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A B S T R A C T

Background: The Solow–Swan model describes the long-term growth of the capital to labor ratio by the funda-
mental differential equation of Solow–Swan theory. In conventional approaches, this equation was fitted to data
using additional information, such as the rates of population growth, capital depreciation, or saving. However,
this was not the best possible fit.
Objectives: Using the method of least squares, what is the best possible fit of the fundamental equation to the time-
series of the capital to labor ratios? Are the best-fit parameters economically sound?
Method: For the data, we used the Penn-World Table in its 2021 version and compared six countries and three
definitions of the capital to labor ratio. For optimization, we used a custom-made variant of the method of
simulated annealing. We also compared different optimization methods and calibrations.
Results: When comparing different methods of optimization, our custom-made tool provided reliable parameter
estimates. In terms of R-squared they improved upon the parameter estimates of the conventional approach.
Except for the USA, the best-fit values of the exponent were unplausible, as they suggested a too large elasticity of
output. However, using a different calibration resulted in more plausible values of the best-fit exponent also for
France and Pakistan, but not for Argentina and Japan.
Conclusion: Our results have shown a discrepancy between the best-fit parameters obtained from optimization and
the parameter values that are deemed plausible in economy. We propose a research program to resolve this issue
by investigating if suitable calibrations may generate economically plausible best-fit parameter values.
1. Introduction

1.1. Goal of the paper

The fundamental differential Eq. (1) of the Solow (1956) and Swan
(1956) model of capital accumulation aims at describing the capital (K)
to labor (L) ratio, k ¼ K/L, as a function of time, t (Barrow and
Sala-i-Martin, 2004):

dkðtÞ
dt

¼ p � kðtÞa � q � kðtÞ (1)

Eq. (1) has four parameters: exponent, a, scaling parameters, p and q,
and the initial value, k(t0) ¼ k0 at initial time t0. This paper asks: Given a
time-series of observed values of capital to labor ratios, ki at time ti (i¼ 1,
…, N), what are the best-fit parameters of the Solow–Swan differential
equation, using the method of least squares? Thereby, we interpret Eq.
(1) as an “empirical model” (Yue and Ducharme, 2016): We focus on
data-fitting and ignore the economic interpretation of the parameters. As
Brunner).
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noted by Klemp (2013), this research question has rarely been discussed
(c.f. Khoo et al., 2021).

This approach differs from the conventional “mechanistic modeling”
that is common in undergraduate teaching, where the parameters are
chosen from other data sources according to their economic meaning.
(This is explained in Table 1 below.) Moreover, we ask if in hindsight the
values of the best-fit parameters are economically meaningful.

1.2. Background on teaching

The “Solow–Swan model” has been a milestone towards the devel-
opment of modern growth theory (Chu, 2018) and it is still an active
research topic (Google Scholar: 1800 publications since 2015mentioning
it). It is therefore included inmost undergraduate curricula for economics
(Ogun, 2014). In class, it was used to teach students the work with
macroeconomic data (Wuthisatian and Thanetsunthorn, 2019) and to
expose them to research experiences (example: Bellew, 2011; Frey,
2017).
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Table 1. Derivation and economic interpretation of Eq. (1) in terms of the Solow–Swan model.

key phrase Formula explanation

initial variables Y, K, L, I output, capital stock, labor, investment

Cobb-Douglas equation: Y ¼ A �Kα � L1�α A productivity factor, α elasticity of output

investment ¼ savings: I ¼ s �Y s savings rate

capital accumulation with depreciation: dK
dt

¼ I� d �K ¼ s �A �Kα � L1�α � d �K d rate of depreciation of capital

Malthusian law: dL
dt

¼ n � L n exponential growth rate

quotient rule of calculus:
d
�
K
L

�
dt

¼

�
dK
dt

�
L

� K �

�
dL
dt

�
L2

K/L ¼ k, capital per labor

substitute above equations:
d
�
K
L

�
dt

¼ ðs �A �Kα � L1�α � d �KÞ
L

� K � ðn � LÞ
L2

fundamental differential equation: dk
dt

¼ s �A � kα � d � k� n � k simplify, using k ¼ K/L

dk
dt

¼ p � ka � q � k simplify, using
a ¼ α, p ¼ s⋅A, q ¼ d þ n

initial value k(t0) ¼ k0 t0, k0 > 0

steady state (equilibrium) kequ ¼ ffiffiffiffiffiffiffiffi
p=q1�a

p
solve p ka�q k ¼ 0
¼ limit of k(t) for t→∞

analytic solution
kðtÞ ¼ kequ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
1�

�
k0
kequ

�1�a�
� e�p � ð1�aÞ � ðt�t0Þ=ðkequÞ1�a1�a

s

Note: Adapted from Acemoglu (2013), using common economic notation.
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Undergraduate teaching (Mixon and Sockwell, 2007; Stein, 2007;
Jones and Vollrath, 2013) generally interpreted Eq. (1) as part of a larger
“mechanistic model” describing the long-term growth of a country’s
economy using merely two explanatory variables, labor and capital,
ignoring (at first) distinctions within labor and capital. When the Solo-
w–Swan model was fitted to data, then the economic parameters
mentioned in the model equations of Table 1 were used. (Their values
were outcomes of other lines of research, such as Hall, 1971; Hulten and
Wykoff, 1981; Nadiri and Prucha, 1996 for depreciation.) Teaching then
focused on comparisons of countries, often assuming the steady state
(kequ in Table 1) and linear models (as in research: Durlauf et al., 2005).
The research question of this paper asks to abstract from the economic
reasoning and consider Eq. (1) in isolation: We fit (1) to the data k¼ K/L,
ignoring any other data and the meaning of the parameters.
1.3. Related economic growth models

The Solow–Swan model was adapted to take care of (exponentially
increasing) technological progress. In this case, Eq. (1) holds for the
capital to “effective labor” ratio (section 14 in Solow, 1956). Related
adaptions allowed to discuss interdisciplinary issues in class, such as
climate change (Tsigaris and Wood, 2016), corruption (Elmslie and
Tebaldi, 2010), education (Breton, 2013), or over-exploitation of natural
resources (Van den Berg, 2012). As our data do not inform about effective
labor directly, this paper does not consider these adaptions.

Further, as our paper focuses on the fundamental equation of the
Solow–Swan theory, we do not consider the modern approaches to eco-
nomic growth theory, such as the Ramsey-Cass-Koopmans model, which
endogenizes the savings rate (c.f. the outline in Spear and Young, 2014),
or the Mankiw–Romer–Weil model, which extends the classical model by
augmenting the production function with human capital (Mankiw et al.,
1992). The differential equations of these and related models are sum-
marized in Tsoularis (2021).

