 056602. doi:10.1103/PhysRevLett.116.056602

Arregui, G., Lanzillotti-Kimura, N. D., Sotomayor-Torres, C. M., and García, P. D.
(2019). Anderson Photon-Phonon Colocalization in Certain Random
Superlattices. Phys. Rev. Lett. 122, 043903. doi:10.1103/PhysRevLett.122.043903

Ashcroft, Neil. W. (1976). in Solid State Physics/Neil W. Ashcroft. Editor
N. David Mermin (Philadelphia (Pa.): Saunders College).

Bahar, I., Erman, B., Jernigan, R. L., Atilgan, A. R., and Covell, D. G. (1999).
Collective Motions in Hiv-1 Reverse Transcriptase: Examination of Flexibility
and Enzyme Function. J. Mol. Biol. 285, 1023–1037. doi:10.1006/
jmbi.1998.2371

Boekelheide, N., Salomón-Ferrer, R., and Miller, T. F. (2011). Dynamics and
Dissipation in Enzyme Catalysis. Proc. Natl. Acad. Sci. 108, 16159–16163.
doi:10.1073/pnas.1106397108

Borgia, A., Borgia, M. B., Bugge, K., Kissling, V. M., Heidarsson, P. O., Fernandes,
C. B., et al. (2018). Extreme Disorder in an Ultrahigh-Affinity Protein Complex.
Nature 555, 61–66. doi:10.1038/nature25762

Callender, R., and Dyer, R. B. (2015). The Dynamical Nature of Enzymatic
Catalysis. Acc. Chem. Res. 48, 407–413. doi:10.1021/ar5002928

Chalopin, Y., Piazza, F., Mayboroda, S., Weisbuch, C., and Filoche, M. (2019).
Universality of Fold-Encoded Localized Vibrations in Enzymes. Sci. Rep. 9,
12835. doi:10.1038/s41598-019-48905-8

Chalopin, Y. (2020). The Physical Origin of Rate Promoting Vibrations in Enzymes
Revealed by Structural Rigidity. Sci. Rep. 10, 17465. doi:10.1038/s41598-020-
74439-5

Damry, A. M., Mayer, M. M., Broom, A., Goto, N. K., and Chica, R. A. (2019).
Origin of Conformational Dynamics in a Globular Protein. Commun. Biol. 2,
433. doi:10.1038/s42003-019-0681-2

del Sol, A., Araúzo-Bravo, M. J., Amoros, D., and Nussinov, R. (2007). Modular
Architecture of Protein Structures and Allosteric Communications: Potential
Implications for Signaling Proteins and Regulatory Linkages. Genome Biol. 8,
R92. doi:10.1186/gb-2007-8-5-r92

Di Paola, L., Hadi-Alijanvand, H., Song, X., Hu, G., and Giuliani, A. (2020). The
Discovery of a Putative Allosteric Site in the Sars-Cov-2 Spike Protein Using an
Integrated Structural/dynamic Approach. J. proteome Res., acs.jproteome.,
0c00273. doi:10.1021/acs.jproteome.0c00273

Filoche, M., and Mayboroda, S. (2012). Universal Mechanism for anderson and
Weak Localization. Proc. Natl. Acad. Sci. 109, 14761–14766. doi:10.1073/
pnas.1120432109

Gross, D. J. (1996). The Role of Symmetry in Fundamental Physics. Proc. Natl.
Acad. Sci. 93, 14256–14259. doi:10.1073/pnas.93.25.14256

Hay, S., Johannissen, L. O., Sutcliffe, M. J., and Scrutton, N. S. (2010). Barrier
Compression and its Contribution to Both Classical and Quantum Mechanical
Aspects of EnzymeCatalysis. Biophysical J. 98, 121–128. doi:10.1016/j.bpj.2009.09.045

Hay, S., and Scrutton, N. S. (2012). Good Vibrations in Enzyme-Catalysed
Reactions. Nat. Chem 4, 161–168. doi:10.1038/nchem.1223

Henzler-Wildman, K. A., Thai, V., Lei, M., Ott, M., Wolf-Watz, M., Fenn, T., et al.
(2007). Intrinsic Motions along an Enzymatic Reaction Trajectory. Nature 450,
838–844. doi:10.1038/nature06410

Huang, Y., Yang, C., Xu, X.-f., Xu, W., and Liu, S.-w. (2020). Structural and
Functional Properties of Sars-Cov-2 Spike Protein: Potential Antivirus Drug
Development for Covid-19. Acta Pharmacol. Sin 41, 1141–1149. doi:10.1038/
s41401-020-0485-4

Ishima, R., and Torchia, D. A. (2000). Protein Dynamics from Nmr. Nat. Struct.
Biol. 7, 740–743. doi:10.1038/78963

