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We assess whether arbuscular mycorrhizal fungi (AMF) improve growth, nutritional
status, phenology, flower and fruit production, and disease resistance in woody
perennial crops using apple (Malus pumila) as a study system. In a fully factorial
experiment, young trees were grown for 3 years with or without AMF (Funneliformis
mosseae and Rhizophagus irregularis), and with industrial standard fertiliser applications
or restricted fertiliser (10% of standard). We use two commercial scions (Dabinett and
Michelin) and rootstocks (MM111 and MM106). Industrial standard fertiliser applications
reduced AMF colonisation and root biomass, potentially increasing drought sensitivity.
Mycorrhizal status was influenced by above ground genotypes (scion type) but not
rootstocks, indicating strong interactions between above and below ground plant tissue.
The AMF inoculation significantly increased resistance to Neonectria ditissima, a globally
economically significant fungal pathogen of apple orchards, but did not consistently alter
leaf nutrients, growth, phenology or fruit and flower production. This study significantly
advances understanding of AMF benefits to woody perennial crops, especially increased
disease resistance which we show is not due to improved tree nutrition or drought
alleviation. Breeding programmes and standard management practises can limit the
potential for these benefits.

Keywords: arbuscular mycorrhizal fungi, apple canker, biotic resistance, nutrient status, pathogens, root growth,
symbiosis, sustainable agriculture

INTRODUCTION

Increased use of inorganic fertilisers has made a huge contribution to growth in agricultural yields
in recent decades and agricultural production must continue to expand to meet growing food
demands (Pretty et al., 2010; Tilman et al., 2011). One of the biggest challenges to sustainable global
food security is the need to find suitable replacements for inorganic fertilisers. This is because
inorganic fertiliser production consumes an increasing proportion of the global energy budget
and the supply of key raw materials, primarily phosphorus, is becoming limited (Herrera-Estrella
and López-Arredondo, 2016), causing price increases that reduce the availability of fertilisers for
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poorer farmers and increase food costs (Cordell et al., 2009;
Cordell and White, 2014). In addition, inorganic fertilisers
have significantly contributed to pollution of water and the
atmosphere (Elser and Bennett, 2011; Tubiello et al., 2015; Bauer
et al., 2016) and reduced terrestrial biodiversity due to habitat
degradation and loss (Tilman et al., 2017). To prevent further
environmental damage and ensure food security for future
generations it is therefore imperative to find strategies to balance
productivity with environmental sustainability (Foley et al., 2011;
Horton, 2017).

Arbuscular mycorrhizal fungi (AMF) are able to form
symbioses with the majority of plant species including many
important crops (Öpik et al., 2006; Smith and Read, 2008). The
AMF are recognised as an integral component of agro-ecosystems
(Thirkell et al., 2017). In exchange for carbon, AMF provide
plants with essential nutrients – most notably phosphorus –
which they efficiently forage from the soil via extensive hyphal
networks, thus potentially reducing the need for inorganic
fertiliser (Fester and Sawers, 2011). In addition to nutrient
provision, AMF may also directly benefit crop species through
increased resistance to disease (Jung et al., 2012), tolerance
to drought and adverse soil conditions (Augé, 2004; Daei
et al., 2009), competitive ability over non-mycorrhizal plants
(Cameron, 2010; Veiga et al., 2011) and indirectly through
improved soil structure (Rillig and Mummey, 2006) and
increased soil nutrient retention (Bender et al., 2015; Cavagnaro
et al., 2015; Köhl and van der Heijden, 2016).

Despite potential benefits, many factors can limit mycorrhizas
and thus their use in modern agricultural systems, including
physical disturbance of hyphal networks through tillage (Bowles
et al., 2017b), high application of inorganic fertilisers and
fungicides (Mader et al., 2002; Wilson et al., 2009) and selective
breeding of modern crop varieties which may inadvertently
reduce the capacity of plants to form an effective AMF symbiosis
(Pérez-Jaramillo et al., 2016; Leff et al., 2017).

Research on interactions between crop plants and mycorrhizal
fungi has focused on arable crops, yet many woody perennial
crops (e.g., grapes, Vitis vinifera, raspberries, Rubus idaeus, and
currants, Ribes sp.), and a wide range of fruit and nut bearing
trees can also form symbioses with AMF. These products contain
a wide range of vitamins and micronutrients and play a major
role in delivering nutritional food security (Joosten et al., 2015).
Woody perennial crops also contribute significantly to global
agricultural production, for example the domestic apple (Malus
pumila) is the fourth most widely cultivated fruit crop worldwide
with an estimated 89 million tonnes grown annually on over
five million hectares in 2016 and is of considerable economic
importance (FAO, 2018).

Disease is a major threat to the establishment and persistence
of apple orchards (McCracken et al., 2003). Apple canker
caused by the fungal pathogen Neonectria ditissima is the
second most important pathogen in economic terms, causing
up to 30% loss of orchard yields (Weber, 2014). It is
particularly problematic in warm and wet regions of Europe
(Beresford and Kim, 2010) where current control methods
require regular and intensive fungicide applications combined
with removal of infected material imposing direct economic costs

and reduced yields (Cooke, 1999; Garkava-Gustavsson et al.,
2013).