The fundamental Eq. (1) was modified by more realistic assumptions
about the growth of labor, such as logistic growth (Mingari Scarpello and
Ritelli, 2003), Richard’s growth (Accinelli and Brida, 2005), von Berta-
lanffy growth (Guerrini, 2010), general bounded growth (Guerrini, 2006;
Ferrara, 2011a), or even decay (Ferrara, 2011b). However, this leads to
2

different differential equations (and to difference-differential equations:
Cai, 2012), which we do not consider here.

Moreover, this paper does not consider Eq. (1) with the exponent a ¼
1, as in the limit a→1� (from below) differential Eq. (1) converges to the
(different) Gompertz equation (Marusic and Bajzer, 1993). Yet, we
consider a¼ 0, as Eq. (1) remains meaningful with this exponent (though
elasticity α ¼ 0 may not be realistic, economically).

Differential Eq. (1) remains meaningful for q ¼ 0. In this case, the
analytic solution is a power function with an infinite steady state.
However, except for an example, in this paper we assume q > 0, as an
infinite steady state would be incompatible with the raison d’être of the
Solow–Swan model, namely the prediction of growth to a finite steady
state, whose size can be controlled by growth policies (Solow, 1988).
1.4. Link to mathematical biology

The pros and cons of the empirical approach and of the above
mechanistic approach towards Eq. (1) can be explained with reference to
mathematical biology. There, Eq. (1) has been derived from a mecha-
nistic biophysical model for the growth of animals, the generalized “von
Bertalanffy model”, which is an active research topic, too (Google
Scholar: 2300 publications since 2015 mentioning this term). In biolog-
ical growth models, k means body mass and its growth is determined
from the antagonistic effects of anabolism and catabolism, whereby the
body utilizes resources at a metabolic rate for growth, the term p⋅ka,
except for the resources allocated to the operation and maintenance of
existing tissue, which are proportional to mass, the term q⋅k (Pütter,
1920).

By refining this reasoning, Bertalanffy (1957) argued that vertebrates
would grow according to model (1) with the metabolic exponent a¼ 2/3.
West et al. (2001) contested this claim and proposed the exponent a ¼
3/4. To resolve this controversy (Isaac and Carbone, 2010), biologists
turned to the empirical modeling approach: They sought the best-fit
exponents of Eq. (1) for distinct species and for different individual an-
imals of the same species. It turned out that model (1) was not sufficient
and a generalization with two exponents (a, b) was needed to accurately
describe certain size-at-age data (Pauly and Cheung, 2018). For example,
in a study of nestlings of blue tits from an urban park, each bird had its
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own optimal exponent (pair) that was unrelated to the metabolic expo-
nents proposed by Bertalanffy and West. Rather, the model parameters
were associated to small variations in the environment around each nest
site (Brunner et al., 2021), whence the exponents were no longer inter-
preted in terms of metabolism. Instead, they were related to the shape of
the size-at-age data (specifically to the ratio of the size at fastest growth
over adult size).

Returning to the Solow–Swan model, we argue that an empirical
approach may supplement the mechanistic modeling in the same way:
When the best-fit parameters deviate from the parameters expected from
the mechanist reasoning, this may indicate economic causes that future
research might uncover.

2. Materials and method

2.1. Materials

We used Mathematica 13.0 (Wolfram Research, 2021) for computa-
tions. For economics courses that use Python (Jenkins, 2022), similar
functions are available in Python libraries.
2.2. Data

We used PWT (2021), the 2021 Penn World Table, as in economic
growth theory this is a well-established source of data collected annually
from 1950 to 2019 (Feenstra et al., 2015). Thus, outside of China and
Italy (which we do not consider) data were not affected by the Covid-19
pandemics.

First, we compared the fit of model (1) to the data from 1950 to 2019,
using different definitions of the ratio, k, for the USA. For the capital
stock, K, we used the variable cn (column “capital stock in million US
dollars of 2017 at current purchasing power parities”), and for labor, L,
we used the variable emp (“number of persons engaged in millions”).
This resulted in the time series k ¼ cn/emp.

Further, we considered, for K, the variable rnna (column “capital
stock at constant 2017 national prices in million US dollar of 2017”), and
defined the ratio k¼ rnna/emp. It differed only slightly from cn/emp, but
we wished to explore by an example, if slight differences in the data
would affect the growth curves.

For labor, L, we also considered another variable kh (“annual per-
formed working hours in 1000 h”). We computed it from the variables
emp and avh (“average annual hours worked by persons engaged”) as kh
¼ emp � avh/1000. Using it, we defined the time series k ¼ cn/kh.

In addition, we checked, if another macro-economic time series with
a different meaning may be described well by Eq. (1). Using the variable
ccon (“real consumption of households and government, at current
purchasing power parities in million US dollars of 2017”) and the vari-
able pop (column “population in millions”), we considered the time se-
ries k ¼ ccon/pop. Note that ccon/pop is unrelated to capital per labor; it
is also unrelated to per capita GDP. This time series displayed a steeper
growth (ratio 4.16 of the 2019 value over the 1950 value) than cn/kh
(ratio 2.92), and cn/emp (ratio 2.59).

Further, starting from cn/emp, we explored how to change the data to
improve the fit. We considered “cn/emp modified”, where we removed a
hypothesized trend, and “cn/emp aggregated”, where we smoothened
the data using mean values.

Subsequently, we fitted Eq. (1) to the capital to labor ratios, k ¼ cn/
emp for the years 1950–2019, for a random sample of six countries. We
did not consider countries, where data for cn or emp were missing.
Further, with one exception (DR Congo), we disregarded countries,
where a plot of k indicated no growth. The considered countries were
Argentina, DR Congo, France, Japan, Pakistan, and USA. For the USA, we
also considered the subset of the data from 1970 to 2009. This was an
arbitrary choice, as we wished to check if the exponent would remain
stable for sub-periods.
3

2.3. Calibration

To fit (1) to given data, we did not use the parametrization of the
analytic solution in Table 1 (exponent a, scaling parameter p, initial value
k0, and steady state kequ), but we solved differential Eq. (1) numerically
(with current software no notable loss in precision). Hence, the four
parameters a, p, q, and k0 were optimized (using t0 ¼ t1 of the first data
point).

We used the method of least squares, which seeks parameters of
differential Eq. (1) that for the solution, k(t), minimize the sum of squared
errors, SSE of Eq. (2). N is the count of the data (N ¼ 70 for most of our
data) and ki are the data at time ti. SSEmin is the least SSE. If the value, a, of
the exponent was given, then we defined SSE(a) as the least SSE, when
three optimal parameters (k0, p, q) were sought for. For the best-fit
exponent amin, SSEmin ¼ SSE(amin).