Juntunen, T., Vänskä, O., and Tittonen, I. (2019). Anderson Localization Quenches
thermal Transport in Aperiodic Superlattices. Phys. Rev. Lett. 122, 105901.
doi:10.1103/PhysRevLett.122.105901

Keppens, V., Mandrus, D., Sales, B. C., Chakoumakos, B. C., Dai, P., Coldea, R.,
et al. (1998). Localized Vibrational Modes in Metallic Solids. Nature 395,
876–878. doi:10.1038/27625

Keul, N. D., Oruganty, K., Schaper Bergman, E. T., Beattie, N. R., McDonald, W. E.,
Kadirvelraj, R., et al. (2018). The Entropic Force Generated by Intrinsically
Disordered Segments Tunes Protein Function. Nature 563, 584–588.
doi:10.1038/s41586-018-0699-5

Leitner, D. M., Buchenberg, S., Brettel, P., and Stock, G. (2015). Vibrational Energy
Flow in the Villin Headpiece Subdomain: Master Equation Simulations.
J. Chem. Phys. 142, 075101. doi:10.1063/1.4907881

Leitner, D. M. (2008). Energy Flow in Proteins. Annu. Rev. Phys. Chem. 59,
233–259. doi:10.1146/annurev.physchem.59.032607.093606

Leitner, D. M., Pandey, H. D., and Reid, K. M. (2019). Energy Transport across
Interfaces in Biomolecular Systems. J. Phys. Chem. B 123, 9507–9524.
doi:10.1021/acs.jpcb.9b07086

Leitner, D. M., and Yamato, T. (2020). Recent Developments in the Computational
Study of Protein Structural and Vibrational Energy Dynamics. Biophys. Rev. 12,
317–322. doi:10.1007/s12551-020-00661-0

Lemut, G., Pacholski, M. J., Ovdat, O., Grabsch, A., Tworzydło, J., and Beenakker,
C. W. J. (2020). Localization Landscape for Dirac Fermions. Phys. Rev. B 101,
081405. doi:10.1103/physrevb.101.081405

Lyra, M. L., Mayboroda, S., and Filoche, M. (2015). Dual Landscapes in anderson
Localization on Discrete Lattices. Epl 109, 47001. doi:10.1209/0295-5075/109/
47001

McDonald, L. R., Whitley, M. J., Boyer, J. A., and Lee, A. L. (2013).
Colocalization of Fast and Slow Timescale Dynamics in the Allosteric
Signaling Protein CheY. J. Mol. Biol. 425, 2372–2381. doi:10.1016/
j.jmb.2013.04.029

Pancsa, R., Raimondi, D., Cilia, E., and Vranken, W. F. (2016). Early
Folding Events, Local Interactions, and Conservation of Protein
Backbone Rigidity. Biophysical J. 110, 572–583. doi:10.1016/
j.bpj.2015.12.028

Schramm, V. L., and Schwartz, S. D. (2018). Promoting Vibrations and the
Function of Enzymes. Emerging Theoretical and Experimental
Convergence. Biochemistry 57, 3299–3308. doi:10.1021/
acs.biochem.8b00201

Seyf, H. R., Yates, L., Bougher, T. L., Graham, S., Cola, B. A., Detchprohm, T., et al.
(2017). Rethinking Phonons: The Issue of Disorder. Npj Comput. Mater. 3, 49.
doi:10.1038/s41524-017-0052-9

Frontiers in Molecular Biosciences | www.frontiersin.org December 2021 | Volume 8 | Article 73637611