Initial work provides evidence that inoculation of young apple
trees with AMF may reduce incidence of the fungal pathogens
Dematophora necatrix and Botryosphaeria sp. (Raj and Sharma,
2009; Krishna et al., 2010) and improve seedling growth rates and
nutritional status (Miller et al., 1985; An et al., 1993; Matsubara
et al., 1996; Forge et al., 2001); however, these studies are of
limited relevance to apple growers due to their short duration
and as commercial apple trees are never grown from seedlings,
but propagated clonally as grafted rootstocks and scions. Indeed,
the extent to which interactions between the rootstock and
scion, and their genetic identities, determines the magnitude
of AMF induced benefits is almost entirely unknown (Albacete
et al., 2015). To our knowledge no research to date has assessed
how AMF influence apple resistance to N. ditissima or how
AMF may influence important aspects of apple productivity
including flower production, phenology and subsequent yield
despite growing evidence that AMF may affect flower number,
size, and quality (Gange et al., 2005; Varga and Kytöviita, 2010),
and phenology (Vaingankar and Rodrigues, 2015; Liu et al., 2017)
in other crop species.

Here, we use a unique fully factorial experiment conducted
over 3 years to quantify how mycorrhizas influence the
performance of two of the most widely planted apple rootstocks
(MM106 and MM111) and cider apple scion varieties (Dabinett
and Michelin). Our treatments establish mycorrhizal and non-
mycorrhizal control apple trees, grown with industrial standard
inorganic fertiliser applications recommended for commercial
growers (‘high’ nutrient) and reduced fertiliser conditions (‘low’
nutrient). Specifically we tested the hypotheses that mycorrhizas
positively influence (i) tree nutrient status (leaf tissue nitrogen,
phosphorus, carbon, carbon:nitrogen ratio, and chlorophyll
content), (ii) tree growth (height, trunk diameter, above and
below ground biomass, root length, leaf and flower phenology),
(iii) productivity (flower and fruit production), and (iv) resistance
to the pathogen N. ditissima. In doing so, we also test the
hypotheses that benefits of mycorrhizas are greater for trees
receiving low fertiliser inputs; and that rootstock and scion types
would affect the symbiosis of the trees with mycorrhizas and
resultant benefits. In combination these analyses provide the first
robust assessment of AMF on multiple performance indicators of
a woody perennial crop in an agriculturally relevant context.

MATERIALS AND METHODS

Experimental Design
In February 2013 a fully factorial experimental design was
established using four treatment levels (i) mycorrhizal inoculum
(addition or no addition), (ii) fertiliser (high or low input), (iii)
scion type (Dabinett or Michelin), (iv) rootstock type (MM111
or MM106). This amounted to a total of 16 treatments replicated
10 times to give a total of 160 trees. To ensure even distribution
of trees from all treatments across the experimental orchard and
thus reduce potential bias from any microclimate differences, a
grid layout and block design was established. Trees were grown

Frontiers in Microbiology | www.frontiersin.org 2 July 2018 | Volume 9 | Article 1461

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-01461 June 29, 2018 Time: 16:48 # 3

Berdeni et al. Mycorrhizal Symbiosis Improves Tree Health

in pots positioned in a grid comprised of 20 rows of eight
trees with 1.6 m spacing between rows and 1.2 m within rows.
The grid was split into 10 pairs of adjacent rows or ‘blocks.’
Each block contained one tree from each treatment and within
block positions were randomly assigned. One-year-old apple
trees (Malus pumila) were planted in 80 L volume plastic pots
(55 cm diameter, 40 cm depth). Pots were filled with sharp sand
(0.2–0.3 mm grade) and pure peat homogenised 1:1 by volume
and adjusted to pH 7 by addition of lime. These substrates were
selected due to their naturally low levels of AMF inoculum.
A 3 cm deep layer of black polyethylene beads (3.5 mm diameter)
was added to the surface of each pot to reduce the interaction
between substrate and environment and minimise drying. The
experiment was established at the Arthur Willis Environment
Centre, Sheffield, United Kingdom in January 2013 (N 53◦22’51”
W 1◦29’58”) and monitored over three consecutive growing
seasons (2013–2015).

Mycorrhizal Inoculum
All trees within the mycorrhizal treatment were inoculated with
a mixed inoculum containing both Funneliformis mosseae and
Rhizophagus irregularis spores and colonised root fragments
(Plantworks Ltd., United Kingdom). According to supplier
instructions, 400 ml of inoculum was mixed with 9 g
polyacrylamide gel powder and 1 l distilled water to form a thick
paste and applied to bare tree roots immediately before planting.
Trees which were not inoculated with AMF received gel and
distilled water only. To prevent contamination with AMF, before
planting tree root systems were thoroughly washed and all soil
and all fine roots (in which mycorrhizal associations typically
form) were removed. We did not autoclave the growing medium
as we did not wish to grow trees in conditions in which all
microbes other than AMF were absent as vegetation does not
naturally grow under such conditions. Subsequent root sampling
and quantification of colonisation confirmed that this treatment
was effective and that the non-inoculated trees remained free
of AMF colonisation throughout the course of this study (see
section “Mycorrhizal Colonisation”).