SSE¼
XN
i¼1

ðki � kðtiÞÞ2 (2)

We considered another calibration, too: SSLE. To define SSLE, in Eq.
(2) ki is replaced by ln(ki) and k(ti) is replaced by ln(k(ti)). SSLE is less
sensitive to heteroscedasticity (Kühleitner et al., 2019).
2.4. Optimization

For theminimization of SSE, we proceeded as follows: In the first step,
we optimized SSE(a) for a ¼ 0, 0.1, 0.2, ..., and 0.9 (step size 0.1) and
identified a1 with the least SSE-value. In the second step, we repeated this
in the interval between a1–0.1 and a1þ0.1 (using step size 0.01). The
optimization of each SSE(a) was based on simulated annealing (Vidal,
1993), using 50,000 simulated annealing steps. Simulated annealing uses
a random search strategy to overcome the computational complexity of
potentially NP-hard nonlinear global optimization problems (Horst and
Pardalos, 2013; Pardalos and Vavasis, 1991): It chooses in each step
random parameters from a neighborhood of the previous step, whereby,
other than a random search, with a certain probability it also accepts
suboptimal parameters and proceeds with them. (This allows the algo-
rithm to escape from globally suboptimal local optima.) To finally focus
on a promising parameter region, we let the diameters of the
above-mentioned neighborhoods shrink by 5% after each 2500 steps. We
thereby adapted the approach from Renner-Martin et al. (2018b). It
allowed to detect problems with optimization if neighboring exponents
displayed high fluctuations in SSE(a).

For verification of our custom-made optimization tool, we compared
it with general-purpose methods of Mathematica: Levenberg-Marquardt
method, which is common in nonlinear regression (Dennis and Schna-
bel, 1963), an interior point method (Potra and Wright, 2000), a differ-
ential evolution algorithm (Price et al., 2005), and the Nelder and Mead
(1965) downhill simplex method. To ensure positive parameter values, in
(1) we replaced parameter p by exp(pin þ p1) for some initial value (e.g.,
pin ¼ 0) and optimized for p1; the same for q and k0. We used these
methods, as implemented in Mathematica, to fit model (1) with expo-
nents a ¼ 0, 0.1, ..., 0.9 to the data k ¼ cn/emp of the USA and we
compared SSE(a) and CPU time with the outcomes of simulated
annealing. Further, we used them to compute, for a given best-fit expo-
nent, 95% confidence intervals for the parameters k0, p, and q.

For a much simpler approach towards data-fitting, biologists used
approximations to find parameters that may be close to the best-fit pa-
rameters. A common strategy (Kingdom and Azagba, 2017; Espino-Barr
et al., 2015) is theWalford (1946) plot of k0 over k (phase diagram), using
numerical derivatives for k0 (e.g.: k0(t) ¼ ktþ1 � kt for t ¼ t0, t0 þ 1, ...). If
the exponent, a, is given, then data-fitting in the phase diagram reduces
to a linear regression, where parameters (p, q) are sought, so that the
curve f(k)¼ p⋅ka � q⋅k fits to the numerical derivatives, k0. With our data,
this approach was not helpful. Another approach from animal science
uses the Bertalanffy-Beverton plot (Renner-Martin et al., 2018a).
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However, to be feasible, this approach requires a-priori bounds for the
steady state kequ (in animal science: adult mass). Moreover, both methods
apply for SSE, only.

2.5. Goodness of fit

In econometry, R-squared seems to be the most common statistics to
assess the goodness of fit. As was noted byMankiw (1997): “I have always
found the high R2 reassuring when I teach the Solow growth model.” Thereby,
in economic literature R2 > 0.9 is deemed a good fit. We therefore report
R2, defined by Eq. (3). RL(a) is defined by replacing in this equation SSE
with SSLE and ki with ln(ki).

RðaÞ2 ¼ 1� SSEðaÞPN
i¼1ðki �meanðk1; k2;…kNÞÞ2

(3)

In view of criticism on R-squared (Achen, 1982), econometrists
developed alternative definitions (e.g., Cameron and Windmeijer, 1997).

As was pointed out by Spiess and Neumeyer (2010), in nonlinear
regression a high value of R2 may not be sufficient to select a true model,
whereas the Akaike (1974) information criterion, AIC, would be much
more selective. Eq. (4) defines AIC from SSE (Burnham and Anderson,
2002). In Eq. (4), N is the count of data and K is the number of optimized
parameters. The model with a lower AIC is more parsimonious (more
likely to be true).

AICðaÞ¼N � ln
�
SSEðaÞ

N

�
þ 2 �K (4)

Following Renner-Martin et al. (2018b), we count k0, p, q and SSE as
optimized parameters, but not the best-fit exponent, amin, because we
identified it from a comparison of a small finite set of 29 growth models
defined by different exponents. We also considered the fit to the model
with q ¼ 0; here we did not count the given q as a parameter.

probðaÞ¼ e�Δ=2

1þ e�Δ=2 whereby Δ ¼ AICðaÞ � AICmin (5)

The Akaike weight, prob(a) of Eq. (5), is the probability that the best
fit model with exponent a is true, when compared to the most parsimo-
nious model, which by its definition has the least AIC ¼ AICmin. If all
models have the same number of parameters, this is the overall best fit
model with exponent amin; AICmin ¼ AIC(amin). The Akaike weight as-
sumes values between 0 and 0.5 (two models with equal fit and the same
number of parameters each have 50% chance to be true). As above, we
used AIC and prob also for SSLE, replacing SSE by SSLE in Eq. (4).

2.6. Statistics

The theory behind SSE assumes independent and identically normally
distributed fit residuals (white noise); for SSLE a normal distribution of
the corresponding differences of the logarithms is assumed. Under these
assumptions, best-fit parameters from least squares are maximum like-
lihood estimations. This explains, why Eq. (4) could define AIC (origi-
nally defined by likelihood) in terms of SSE.

To verify these assumptions, we used the Cram�er-von Mises distri-
bution fit test (Xiao et al., 2006) and refuted the normal distribution
hypothesis for P-values below 0.01, accepted it for P-values above 0.05,
and interpreted values in between as “weak support” for that hypothesis.
We also tested for significant autocorrelations, using the Box and Pierce
(1970) test. In addition, we used an ACF-plot (autocorrelation function
plot), showing the 95% confidence band and the correlations of the
time-series of fit residuals with the lagged time series of residuals.