Chalopin and Sparfel Energy Bilocalization and Protein Functions

https://doi.org/10.1103/physrev.109.1492
https://doi.org/10.1021/jp004547b
https://doi.org/10.1103/PhysRevLett.116.056602
https://doi.org/10.1103/PhysRevLett.122.043903
https://doi.org/10.1006/jmbi.1998.2371
https://doi.org/10.1006/jmbi.1998.2371
https://doi.org/10.1073/pnas.1106397108
https://doi.org/10.1038/nature25762
https://doi.org/10.1021/ar5002928
https://doi.org/10.1038/s41598-019-48905-8
https://doi.org/10.1038/s41598-020-74439-5
https://doi.org/10.1038/s41598-020-74439-5
https://doi.org/10.1038/s42003-019-0681-2
https://doi.org/10.1186/gb-2007-8-5-r92
https://doi.org/10.1021/acs.jproteome.0c00273
https://doi.org/10.1073/pnas.1120432109
https://doi.org/10.1073/pnas.1120432109
https://doi.org/10.1073/pnas.93.25.14256
https://doi.org/10.1016/j.bpj.2009.09.045
https://doi.org/10.1038/nchem.1223
https://doi.org/10.1038/nature06410
https://doi.org/10.1038/s41401-020-0485-4
https://doi.org/10.1038/s41401-020-0485-4
https://doi.org/10.1038/78963
https://doi.org/10.1103/PhysRevLett.122.105901
https://doi.org/10.1038/27625
https://doi.org/10.1038/s41586-018-0699-5
https://doi.org/10.1063/1.4907881
https://doi.org/10.1146/annurev.physchem.59.032607.093606
https://doi.org/10.1021/acs.jpcb.9b07086
https://doi.org/10.1007/s12551-020-00661-0
https://doi.org/10.1103/physrevb.101.081405
https://doi.org/10.1209/0295-5075/109/47001
https://doi.org/10.1209/0295-5075/109/47001
https://doi.org/10.1016/j.jmb.2013.04.029
https://doi.org/10.1016/j.jmb.2013.04.029
https://doi.org/10.1016/j.bpj.2015.12.028
https://doi.org/10.1016/j.bpj.2015.12.028
https://doi.org/10.1021/acs.biochem.8b00201
https://doi.org/10.1021/acs.biochem.8b00201
https://doi.org/10.1038/s41524-017-0052-9
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Turoňová, B., Sikora, M., Schürmann, C., Hagen, W. J. H., Welsch, S., Blanc, F. E.
C., et al. (2020). In Situ Structural Analysis of Sars-Cov-2 Spike Reveals
Flexibility Mediated by Three Hinges.Science, eabd5223.

Walls, A. C., Park, Y.-J., Tortorici, M. A., Wall, A., McGuire, A. T., and Veesler, D.
(2020). Structure, Function, and Antigenicity of the Sars-Cov-2 Spike
Glycoprotein. Cell 181, 281e6–292. doi:10.1016/j.cell.2020.02.058

Wang, Z., Fu, W., Zhang, Y., and Zhao, H. (2020). Wave-turbulence Origin of the
Instability of anderson Localization against many-body Interactions. Phys. Rev.
Lett. 124, 186401. doi:10.1103/PhysRevLett.124.186401

Wolf-Watz, M., Thai, V., Henzler-Wildman, K., Hadjipavlou, G., Eisenmesser, E.
Z., and Kern, D. (2004). Linkage between Dynamics and Catalysis in a
Thermophilic-Mesophilic Enzyme Pair. Nat. Struct. Mol. Biol. 11, 945–949.
doi:10.1038/nsmb821

Yamashita, S., Mizuno, M., Tran, D. P., Dokainish, H., Kitao, A., and Mizutani,
Y. (2018). Vibrational Energy Transfer from Heme through Atomic
Contacts in Proteins. J. Phys. Chem. B 122, 5877–5884. doi:10.1021/
acs.jpcb.8b03518

Yang, L.-W., and Bahar, I. (2005). Coupling between Catalytic Site and Collective
Dynamics: A Requirement for Mechanochemical Activity of Enzymes.
Structure 13, 893–904. doi:10.1016/j.str.2005.03.015

Yang, L., Song, G., and Jernigan, R. L. (2009). Protein Elastic Network Models and
the Ranges of Cooperativity. Proc. Natl. Acad. Sci. 106, 12347–12352.
doi:10.1073/pnas.0902159106

Yu, X., and Leitner, D. M. (2005). Heat Flow in Proteins: Computation of
thermal Transport Coefficients. J. Chem. Phys. 122, 054902. doi:10.1063/
1.1830431

Zhou, W. X., Cheng, Y., Chen, K. Q., Xie, G., Wang, T., and Zhang, G. (2020).
Thermal Conductivity of Amorphous Materials. Adv. Funct. Mater. 30,
1903829. doi:10.1002/adfm.201903829

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Chalopin and Sparfel. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org December 2021 | Volume 8 | Article 73637612

Chalopin and Sparfel Energy Bilocalization and Protein Functions

https://doi.org/10.1016/j.cell.2020.02.058
https://doi.org/10.1103/PhysRevLett.124.186401
https://doi.org/10.1038/nsmb821
https://doi.org/10.1021/acs.jpcb.8b03518
https://doi.org/10.1021/acs.jpcb.8b03518
https://doi.org/10.1016/j.str.2005.03.015
https://doi.org/10.1073/pnas.0902159106
https://doi.org/10.1063/1.1830431
https://doi.org/10.1063/1.1830431
https://doi.org/10.1002/adfm.201903829
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles

	Energy Bilocalization Effect and the Emergence of Molecular Functions in Proteins
	Introduction
	Materials and Methods
	A General Description of the Protein Dynamics
	Localized Fast and Slow Motions and Bilocalization Effects
	How to Look at the Structural Disorder as Quantum-Like Confinement Potentials

	Discussion
	Summary of the Main Results

	Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References