Nutrient Treatment
Nutrient treatments were based on the DEFRA
recommendations for a newly planted cider apple orchard
(DEFRA, 2010) (Supplementary Notes S1). Trees in the
‘High’ nutrient treatment received the recommended amount
of N, P, K, Mg whilst ‘Low’ nutrient trees received 10% of
the recommended amounts (Supplementary Tables S1, S2).
Nutrient applications were applied, in solution, fortnightly over
a 20-week period during the growing season beginning from bud
burst. Supplementary water was provided equally to all trees to
prevent water stress.

Mycorrhizal Colonisation
To quantify mycorrhizal colonisation, root sampling was
conducted during the final growing season and before leaf
drop (September 2015) with three soils cores removed beneath
each tree (corer diameter 4.5 cm, length 20.5 cm). Roots were
carefully removed and washed with distilled water before fine

roots (<1 mm diameter) were pooled per tree and cut into
1 cm sections. Mycorrhizal colonisation of roots was visualised
using the staining technique of Brundrett et al. (1994) with the
following adaptations; 15 cm of fine root per tree was cleared
in 10% (w/v) KOH (80◦C, 4.5 h), rinsed in distilled water and
acidified with 10% (v/v) HCl (10 min). Roots were then stained
in Trypan Blue (20 min) before de-staining in 50% (v/v) glycerol
(30 min). Percentage root colonisation by mycorrhizal fungi
was quantified using a magnified intersection method following
McGonigle et al. (1990) whereby presence/absence of fungal
hyphae, arbuscules, or vesicles were recorded at 100 randomly
selected locations along 15 cm of fine root per tree.

Leaf Nutrient Status
To quantify tree nutrient status five newly developed leaves were
randomly collected per tree during July (i.e., mid growing season)
of each experimental year (2013, 2014, and 2015). Leaves were
oven dried (80◦C, 48 h) before being homogenised. To quantify
total phosphorus, a 25 mg subsample was digested in sulphuric
acid and hydrogen peroxide following Allen (1989). After
dilution (N = 1:10 distilled water) Murphy–Riley colorimetric
P-determination (Allen, 1989) was performed at 882 nm using
a Cecil Ce 1020 spectrophotometer (Cecil Instruments Ltd.,
United Kingdom). Total nitrogen and carbon was measured for
homogenised leaf tissue subsamples of c. 5 mg per tree using
an elemental analyser (VarioEl Cube; Isoprime, Germany). Leaf
tissue carbon and C:N ratios were measured as both are useful
indicators of plant nutrition and investment in defence (Royer
et al., 2013).

Leaf Chlorophyll Content
As a physiological indicator of health, leaf chlorophyll was
measured monthly over the growing season (April – September)
during 2013–2015. At each time point mean leaf chlorophyll
content per tree was quantified by measurement of five leaves
per tree using a portable SPAD-502 chlorophyll meter (Minolta
Camera Ltd., Japan). To calculate chlorophyll (mg g−1 dry leaf
tissue) values for corresponding chlorophyll meter readings, we
used ice cold acetone extraction and quantification of chlorophyll
for a subsample of leaves following Cameron et al. (2009).
Twenty chlorophyll readings were recorded per leaf for one leaf
from each of 12 apple trees (three trees per scion/rootstock
combination). Leaves were harvested and kept on ice in the
dark before chlorophyll extraction from a 25–50 mg subsample
per leaf (within 1 h). The optical density of the supernatant
was then measured at 645 and 663 nm using a Cecil Ce 1020
spectrophotometer (Cecil Instruments Ltd., United Kingdom).
A further subsample of fresh material per leaf was oven dried
(80◦C, 48 h) to allow chlorophyll quantification per gram of
dry tissue weight. Total chlorophyll concentration (mg l−1)
was calculated according to Arnon (1949) and expressed as mg
chlorophyll per gram of dry leaf tissue.

Tree Growth
To quantify tree growth, height and trunk diameter
measurements were recorded at the beginning of the growing
season (before bud burst) and following leaf senescence in
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autumn. Height was recorded to the nearest cm from the base
of the trunk vertically to the tip of the highest branch. Trunk
diameter (mm) was measured 20 cm from the base of the
trunk. To account for any irregularities in trunk shape, diameter
was calculated as the average of two diameter measures taken
perpendicular from the trunk centre.

Biomass
Destructive biomass harvest was conducted for three randomly
selected blocks of trees (three replicates per treatment, 48 trees in
total) in December 2015 after three growing seasons (34 months).
Trees were removed from pots intact and root systems were
thoroughly washed. Tree biomass was separated into above and
below ground material and fresh weights recorded. Above ground
biomass was chipped and a subsample of c. 40 g was weighed
then oven dried at 98◦C to a constant dry mass. Total dry above
ground biomass per tree was calculated based on subsample water
content. Roots were air dried at room temperature (fine roots are
too fragile for oven drying) to a constant mass.

Root Growth
Root growth was measured using mini-rhizotron imaging.
Immediately after planting, clear acrylic mini-rhizon tubes
(50 cm length × 7 cm diameter) sealed at the lower end, were
installed in each pot at 45◦ to the soil substrate surface. The above
ground section of each tube was painted black to exclude light,
then white to reduce heat absorption and sealed with a white cap
to protect from precipitation. At the end of each growing season
(October) mini-rhizotron tubes were scanned fully (two images
per tube, image size 19.55 cm × 21.57 cm, resolution 400 dpi)
using a CID-600 roots scanner (CID, Kansas, United States). For
each root scan, root length was measured by manual digitalisation
of all visible roots followed by line length measurement using
ImageJ software (Schneider et al., 2012).