The variability of the parameters is higher than expected if the fit
residuals are autocorrelated. First, the confidence intervals computed
from the asymptotic normal distribution in parameter space are larger
than estimated (Newey and West, 1987), because the derivation of the
asymptotic distribution assumes independence of the errors. Second, the
4

Akaike weights (4) assume independence of errors, too, whence their
refutations of “false” models become dubious if this assumption is not
satisfied. Nevertheless, we report confidence intervals and Akaike
weights also in this case, but for a different purpose: Confidence intervals
inform about the minimal expected variability of the best-fit parameters.
And Akaike weights are used as a graphical method to detect problems
with optimization (explained later in the text).

We did not compute confidence intervals for the best-fit exponents.
This would require simulations, where the given data are perturbated by
random errors. Then, for each simulation the optimization would be
repeated. Neither did we study the stability of the parameters for
different periods of time. Fisher (1921) suggested this as a criterion for
model selection: If data follow e.g., the law of exponential growth, then
the growth rate should be about the same, with smaller variations for
larger sub-periods. (See Bhowmick et al., 2014, for generalizations.) This
would require a parameter optimization for each sub-period of (at least
four) consecutive years. Owing to the slow optimization, for both ana-
lyses the needed simulations were unfeasible.

3. Results

3.1. Best-fit parameters for USA data

Table 2 lists the best-fit parameters of Eq. (1), 95%-confidence in-
tervals for k0, p, and q at the indicated best-fit exponent, and the goodness
of fit for different definitions of the ratio, k, for the USA. Figure 1 and 2
summarizes the goodness of fit. Figures 2a and 3f plot the data, k ¼ cn/
emp, together with three different best-fit curves. Figure 3a plots fit re-
siduals (Figures 4 and 5).

The overall-best fit in terms of R2 was achieved by a “modified cn/
emp”, using the exponent a ¼ 0.32. However, these data were altered to
achieve a better fit by removing a hypothesized business cycle (see
below). The next best fit was achieved for ccon/pop, using the exponent a
¼ 0.99. However, ccon/pop was a different time series, not related to
capital per labor. Rank three was achieved for the fit to the aggregated
data. However, this was a fit to 14 data points (rather than to 70) that
were smoothened by averaging (see below). At rank four followed cn/
emp and rnna/emp, and at rank five cn/kh.

For all data, except for short-cn/emp and ccon/pop, the R-squared
values did barely vary for different values of the exponent, and except for
short-cn/emp, a peak was barely discernible (Figure 1a). The Akaike
weights were more selective insofar, as for all curves the peaks were
clearly distinguishable (Figure 1b). However, there was still a high
variability: Except for short-cn/emp and ccon/pop, no exponent a be-
tween 0.2 and 0.9 was refuted as unlikely (probability to be true below
5%). It follows that a slight change in the best-fit exponent could be offset
by suitable changes of the other parameters, c, p, and q, resulting in a
nearly optimal fit in terms of R-squared and an accepted fit in terms of the
Akaike weight.

We compared these optimization results with a simple fictional
“classroom approach”; Table 1 explains the notation. Starting with data
about the USA from 1950 to 2019 (PWT, 2021), we used the variables
cn, emp, and cgdpo for capital stock, labor, and output (K, L, and Y),
respectively. Fitting exponential growth to L resulted in the estimate n ¼
1.42% for the growth rate of the workforce. The average of the annual
depreciation rates, variable “delta”, delivered the estimate d ¼ 3.57%
for the capital depreciation rate. The average of the gross investment
rates, variable csh_i, was an estimate for the savings rate (Leon Arias,
2010), s ¼ 24.5%. The elasticity of output was assumed, α ¼ 0.32
(optimal value). The productivity factor, A ¼ 1373.1, was estimated
from ln(A) ¼ average of ln(Y/L)–α⋅ln(K/L); c.f. Cobb-Douglas equation.
(Literature recommended a regression to obtain α and A simultaneously:
Boyko et al., 2020.) This in turn provided the parameter estimates p ¼
A⋅s ¼ 336.6, q ¼ d þ n ¼ 0.05, and kequ ¼ 4.3⋅105. Using the initial value
k0 ¼ 168,386 at t0 ¼ 1950 (first data points) defined a solution of (1)
with R2 ¼ 0.85.



Table 2. Summary of the optimizations for the USA.

Data for the USA (definition of k, time span) Best-fit parametersa,b for model (1) kequ Goodness of fit

a k0 p q SSE R2

cn/emp, 1950–2019 0.37 1.73 � 105 38.2 2.25 � 10�6 3 � 1011 5.39 � 109 0.9887

confidence limit at a ¼ 0.37 lower 0.37 1.68 � 105 27.4 0þ NA

upper 1.79 � 105 53.1 >1010

cn/emp, 1950–2019, q ¼ 0 0.37 1.73 � 105 38.2 0 ∞ 5.39 � 109 0.9887

confidence limit at a ¼ 0.37 lower 0.37 1.69 � 105 37.2 0 NA

upper 1.77 � 105 39.2

cn/emp modifiedc 0.32 1.75 � 105 69.9 3.9 � 10�5 1.6�109 1.58�109 0.9965

confidence limit at a ¼ 0.32 lower 0.32 1.71 � 105 58.1 0þ NA

upper 1.78 � 105 84.1 >1010

cn/emp aggregatedd 0.39 1.80 � 105 29.7 1.5 � 10�5 2.1 � 1010 8.29 � 108 0.9912

confidence limit at a ¼ 0.39 lower 0.39 1.69 � 105 17.4 0þ NA

upper 1.89 � 105 63.6 0.83

short-cn/emp, 1970–2009 0.99 2.48 � 105 0.015 2.5 � 10�4 1.5 � 10178 1.95 � 109 0.9785

confidence limit at a ¼ 0.99 lower 0.99 2.44 � 105 0.014 0þ NA

upper 2.52 � 105 0.017 44 � 10�4

cn/kh, 1950–2019 0.23 8.46 � 104 157.9 2.4 � 10�10 2.3 � 1015 2.8 � 109 0.9846

confidence limit at a ¼ 0.23 lower 0.23 8.19 � 104 148.8 0þ NA

upper 8.75 � 104 167.5 >1010

rnna/emp, 1950–2019 0.38 1.73 � 105 33.62 1.1 � 10�6 1 � 1012 5.39 � 109 0.9887

confidence limit at a ¼ 0.38 lower 0.38 1.65 � 105 28.04 0þ NA

upper 1.77 � 105 54.74 0.02

ccon/pop, 1950–2019 0.99 1.13 � 104 1.06 0.93 2.7 � 105 7.35 � 107 0.9927

confidence limit at a ¼ 0.99 lower 0.99 1.08 � 104 0.847 0.74 NA

upper 1.18 � 104 1.323 1.17

Notes: a) numbers rounded to the last shown decimal; b) confidence limit 0þ for qmeans less than 10�4; c) modified means cn/emp minus a hypothesized business cycle
(Figure 4a); d) aggregated means averages of cn/emp over successive five-year periods (Figure 2a). Computations using Mathematica 13.0.

Figure 1. Different evaluations for the goodness of fit of the best-fit solution of Eq. (1) with given exponent, a, for the USA data of Table 2 (legend in 1a); a) left: R-
squared at a; b) right: Akaike weights at a. Computations using Mathematica 13.0 and plots using MS Excel & MS Power Point.

Figure 2. Plot of a) left: original data cn/emp (black), aggregated data (red: averages of successive five-year periods), and best-fit curve to the aggregated data (green);
b) right: ACF plot of the fit residuals for the aggregated data (5 years lag between successive data points). Computations and plots using Mathematica 13.0.
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These parameters did not achieve the best possible fit for cn/emp.
However, an optimization of the exponent and of the initial value was an
obvious step that could be done in a spreadsheet. (We used MS Excel and
5

the Solver Add-In. Note that another value of α ¼ a automatically altered
the above estimates for A, p, and kequ.) It resulted in a significant
improvement of the fit, R2 ¼ 0.9861 (using a ¼ 0.83). This was



Figure 3. Data (blue: cn/emp for 1950 to 2019) and best-fit model curves for SSE (red) and SSLE (green) for six countries: a) top left Argentina; b) top right DR Congo;
c) middle left France; d) middle right Japan; e) bottom left Pakistan; and f) bottom right USA. Best-fit parameters are from Tables 4 and 5; plot using Mathema-
tica 13.0.

Figure 4. Plot of a) left: fit residuals ri ¼ ki � k(ti) for the best-fit curve k(t) with a ¼ 0.37 (Table 2) to k ¼ cn/emp (black dots) and the function bc(i) ¼ 5480 1.015i

cos(2.38 þ 0.17 i); b) right (ACF-plot): 95% confidence limits (dashed lines), autocorrelations of the fit residuals ri (red dots), and autocorrelations (blue dots) of the
best-fit residuals to the data ki � bc(i), based on k ¼ cn/emp and a ¼ 0.32. Computations and plots using Mathematica 13.0.

Figure 5. Comparisons of model curve characteristics
for different data; a) left: ln(kequ(a)), logarithm of the
steady state at given exponent a for the USA data of
Table 2 (legend in Figure 1a), whereby values above
50 (short-cn/emp for a > 0.8) were not displayed; b)
right: comparison of best-fit models to k ¼ cn/emp
with given exponent a and q > 0 (red) or q ¼ 0 (blue)
with the most parsimonious model (amin ¼ 0.37, q ¼
0) in terms of Akaike weights (left axis) and R-squared
(right axis). Computations using Mathematica 13.0
and plots using MS Excel & MS Power Point.
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Table 3. Tests for the goodness of the fit of a normal distribution.

Country Tests for SSE Tests for SSLE

Data ki Residuals
ki – k(ti)

Data ln(ki) Residuals
ln(ki) – ln(k(ti))

Argentina <0.0001 0.0059 <0.0001 0.0012

DR Congo 0.0302 0.0902 0.2938 0.2027

France <0.0001 0.0004 0.0044 0.0115

Japan <0.0001 <0.0001 <0.0001 0.0304

Pakistan <0.0001 0.0013 0.0141 0.6108

USA 0.0988 0.0864 0.2213 0.0136

Note: P-values of the Cram�er & von Mises tests, if the data cn/emp or the fit
residuals to the best fit curve (1) with respect to the calibrations SSE and SSLE
were normally distributed. Computations using Mathematica 13.0.
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comparable to the best fit (R2 ¼ 0.9887). In the same way, for rnna/emp
R2¼ 0.9884 (using a¼ 0.879) was close to the best fit (R2¼ 0.9887), and
for kh/emp R2 ¼ 0.9068 (using a ¼ 0.32) was more remote from the best
fit (R2 ¼ 0.9846). However, this approach failed for ccon/pop (it was a
different time series, where the used economic parameters might not
matter) and for short-cn/emp; the best fit was worse than the fit of the
constant function “average of the data”.

3.2. Reliability of optimization

Our tool for finding the best-fit parameters was slow but practicable
(ca. 45 minutes of CPU time per time-series on a standard business
computer). By comparison, standard tools of optimization often resulted
in parameter estimates with poorly fitting model curves (numerical
instability), as was observed previously in mathematical biology (Loibel
et al., 2010; Shi et al., 2014). Nevertheless, we used these standard
methods to check, if they could improve the optimization of the pa-
rameters k0, p, and q, starting with the best-fit parameter values from our
tool, and to compute their 95% confidence intervals (results in Table 2).

First, we used the plot of the Akaike weights (Figure 1b) to detect
potential problems with optimization: For ccon/pop, the zig-zag lines in
the plot of the Akaike-weights for a > 0.8 (Figure 1b) indicate that our
simulated annealing tool did not always identify the least SSE(a) exactly.
However, these fluctuations remained relatively small. The other curves
had a smooth appearance.

Next, to verify our customized tool, we compared various methods of
numerical optimization for k ¼ cn/emp of the USA at ten test cases
(optimization of k0, p, and q for the exponent a ¼ 0, 0.1, ..., 0.9). The
Levenberg-Marquardt method was ten times faster than our tool. It
reduced SSE slightly in two test cases (meaning a reduction by at most
0.07%) and failed clearly in five cases (SSE by 10% higher). An interior
point method was three times faster than our tool if we assumed q ¼ 0.
(Otherwise, it was much slower, but converged to q ¼ 0, again.) It
reduced SSE slightly in four test cases, but it failed clearly in three cases.
The Nelder-Mead method needed three times the CPU time of our tool,
improved SSE slightly in six test cases and failed clearly in two cases.
Differential evolution needed nine times the CPU time of our tool, failed
clearly in one test case and reduced SSE slightly for eight test cases. (We
used pin ¼ 0; the same for the other parameters. Performances could be
improved using a different pin and by changing the default adjustments of
the algorithms.) Summarizing, all methods confirmed the SSE(a) values
of our tool, as they could improve them slightly at best. Thus, our custom-
made simulated annealing tool provided reliable estimates for SSE(a),
which was crucial for the identification of the best-fit exponent, and with
an accuracy of �10% these methods confirmed the best-fit values of the
parameters p and k0.