Fruit Production
Fruit production was low for all experimental years due to the
immaturity of the trees. Fruit number and fresh biomass per
tree were recorded at the end of the first growing season (2013);
however, due to canker infection fruit yield was especially low in
2014 and 2015. Therefore for these years total flower number per
tree was recorded as an indicator of potential apple yield.

Leaf and Flower Phenology
Leaf phenology was recorded during year two (2014) and year
three (2015) from the 1st March. At c. 5-day intervals (range
4–6 days) the number of leaf buds to have reached each of the
following developmental stages was estimated. Developmental
stages were defined as (i) leaf bud dormant, (ii) bud swollen –
heavily swollen but no sign of opening, (iii) bud beginning to
open but less than half is green, (iv) over half of the bud is green
but leaf tips point inward, (v) leaf tips point outward and leaf
unfurling is clear, (vi) leaves are spreading and mostly unfurled,
(vii) leaves are fully emerged and unfurled (Supplementary
Figure S1). Leaf bud burst date was defined as the date at which
greater or equal to 50% of the buds per tree reached stage six of
development.

Flower phenology was monitored in 2014 from 1st March.
From the date of first flower opening, trees were examined every
3 days and number of buds, flowers, and senescent flowers were
recorded according to the following definitions adapted from
Wagner et al. (2014); (i) budding, petals are clearly visible but not
distinctly unfurled (ii) flowering, when the corolla is separated
sufficient for four distinct petals and the stamen of the flower to
be clearly identified, (iii) senescent, flower shows clear signs of
senescence such as petal loss, discolouration and wilting. The day
at which 50% of buds per tree were flowering/had flowered was
then identified.

Pathogen Incidence
Tree health was monitored over the duration of the experiment
and a pathogen was observed in July 2014 which naturally
infected all of the study trees at approximately the same
time. Neonectria ditissima (apple canker) is a highly infectious
pathogen which disperses readily by spores produced continually
throughout the year. No significant effect of tree position
upon pathogen incidence was detected demonstrating even
distribution of pathogen spores with the pattern of infection
in our experimental orchard matching that which occurs in
commercial orchards (Beresford and Kim, 2010; Weber, 2014).
Infection of apple tissue samples with the fungal pathogen
N. ditissima was confirmed by sequencing four representative
fungal fruiting bodies from infected branches. Genomic DNA was
extracted using methods described elsewhere (Gardes and Bruns,
1993) with a purification step using GeneClean (QbioGene).
The fungal ITS1-5.8S-ITS2 region was amplified and sequenced
using primers ITS1F and ITS4 (White et al., 1990; Gardes
and Bruns, 1993) using PicoMaxx (Stratagene) and BigDye
Terminator v.3.1 (Thermo Fisher Scientific) with a 3730 DNA
Analyzer (Applied Biosystems) (GenBank accession numbers
MG679892-5). The DNA sequences were compared to the
NCBI database using the BLAST search algorithm, and all had
≥98% similarity over ≥99% of query coverage to a sequence of
N. ditissima (accession no. JK7355309.1). DNA sequencing, and
regular checks throughout the experiment, did not detect any
other pathogens. In accordance with agricultural management
practises infected branches were removed during July 2014 and
2015; we used the total length of infected material removed per
tree as an indicator of pathogen damage. This is a standard
quantitative measure of disease severity which has been used by
other recent studies of Neonectria ditissima infection of apple
(Garkava-Gustavsson et al., 2013; Gómez-Cortecero et al., 2016).

Statistical Analyses
All analyses were performed in R studio version 3.3.1 (R Core
Team, 2017); we conducted separate analyses for each year. We
present the results of models that include all two-way interaction
terms for all main effects, but not higher level interactions as
preliminary analyses revealed that these were almost invariably
non-significant (P < 0.05 in just seven out of 117 cases) and
were never consistently significant across years (higher level
interactions were only significant in one of the 3 years).

We conducted four-way ANOVAs using the ‘lme4’ package
to test the effect of mycorrhizal status (inoculated or not),
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nutrient status (high or low), scion type (Michelin or Dabinett)
and rootstock (MM106 or MM111) upon all tree nutrient
status parameters (leaf tissue P, N, C concentration, C:N
ratio, chlorophyll content), tree growth [height, trunk diameter,
above and below ground biomass and root length (which was
log10 transformed)], productivity (fruit and flower production)
and disease resistance. All two-way interactions between the
four main effects (AMF, nutrient input, scion, and rootstock
treatments) were included and block was incorporated as a
random factor.

We conducted a three-way ANOVA to test the effect of
nutrient status, scion and rootstock type upon AMF colonisation
and included all two-way interactions between main effects (AMF
inoculation was excluded as a main effect from this analysis as no
non-inoculated trees were colonised).

We modelled leaf and flower phenology as functions of
mycorrhizal status, nutrient status, scion type and rootstock using
Generalised Linear Models constructed with the ‘nlme’ package
and Poisson error distribution. All two-way interactions between
predictors were included.

RESULTS

Mycorrhizal Colonisation
All inoculated trees were colonised by AMF (range of
colonisation rates 11–54%) whilst all non-inoculated trees
remained free of AMF. For inoculated trees, high nutrient
treatment resulted in a significant 53% reduction in AMF
colonisation compared to low nutrient treatment (Tables 1, 2
and Figure 1). The AMF colonisation was also affected by scion
type; trees with Michelin scions on average showed an 8% higher
colonisation compared to those with Dabinett scions (Tables 1, 2
and Figure 1). No difference between colonisation of rootstocks
was found (Tables 1, 2).

Tree Nutrient Status
Leaf Phosphorus
No significant effect of AMF inoculation or rootstock type
upon leaf P concentration was shown. In year three only, trees
receiving high nutrient application showed a significant increase
in leaf P concentration (Tables 1, 2). A significant interaction
between nutrient and scion treatment was found for year two
only (Table 1) where trees with Michelin scions had increased
leaf P under high compared to low nutrient treatment, however,
the opposite was shown for Dabinett scions (Supplementary
Table S3).

Leaf Nitrogen
Trees receiving high nutrient treatment showed on average
higher leaf N across all years of the experiment, however, this
increase was only significant in year three (Tables 1, 2). For
both year one and two, trees with MM111 rootstocks showed
significantly greater concentration of leaf tissue N than those
with MM106 rootstocks (Tables 1, 2) and an interaction between
mycorrhiza and rootstock was shown in year two (Table 1 and
Supplementary Table S4). Trees with MM111 rootstocks showed

increased leaf N when inoculated, however, inoculation reduced
leaf N of those with MM106 rootstocks relative to non-inoculated
trees (Supplementary Table S4). In year three also, Dabinett
scions showed increased leaf N compared to Michelin scions
(Tables 1, 2).

Leaf Carbon and C:N Ratio
In the third year of the experiment trees receiving high
nutrient treatment showed both a significantly reduced leaf
tissue C content and C:N ratio compared to low nutrient trees
(Tables 1, 2). Significant differences in leaf C and C:N were
shown between rootstock and scions during year two and three
of the experiment although these effects were not consistent
between years (Tables 1, 2). A significant interaction between
the effect of AMF inoculation and rootstock was shown for C:N
ratio in year two (Table 1) where inoculation reduced C:N ratio
of trees with MM111 rootstocks but increased C:N ratio of those
with MM106 rootstocks (Supplementary Table S4). This is likely
be driven by the significant interaction between rootstock and
AMF inoculation observed for leaf N in year two as no interaction
between these factors was shown for leaf C.

Leaf Chlorophyll
For year three only, trees receiving high nutrient application
showed a significant increase in mean leaf chlorophyll compared
to trees receiving low nutrient treatment (Tables 1, 2). Tree
rootstock and scion type had a significant effect upon leaf
chlorophyll across all years of the experiment with Michelin
scions and MM106 rootstock showing on average the highest
chlorophyll content (Tables 1, 2). A significant interaction
between the effect of scion and rootstock upon leaf chlorophyll
was found for all 3 years of the experiment (Table 1) with
Dabinett scions on MM111 rootstocks showing the lowest
chlorophyll content for both year two and three (Supplementary
Table S5).

Tree Growth
Height and Diameter
For year two only, AMF inoculated trees showed a significant
increase in height compared to non-inoculated trees (Tables 1, 2)
but inoculation had no effect on trunk diameter. Nutrient
treatment did not affect tree height or trunk diameter in any year
(Tables 1, 2).

Trees with Michelin scions were consistently taller throughout
the experiment (Tables 1, 2); however, the effect on rootstock
on tree height differed between years. Trees with MM111
rootstocks were significantly taller in year one (Tables 1, 2)
and a significant interaction was shown between rootstock and
scion type; height of Michelin scions increased when grown on
MM111 compared to MM106 rootstocks, however, rootstock
type caused negligible difference in height of Dabinett scions
(Supplementary Table S5). In contrast, trees with MM111
rootstock were significantly shorter in year two and three
compared to MM106 (Tables 1, 2). This may partly be explained
by increased susceptibility of trees with MM111 rootstocks to
apple canker which became established in year two leading
to removal of material from infected trees and thus height
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FIGURE 1 | Root colonisation of apple trees (Malus pumila) inoculated with
two species of arbuscular mycorrhizal fungi (AMF). Mean AMF colonisation
after 3 years of growth under high and low nutrient treatments and for both
Dabinett and Michelin scions is presented. Error bars represent ± SE per
treatment (n = 20). AMF colonisation was significantly affected by both scion
type (P < 0.05) and nutrient treatment (P < 0.001) but not rootstock type.

reduction (see “Disease Resistance” section of Results). Similarly,
Dabinett MM111 trees which were most susceptible to canker
damage compared to other rootstock scion combinations,
showed substantial reduction in height during year two, driving a
significant interaction between rootstock and scion for year two
tree height (Supplementary Table S5).

Trees with Michelin scions had on average larger trunk
diameters in year one. There was also a significant interaction
between scion and rootstock for trunk diameter with MM106
rootstocks increasing trunk diameter for Dabinett trees but
reducing trunk diameter of Michelin trees relative to MM111
rootstocks (Supplementary Table S5). For year two and three
trunk diameter was affected by both scion and rootstock type
(Tables 1, 2). This was driven by a significant interaction between
rootstock and scion for both years whereby trunk diameter of
Michelin MM111 trees was consistently much larger than the
other rootstock scion combinations (Supplementary Table S5).