The optimization of the parameter q (and therefore also of the steady
state) was problematic, as is illustrated by a comparison of the almost
equal data cn/emp and rnna/emp, but different steady states. The fluc-
tuations of the steady states at different values of the exponent
(Figure 5a) suggested a random pattern. Indeed, the optimization by
means of simulated annealing defined a random path towards the opti-
mum that was trimmed after a fixed number of annealing steps (50,000),
whence a different path might lead to a different output of optimization.
The optimization of the parameter q was problematic for other optimi-
zation methods, too, resulting in large confidence intervals (Table 1).
Moreover, different runs of the optimization (different random numbers)
moved the estimates for q closer to q ¼ 0. The reason for this behavior
was our assumption q> 0: As q¼ 0 implies an infinite steady state, kequ¼
∞, we designed the algorithms to guarantee q> 0 (using q¼ exp(q1) and
optimizing for q1). Therefore, when the best fit was achieved at or very
close to q ¼ 0, then the algorithms might terminate somewhere else at
random (on the path to q1 ¼ �∞).

This limitation of optimization could not be overcome by more
refined methods, because the data did not allow to discern the steady
state from a visual inspection. In animal science, estimates for the steady
7

state that were not evident from the data (adult size) were refuted as
speculative (Knight, 1968). Rather, in such a situation an empirical
approach might postulate an infinite steady state (q¼ 0) for the capital to
labor ratio. To explore this alterative model assumption, we repeated the
optimization for k¼ cn/emp with q¼ 0. This resulted in the same best-fit
exponent, amin ¼ 0.37, with about the same SSE (Table 1). Therefore, the
growth model with q ¼ 0 was more parsimonious than the model with q
> 0 (lower AIC): Owing to the penalty for the additional optimized
parameter (q > 0) in AIC, the probability that the best-fit model with q >

0 was true, when compared to the best fit model with q ¼ 0, was only
27%. Further, for q ¼ 0 the peaks of the R-squared and Akaike weight
curves were more distinct (Figure 5b) and the confidence intervals for k0
and p were smaller.

We conclude that the problems related to the steady state were not
failures of optimization, but rather the consequences of a misfit between
the model assumption (q > 0) of a finite steady state and data suggesting
growth ad infinitum. It could be remedied easily (accepting an infinite
steady state using q ¼ 0). In the “classroom approach”, q > 0 followed
from data unrelated to the capital to labor ratio and this did hide the
potential unboundedness of the growth function.
3.3. Improving the data

For the time-series k ¼ cn/emp we scrutinized the implicit assump-
tions for the method of least squares. We noted a good fit of the data and
of the best-fit residuals to a normal distribution (Table 3). However, the
residuals displayed a periodic structure, resulting in significant auto-
correlations. Significant autocorrelations were observed also for the best-
fit residuals of the other data of this paper when the Solow–Swan model
was fitted to them. Such a failure of the white noise assumption may
indicate a misspecification of the model. A common recommendation is
to use a different model. If this is not viable, as a specific model is already
established, there is an extensive literature on altering the data to make
them fit better to the model by removing significant autocorrelation
(Google Scholar: ca. 9500 papers about “pre-whitening” since 2015).
However, this pre-whitening may lead to incorrect assessments of the
significance of a trend (Yue et al., 2002). This section illustrates two
other approaches.

To remove the autocorrelations, we hypothesized a slow business
cycle bcwith increasing amplitude (red line in Figure 4a; formula for bc in
the figure caption). For, business cycles may push consecutive data ki
systematically away from their trend k(t), whereby during upswing/
downswing years the capital per labor ratio presumably was a higher/
lower than in the trend, whence in general the fit errors for consecutive
years deviated into the same direction, resulting in autocorrelations. We
removed the cycle from the data and fitted Eq. (1) to the resulting
modified time series k ¼ cn/emp� bc. We obtained the best-fit exponent
a ¼ 0.32 with the highest R2 amongst the considered USA data. Its fit
residuals were smaller and normally distributed (distribution fit test: P-



Table 4. Optimization outcomes for SSE and selected countries.

Data (county) Best-fit parameters for model (1) kequ Goodness of fit

a k0 p q SSE R2

Argentina 0.90 0.244 1.756 0.513 2.18 � 105 2.3 � 1010 0.9140

DR Congo 0.98 4.2�103 6.51 5.37 1.48 � 104 7.1 � 108 0.4347

France 0.99 9.87 � 104 0.03 3.08 � 10�5 2.06 � 10299 1.2 �1011 0.9309

Japan 0.97 1.58 � 103 2.54 1.71 5.11 � 105 5.6 � 1010 0.9651

Pakistan 0.91 3.12 � 103 0.076 7.52 � 10�4 1.92 � 1022 1.2 � 108 0.9721

USA short 0.99 2.48 � 105 0.015 2.5 � 10�4 1.5�10178 1.95 � 109 0.9785

USA 0.37 1.73 � 105 38.2 2.25 � 10�6 3 � 1011 5.39 � 109 0.9887

Note: Fit of model (1) to k ¼ cn/emp for 1950 to 2019, using SSE. Numbers rounded to the last shown decimal; computations using Mathematica 13.0.
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value 0.24). The autocorrelations (Figure 2b) were smaller, but still
significant (though for fewer time lags), as was confirmed by the Box-
Pierce test.

As an alternative approach we fitted model (1) to aggregate data, the
averages of cn/empoverfive-year periods (14 data points). Figure 5a plots
the rawdata, the aggregated data (these are notmoving averages), and the
model curve fitted to the aggregated data. The best-fit model (exponent a
¼ 0.39) had normally distributed fit residuals (P-value 0.55). Figure 5b is
the ACF plot for the fit residuals: As was confirmed by the Box-Pierce test,
there were no significant autocorrelations (except the trivial one for lag
0), but the correlations were not small. The confidence intervals for the
parameters were larger, too (Table 2), and the Akaike weights did not
refute any exponent (Figure 1b). Still another approach (similar outcome)
would be pruning (e.g., selecting every fifth data-point).

Both approaches had drawbacks: The hypothesized business cycle
(estimated from the fit residuals) might be an artefact of data-fitting, as in
literature we could not identify a documented cycle with a 37-year period
(between a Kuznets swing and a Kondratiev wave). The use of aggregate
data did not remove the autocorrelations, but it merely reduced their
significance owing to the smaller sample size. We therefore followed
another recommendation (Storch, 1999) to handle autocorrelations: We
continued to work with the Solow–Swan model (as it was supported from
a mechanistic reasoning) and we used the unaltered data, but we were
careful with statements about the reliability of the outcomes, and we
checked the plausibility of the model parameters.
3.4. Plausibility of the best-fit parameters

According to Table 1, the scaling parameter, p of Table 2, has the
meaning of a product of a savings rate, s, and an unknown productivity
factor A, whence the plausibility of p was not assessed. The optimized
initial values of Table 2 (parameter k0) were plausible, as their deviations
from the initial values (k1) of the considered time-series were comparable
to the deviations of the best-fit curves, elsewhere.
Table 5. Optimization outcomes for SSLE and selected countries.