Biomass
Root biomass was significantly reduced in trees receiving high
nutrient application (Figure 2 and Tables 1, 2). Scion and
rootstock type also significantly affected root biomass; on average
larger root systems were found for trees with Michelin scions
and MM106 rootstocks (Tables 1, 2). A significant interaction
was shown between nutrient treatment and rootstock for above
ground biomass; high nutrient treatment increased above ground
biomass of trees with MM106 rootstocks but decreased above
ground biomass of those with MM111 rootstocks relative to low
nutrient treatment (Table 2 and Supplementary Table S6).

Root Length
Mycorrhizal inoculation reduced root length compared to
non-inoculated trees (Tables 1, 2). As AMF inoculated trees did

FIGURE 2 | Mean total dry above and below ground biomass for apple trees
(Malus pumila) grown under high and low nutrient treatments. Error bars
represent ± SE per treatment (n = 24). Below ground biomass was
significantly affected by nutrient treatment (P < 0.01), scion type (P < 0.01),
and rootstock type (P < 0.001). Above ground biomass was significantly
affected by rootstock type (P < 0.05) only.

not show reduced root biomass this implies that AMF trees had a
coarser root system than those which were not colonised. Trees
with Dabinett scions showed significantly greater root length
(Tables 1, 2) despite a lower total root biomass indicating a
finer root system than trees with Michelin scions. A significant
interaction between the effect of nutrient treatment and rootstock
was shown (Table 1) with high nutrient treatment increasing
root length of MM106 rootstocks but reducing root length of
MM111 rootstocks compared to root length under low nutrient
conditions (Supplementary Table S6).

Leaf and Flower Phenology
No significant treatment effects upon leaf bud burst or flowering
dates were shown. On average trees came into leaf after 60 days
in year two (60th day = 29th April 2014) and 77 days in year
three (77th day = 16th May 2015) reflecting the colder spring
temperatures of 2015 (data not shown).

Tree Productivity
Fruit and Flower Production
The first year’s fruit crop was low as expected for newly
planted trees (Williams, 1996). Non-inoculated trees yielded a
significantly greater fruit biomass compared to those that were
inoculated (Tables 1, 2); however, the total number of fruit
produced per tree was not affected by inoculation indicating
that fruit biomass rather than fruit number was reduced in
the AMF treatment. First year fruit biomass and number was
also significantly affected by both tree scion and rootstock with
Dabinett scions and MM106 rootstocks yielding a greater number
and biomass of fruit (Tables 1, 2).

Mycorrhizal inoculation did not influence flower production
(Tables 1, 2). Trees with MM106 rootstocks produced a
significantly greater number of flowers in both years two and
three. Year two flower production was significantly increased for
trees receiving high nutrient treatment and trees with Dabinett
scions (Tables 1, 2).
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FIGURE 3 | Total apple tree (Malus pumila) material infected by the fungal
pathogen Neonectria ditissima. Trees were grown with and without inoculation
with arbuscular mycorrhizal fungi (AMF). Error bars represent ± SE per
treatment (n = 20). Total pathogen infected material was significantly affected
by AMF inoculation (P = 0.001), scion type (P < 0.001) and rootstock type
(P < 0.001).

Disease Resistance
The AMF inoculation significantly reduced the amount of plant
material infected by the fungal pathogen N. ditissima by an
average of 18% compared to non-inoculated trees (Figure 3
and Tables 1, 2). Large differences in pathogen susceptibility
were found between both scion and rootstock types with
significantly lower canker incidence for Michelin scions and
MM106 rootstocks (Tables 1, 2). There was also a significant
interaction between the effect of rootstock and scion type upon
disease resistance (Figure 3 and Table 1) with canker incidence of
rootstock/scion combinations substantially reduced on Michelin
MM106 trees compared to other scion rootstock combinations
(Figure 3 and Supplementary Table S5).

DISCUSSION

We provide a robust, controlled and fully factorial experiment
that quantifies the impacts of AMF colonisation in a woody
perennial crop on multiple performance indicators including
plant growth, nutritional status, cropping potential and disease
resistance. Our findings shed light on how fertiliser applications
influence AMF colonisation, AMF-induced disease resistance
and the impact of above ground genotypes on rootstock
associations with AMF.

Effects of Fertiliser Applications
Best practise fertiliser application guidelines for newly planted
young apple trees significantly reduced AMF colonisation rates.
Similar reductions in AMF colonisation of arable crops by
inorganic fertiliser applications have been widely reported

(Kahiluoto et al., 2001; Gosling et al., 2006; Li et al., 2006).
This may be explained by the ‘functional equilibrium model’
(Johnson, 2010; Johnson et al., 2013) whereby plants invest more
energy into plant and fungal structures which optimise capture
of the resources (i.e., carbon, nitrogen, and phosphorus) most
limited in availability, therefore reducing carbon allocation to
AMF under none nutrient limited conditions. However, whilst
fertiliser application rate did not affect leaf nutrient status in year
one, by year three both leaf P and N were significantly reduced
in low nutrient trees (N by year two) irrespective of mycorrhizal
inoculation treatment suggesting that increased colonisation of
low nutrient trees by AMF did not compensate for reduced
fertiliser inputs. The ‘functional equilibrium model’ may also
explain why standard fertiliser application rates reduced root
biomass (Poorter et al., 2012), a metric that is positively associated
with drought resistance (Brunner et al., 2015). Growers may
thus benefit from limiting nutrient applications during the
early stages of orchard establishment due to reduced costs of
inputs, potentially improved drought resistance and increased
AMF colonisation rates (and associated benefits) without adverse
impacts on plant health. Reduced fertiliser applications will also
deliver a wide range of environmental benefits (Tilman et al.,
2001).

Mycorrhizal Effects on Disease
Resistance
Inoculation with mycorrhizal fungi improved resistance of apple
trees to the fungal pathogen N. ditissima reducing, on average,
the amount of infected material by 18%. There is variation,
however, in the impact of AMF on canker resistance with
negligible effects for Michelin trees grown on MM106 rootstock.
To our knowledge, this is the first study to report the benefit of
mycorrhizas for resistance to this pathogen which infects apple
orchards globally and can severely reduce productivity of canker
sensitive varieties, which generate a large proportion of global
apple production (Weber, 2014). This extends previous work
suggesting that AMF can increase apple seedlings’ resistance
to pathogens (Utkhede and Smith, 2000; Raj and Sharma,
2009; Krishna et al., 2010) to commercially relevant settings,
as the apple industry relies on grafts rather than growth
of seedlings. Furthermore, the two AMF taxa we used for
inoculation (R. irregularis and F. mosseae) are commercially
available, enhancing the industrial relevance of our research, and
have previously been shown to increase resistance to pathogens
in other crop species (Liu et al., 2007; Song et al., 2011; Hao et al.,
2012).

Although the mechanisms are not fully understood, AMF
may affect host plant disease resistance through several non-
mutually exclusive pathways: (i) alleviating environmental
stress such as drought (Augé, 2004; Bowles et al., 2016), (ii)
improving host plant nutrition and subsequent health (Smith
and Smith, 2011; Cavagnaro, 2014; Bowles et al., 2017a), (iii) by
priming the plant immune system (Jung et al., 2012), and (iv)
through synergistic interactions with plant growth-promoting
rhizobacteria (Cameron et al., 2013; Pérez-de-Luque et al.,
2017). Our experimental trees were supplied with supplementary
water and (with the exception of significantly increased leaf
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N and corresponding reduced C:N ratios for AMF inoculated
trees with MM111 rootstocks during year two) we found
no evidence that AMF colonisation increased N and P leaf
nutrient concentrations or changed C:N ratios. These findings
thus rule out the first two hypotheses for how AMF enhanced
disease resistance. Colonisation by AMF may elicit a priming
response whereby the plant immune system is pre-conditioned
so that although defences are not actively expressed, when
under attack the defence system is able to respond more
rapidly and to a greater extent than a plant which is not
primed, thus improving defensive capacity (Jung et al., 2012).
Colonisation by AMF may also indirectly influence plant defence
by altering metabolite exudation from roots and thus influencing
recruitment of plant growth-promoting rhizobacteria in the
rhizosphere (Frey-Klett et al., 2007; Cameron et al., 2013)
and thus affect systemic plant disease resistance (Lioussanne,
2013; D’Alessandro et al., 2014). We therefore speculate that
that AMF induced defence response and/or indirect effects
upon rhizosphere microbial communities may explain increased
resistance of apple trees to N. ditissima observed in this study.
However, further experiments are required to confirm this.
Irrespective of the mechanism, fertiliser induced reductions
in mycorrhizal colonisation (from 40 to 20%) did not alter
the magnitude of pathogen suppression, suggesting that even
relatively low levels of mycorrhizal colonisation are able to
influence plant defence systems.

Mycorrhizal Effects on Growth Rates,
Nutrient Status, Phenology, and Yield
We hypothesised that AMF would positively influence tree
nutrient status and consequently growth rates. However, we
found that AMF inoculation did not influence leaf C:N ratios, N,
P and chlorophyll concentrations, plant height, trunk diameter
or above ground biomass in trees growing under conditions that
otherwise were similar to those of commercial apple orchards.
AMF can be more efficient than roots at nutrient capture due
to their ability to respond rapidly to nutrient availability and
the finer diameter of their hyphae compared to roots allowing
them greater access to soil pores and greater efficiency at
exploring larger areas of soil (Drew et al., 2003; Cavagnaro et al.,
2005). The last of these mechanisms could not occur in our
experiment due to its pot based system, perhaps partly explaining
the lack of effect of AMF on nutrient status. Alternatively,
lack of enhanced tissue nutrient levels in AMF trees could
be explained by down-regulation of plant nutrient uptake in
response to AMF colonisation generating no net nutritional
gain to AMF host plants (Smith et al., 2004; Nagy et al.,
2009).

There is also variation in the ability of specific AMF taxa
to deliver nutritional benefits (Forge et al., 2001; Zhu et al.,
2001), with previous work (Maherali and Klironomos, 2007)
finding limited nutritional benefits of R. irregularis and F. mosseae
compared to other AMF taxa. It is thus plausible that the lack
of nutritional benefits to apple trees of AMF inoculation is
influenced by the design of our experimental system. It may,
however, also partly arise from a more general mechanism
of reduced investment in fine root growth, i.e., the root type

responsible for nutrient capture, in plants colonised by AMF.
Indeed, our results showed decreased root length of AMF trees
compared to non-AMF trees despite no differences in overall root
biomass suggesting that colonised trees shift allocation in root
growth from fine roots to coarser roots.