Data (county) Best-fit parameters for model (1)

a k0 p

Argentina 0.99 8.16 � 103 0.14

DR Congo 0.97 4.83 � 103 4.48

France 0.47 8.12 � 104 19.24

Japan 0.99 1.35 � 104 2.98

Pakistan 0.57 2.38 � 103 1.75

USA short 0.99 2.50 � 105 0.015

USA 0.16 1.69 � 105 536.2

Note: Fit of model (1) to k¼ cn/emp for 1950 to 2019, using SSLE. USA short are the da
using Mathematica 13.0.
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Next, we considered the best-fit values of parameter q. We noted two
problems. First, the values obtained from optimization were problematic
(see above). And second, these values were not plausible, economically.
Except for ccon/pop (a time series with a different meaning, where these
considerations did not apply), the value of q was close to zero and thus
too small. For, in Table 1, the parameter q was expected to relate to the
much larger sum of the labor growth rate (about 1%) and the capital
depreciation rate. (However, considering the 95%-confidence interval,
plausible values for q were conceivable for k ¼ cn/emp.)

Finally, we considered the best-fit exponent, a of Eq. (1). It is
generally linked to the elasticity of output with respect to capital, α in
Table 1. Economic literature deems values around α ¼ 1/3 as plausible,
as according to Kaldor (1957) this would be the share of national income
that goes to capital. Mankiw et al. (1992) derived values between 0.36
and 0.6, using a broad definition of capital (physical and human capital,
the latter not considered in this paper), andMunguia et al. (2019) arrived
at time dependent values of elasticity between 0.5 and 0.75. Amongst the
unaltered time-series from Table 2, the best-fit exponent for cn/emp, a ¼
0.37, was closest to the plausible value α ¼ 1/3. Further, when the data
were altered to obtain a better fit (modified and aggregated cn/emp), the
best-fit exponents remained close to the plausible value α ¼ 1/3.
Therefore, this paper focused on cn/emp. For short-cn/emp, the best-fit
exponent, a ¼ 0.99, was not plausible economically. Further, for all
time-series with q> 0, with probability 20% or higher, any economically
unplausible exponent a � 0.9 could be true.
3.5. Best-fit growth curves for various countries

To explore the situation for different countries, we fitted Eq. (1) to the
capital to labor ratios for a random sample of countries; we used the
ratios k ¼ cn/emp and applied two calibrations, SSE and SSLE. The
different calibrations resulted in different outcomes: Table 4 list the best-
fit parameters for SSE, Table 5 is a list for SSLE, and Table 3 informs about
the test results for the normal distribution assumptions inherent to these
kequ Goodness of fit

q SSLE RL2

0.08 1.65 � 1025 4.29 0.9511

3.37 1.42 � 104 3.89 0.5564

3.27 � 10�6 5.93 � 1012 1.14 0.9517

2.59 1.03 � 106 1.82 0.9798

1.37 � 10�5 7.57 � 1011 1.09 0.9715

7.59 � 10�4 2.54 � 10129 0.017 0.9792

3.76 � 10�7 7.91 � 1010 0.052 0.9908

ta from 1970 to 2009. Numbers rounded to the last shown decimal; computations



Figure 6. Akaike weights for the best-fit solution of Eq. (1) for the time-series k ¼ cn/emp for the five countries of Table 4 (legend in Figure 2a): a) left: prob(a) terms
of SSE; b) right: prob(a) in terms of SSLE. Optimizations using Mathematica 13.0 and plot using MS Excel and Power Point.
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calibrations. Figure 3 plots the data and best-fit curves with respect to
both calibrations. Figure 6 compares the Akaike weights with respect to
SSE and SSLE.

Amongst the considered countries, the fit of model (1) to the data cn/
emp was worst for the Democratic Republic of the Congo (R2 ¼ 0.43, RL2

¼ 0.56). The best-fit model curves for SSE and SSLE (Figure 3b) were
close together and followed the initial growth phase, but apparently, they
were unrelated to the data, otherwise. This was also reflected by the
indeterminateness in terms of the Akaike weights (Figure 6a): For SSE
and SSLE, the best fit exponents were 0.98 and 0.97, respectively, but
(except for prob(0.99) < 5% for SSE) all values for the exponent were
likely to be true (30% or higher probability). Hence, growth modeling
was futile and there was no discernible trend for growth. Indeed, DR
Congo is amongst the poorest countries of the world, as since 1996 wars
for its rich mineral resources and other conflicts led to mass starvation,
displacements, and other severe social problems. The data indicate a
demise already during the 1990s, the final phase of the Mobutu-regime.

For the Argentine Republic, the fit was reasonable (R2 ¼ 0.91, RL2 ¼
0.95). There were large deviations of the data from the curve, as the best-
fit model needed to accommodate three distinct phases: an initial slug-
gish slow growth of k, a steep rise starting during the 1980s (end of the
military dictatorship and its dirty war in 1983), and high fluctuations
with an overall slow growth since the 1990s (economic crisis
1999–2002). These deviations affected the two calibrations differently:
For SSE, the best-fit curve started with an initial value close to 0 and it
finally flattened to follow the final phase of slow growth. This flattening
resulted in a S-shape. For SSLE, the best-fit curve started close to the
initial data points and there was no discernible S-shape. For both growth
curves the best fit exponents, 0.9 and 0.99, respectively, were econom-
ically unplausible. As for both calibrations the inherent normal distri-
bution assumptions were refuted (Table 3), care was needed with an
interpretation of the data-fitting. Further, for the calibration SSE we
observed difficulties with the optimization, as there were high fluctua-
tions (by 10% or more) of the Akaike weights close to the best-fit
exponent. Notably, considering SSE and the best-fit exponent a ¼ 0.9,
the best-fit parameters were improved during the second round of opti-
mizations; from R2 ¼ 0.913 in the first round to R2 ¼ 0.914. For SSLE, we
did not observe a similar difficulty with optimization.

For the French Republic, the fit was reasonable (R2 ¼ 0.93, RL2 ¼
0.95). The best fit curves for SSE and SSLE followed similar trajectories.
Moreover, for both calibrations the plot of the Akaike weights showed
smooth curves indicating no problems with optimization. The main de-
viation of the growth curves from the data occurred around the recession
of 2000: Capital per labor started to decline in 1995 and to regain mo-
mentum in 2003. Thereby, the best-fit curve for SSE was more strongly
affected by this final growth phase. The values of the best-fit exponents,
0.99 and 0.48 for SSE and SSLE, respectively, were distinct. The latter
value for SSLE was more plausible, economically, and the distribution fit
tests provided a weak support for SSLE. For, testing if the fit residuals for
SSLE were normally distributed resulted in a P-value above 0.01. By
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contrast, both normal distribution assumptions related to SSE were
refuted (P-values below 0.01).

For the State of Japan (Nippon-koku), the fit of model (1) was good
(R2 ¼ 0.97, RL2 ¼ 0.98). However, on a visual inspection the data dis-
played distinct fluctuations around the best-fit growth curves. As for
Argentina, the best-fit model curves for SSE and SSLE differed. The data
display an economic stagnation since the collapse of an asset price bubble
in 1991, which resulted in a S-shaped curve for SSE, while the curve for
SSLE did not display a discernible S-shape. The best-fit exponents, 0.97
and 0.99 for SSE and SSLE, respectively, were unplausible, economically.
While the normal distribution assumptions for SSE were refuted
(Table 3), there was a weak support for SSLE (P-value above 0.03 for
normally distributed fit residuals for SSLE). Further, for SSE but not for
SSLE, there were problems with optimization, indicated by high fluctu-
ations of the Akaike weights close to a ¼ 1.

Amongst the considered countries, we observed the second best fit of
model (1) to the data for the Islamic Republic of Pakistan (R2 ¼ 0.97, RL2

¼ 0.97). The good fit of both model curves (only small fluctuations of the
data) and the continuous growth of k since 1950 were insofar surprising,
as Pakistan is a developing country with an extremely poor population
and low human development index (HDI ¼ 0.557 ¼ rank 152 in the
world, source: United Nations, 2020). For both calibrations, the best-fit
growth curves followed similar growth trajectories, but the values of
the best-fit exponent were distinct, 0.91 for SSE and 0.57 for SSLE. For
SSE, the normal distribution assumptions were refuted (Table 3), while
there was strong support for the assumption of normally distributed re-
siduals for SSLE. Further, both plots of the Akaike weights showed
smooth curves, indicating no problems with optimization.

The best fit of model (1) was achieved for the United States of
America (R2 ¼ 0.99, RL2 ¼ 0.99). For both calibrations, the best-fit
growth curves were almost overlapping, and the best-fit values of the
exponents were economically plausible, 0.37 and 0.16 for SSE and SSLE,
respectively. The distribution fit tests supported both calibrations
(Table 3), whereby two tests supported SSE. The plots of the Akaike
weights were smooth (Figure 6), whence there occurred no problems
with optimization. Further (Table 2), two modifications of the data to
generate fit-residuals with insignificant autocorrelations (removing a
hypothesized business cycle; aggregation over successive five-year pe-
riods) resulted in comparable best-fit exponents for SSE. Thus, amongst
the data considered in this paper, the data for the USA displayed an
exceptional outcome with respect to SSE. However, for the data of a
shorter period (1970–2009) we observed an unplausible best-fit expo-
nent (a ¼ 0.99).

We checked also the “classroom approach”, that used literature data
for several parameters and optimized only the exponent and the initial
value (section 3.1 for the USA). This approach failed for DR Congo (there
was no growth), achieved poor fits for Pakistan (R2 close to 0) and
Argentina (R2 ¼ 0.40), an acceptable fit for Japan (R2 ¼ 0.88, remote
from the optimal R2 ¼ 0.97) and a close to optimal fit for France (R2 ¼
0.91, optimal R2 ¼ 0.93).
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4. Discussion

Using the method of least squares, we compared five time-series for
different definitions of the capital to labor ratio of the USA. The most
plausible best-fit exponent was achieved for the time series k ¼ cn/emp.
For these data we compared several standard methods of optimization.
These methods were not practicable (too slow or unreliable). Yet, taken
together they confirmed the best-fit parameters k0 and p of our custom-
made tool, and the best-fit estimate SSE(a), which was needed to opti-
mize the exponent. However, the third parameter (q) was problematic,
because we enforced the constraint q > 0, while for some data the “true”
(least parsimonious) growth model would assume q ¼ 0 with an infinite
steady state, which would be implausible, economically. Further, for
several data the fit residuals were not normally distributed and for all
data there were significant autocorrelations for the fit residuals (com-
parable to Figure 5a). From plots of the residuals, we hypothesized that
the data were disturbed by business cycles. For cn/emp of the USA, this
hypothesis partially explained the autocorrelations.

Owing to the high variability, best fits were difficult to identify, but
reasonable fits could be achieved for a wide range of parameters
(defining a “reasonable fit” by R2 > 0.9); Figure 1a outlines this for the
exponent. This explains, why the approach of undergraduate courses
(Table 1) may have worked: Plugging in certain economic parameters
into Eq. (1) and optimizing the exponent (elasticity) could result in
reasonable fits (sections 1 and 3.1). By comparison, Akaike weights were
more selective in assessing the goodness of fit: Other than for the rather
flat curves of R-squared, for Akaike weights the peak around the best-fit
exponent (amin) was clearly distinguishable. Nevertheless, also the vari-
ability of exponents that were not refuted by the Akaike weights was
high.

We focused on the exponent and compared six countries, using cn/
emp. Using SSE for calibration we could observe an economically plau-
sible value for the USA, only. Using SSLE instead of SSE changed the
picture somewhat and for three countries we obtained economically
(more) plausible best-fit values for the exponent. This leads to the
research question, if for some calibration economically meaningful best-
fit parameters for the Solow–Swan fundamental equation can be
extracted from empirical data. Are there a priori conditions on the data
that ensure the success of this endeavor?

We conclude that the fundamental differential Eq. (1) is a suitable
tool for analyzing the temporal evolution of the capital to labor ratio.
Solow’s success story was a good motivation for this equation. However,
the parameter values, which this story proposes, may not be exactly true
and the best-fit parameters for Eq. (1) may not always be economically
meaningful. We therefore suggest for the empirical approach that the
exponent should not be equated with elasticity (a 6¼ α). Rather, the
exponent should be interpreted as a shape parameter of the time-series of
the capital to labor ratios. A similar situation was observed in biology,
where stories were told, why Eq. (1) and why certain exponents would be
most suitable for explaining animal growth. However, when the model
was fitted to growth data, environmental factors were more important
than the proposed inherent metabolic mechanisms. We hypothesize by
analogy with biology that for the Solow–Swan model, too, unknown or
not yet modeled external factors may influence the shape of the growth
data and thereby move the best-fit parameters, specifically the exponent,
away from economically plausible values. The identification of such
factors is proposed as another question for future research. Empirical
analyses of the Ramsey-Cass-Koopmans andMankiw-Romer-Weil models
might be a starting point.
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