We investigated the effect of AMF upon leaf and flower
phenology based upon recent work which has suggested
that microbial communities, including AMF, have a role in
determining plant flowering time through potential effects upon
phenotypic plasticity of flower phenology (Wagner et al., 2014;
Vaingankar and Rodrigues, 2015; Liu et al., 2017). Timing
of leaf and flower development is of agronomical importance
due to potential effects on growth and flower production and
consequently fruit yield. In particular, flowering date is critical
as climate conditions and pollinator activity during this period
determine flower set and the annual fruit crop (Williams, 1996).
Our data showed no difference between mycorrhiza-inoculated
and non-inoculated trees in the timing of leaf or flower
phenology – although effects of AMF upon flower phenology
can vary between crop species and AMF taxa (Philip et al.,
2001; Liu et al., 2017). The fruit crop from all trees following
the first growing season was very low (averaging approximately
one fruit per tree), this is expected given the tree age (Williams,
1996). Mycorrhizal trees showed significantly reduced yield in
the first year of the experiment (35% reduction) compared to
non-inoculated trees. One explanation for this could be the
carbon cost of AMF symbiosis, i.e., the resource allocation
hypothesis, with AMF acquiring carbon that would otherwise be
allocated to fruit production (Guo et al., 1994). It was not possible
to measure fruit yield for the subsequent 2 years of the experiment
due to very low fruit production as a result of pathogen infection.
However, measurement of flower production in the second
and third years showed no difference between inoculated and
non-inoculated trees suggesting that yield potential was similar.

Rootstock and Scion Effects
Previous research with herbaceous species has suggested that
crop breeding in agricultural soils with high nutrient levels
and low levels of AMF activity may have impaired the ability
of subsequent germplasm to form mycorrhizal associations
(Hetrick et al., 1993, 1996). Rootstock type (MM106 and MM111)
did not affect mycorrhizal colonisation. Whilst colonisation
results are not always a good predictor of mycorrhizal activity
(Hetrick et al., 1993; Zhu et al., 2001), it is noteworthy that
these two widely planted commercial rootstocks are able to
achieve high levels of colonisation (up to 43%) despite being
subject to intensive artificial selection pressure. Remarkably,
AMF colonisation was influenced more by scion type than
rootstock, with greater colonisation of roots grown with
Michelin scions than Dabinett scions. This matches results
of recent work on Citrus (Song et al., 2015). Root exudates
can influence AMF colonisation (Broeckling et al., 2008; Kiers
et al., 2011), and our work suggests that some of these
exudates may be synthesised in the scion (thus explaining
differences in colonisation between scion types). Further research
into how interactions between above and below ground
plant tissue alter AMF symbioses is required to ensure that
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AMF symbiotic potential is maximised in current breeding
programmes.

Synthesis and Future Directions
We find that currently advocated fertiliser regimes reduce
AMF colonisation rates of apple trees, and have negligible
nutritional or growth benefits during at least the first two
growing seasons. Standard fertiliser application rates also appear
to reduce root biomass potentially increasing adverse impacts
of drought stress. Most significantly, we find strong evidence
that AMF colonisation by R. irregularis and F. mosseae can
significantly reduce the intensity of infection by N. ditissima
which causes apple canker – a major pathogen. Furthermore we
show that the genetic identity of above ground plant tissue has
stronger impacts on AMF colonisation than rootstock genotypes,
drawing attention to an important and overlooked focus for plant
breeding programmes that seek to maximise mycorrhizal status
of grafted crops, and the associated benefits that can be delivered
by AMF. This study emphasises the need to further understand
the role of AMF in plant protection against pathogens and
highlights the potential for AMF within sustainable agriculture.
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FIGURE S1 | The seven stages used for scoring apple (Malus pumila) leaf
phenology.

TABLE S1 | Apple tree macronutrient applications.

TABLE S2 | Apple tree micronutrient applications.

TABLE S3 | Treatment means and ± SE for parameters of apple (Malus pumila)
performance per nutrient treatment (low or high) and scion type (Dabinett or
Michelin), where significant interactions between nutrient treatment and scion type
were reported by four-way ANOVA analysis.

TABLE S4 | Treatment means and ± SE for parameters of apple (Malus pumila)
performance per arbuscular mycorrhizal fungal (AMF) inoculation treatment (AMF
inoculation or non-inoculation) and rootstock type (MM106 or MM111), where
significant interactions between inoculation treatment and rootstock type were
reported by four-way ANOVA analysis.

TABLE S5 | Treatment means and ± SE for parameters of apple (Malus pumila)
performance per scion (Dabinett or Michelin) and rootstock type (MM106 or
MM111), where significant interactions between scion and rootstock type were
reported by four-way ANOVA analysis.

TABLE S6 | Treatment means and ± SE for parameters of apple (Malus pumila)
performance per nutrient treatment (low or high) and rootstock type (MM106 or
MM111), where significant interactions between nutrient treatment and rootstock
type were reported by four-way ANOVA analysis.

NOTES S1 | Summary of fertiliser application treatment.
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