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Recent lines of evidence highlight the involvement of myeloid-epithelial-reproductive 
tyrosine kinase (MerTK) in metabolic disease associated with liver damage. MerTK is 
mainly expressed in anti-inflammatory M2 macrophages where it mediates transcriptional 
changes including suppression of proinflammatory cytokines and enhancement of 
inflammatory repressors. MerTK is regulated by metabolic pathways through nuclear 
sensors including LXRs, PPARs, and RXRs, in response to apoptotic bodies or to other 
sources of cholesterol. Nonalcoholic fatty liver disease (NAFLD) is one of the most serious 
public health problems worldwide. It is a clinicopathological syndrome closely related 
to obesity, insulin resistance, and oxidative stress. It includes a spectrum of conditions 
ranging from simple steatosis, characterized by hepatic fat accumulation with or without 
inflammation, to nonalcoholic steatohepatitis (NASH), defined by hepatic fat deposition 
with hepatocellular damage, inflammation, and accumulating fibrosis. Several studies 
support an association between NAFLD and the incidence of cardiovascular diseases 
including atherosclerosis, a major cause of death worldwide. This pathological condition 
consists in a chronic and progressive inflammatory process in the intimal layer of large- and 
medium-sized arteries. The complications of advanced atherosclerosis include chronic or 
acute ischemic damage in the tissue perfused by the affected artery, leading to cellular 
death. By identifying specific targets influencing lipid metabolism and cardiovascular-
related diseases, the present review highlights the role of MerTK in NAFLD-associated 
atherosclerotic lesions as a potential innovative therapeutic target. Therapeutic advantages 
might derive from the use of compounds selective for nuclear receptors targeting PPARs 
rather than LXRs regulating macrophage lipid metabolism and macrophage mediated 
inflammation, by favoring the expression of MerTK, which mediates an immunoregulatory 
action with a reduction in inflammation and in atherosclerosis.

Keywords: monocytes, macrophages, nonalcoholic fatty liver disease, MerTK, inflammation, atherosclerosis, 
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METABOLIC ASPECTS OF NAFLD: 
INSULIN RESISTANCE, METABOLIC 
SYNDROME, AND TYPE 2 DIABETES

Nonalcoholic liver disease (NAFLD) was firstly described in 1980 
(Ludwig et al., 1980) and is currently the most common cause 
of chronic liver disease worldwide (Li et al., 2018). The global 
prevalence of NAFLD is estimated to be approximately 25%, with 
the highest rates in South America (31%) and Middle East (32%), 
followed by Asia (27%), USA (24%), Europe (23%), and Africa 
(14%) (Younossi et al., 2016). NAFLD comprises a spectrum 
of conditions ranging from simple hepatic lipid accumulation 
without inflammation, defined nonalcoholic fatty liver or NAFL, 
to nonalcoholic steatohepatitis (NASH), characterized by hepatic 
fat deposition with hepatocellular damage, inflammation, and 
fibrosis. This latter form in a smaller proportion of patients may 
lead to a series of complications including cirrhosis, liver failure, 
and hepatocellular carcinoma (HCC) (Marra et al., 2008; Ofosu 
et al., 2018). Cirrhosis may develop after about 15–20 years of 
chronic hepatocellular damage, and it is mainly characterized by 
a modified deposition of extracellular matrix components that, in 
cirrhotic liver, can be up to six times higher than in normal liver 
(Parola and Pinzani, 2018). In addition, inflammatory response 
contributes to hepatic encephalopathy, portal hypertension, liver 
failure, and increased risk of HCC (Tacke and Trautwein, 2015).

The development and progression of NAFLD is a complex 
and multifactorial process. NAFLD pathogenesis was originally 
described by the “two-hits hypothesis” (Day and James, 1998). 
According to this assumption, the “first hit” is represented by 
an excess intrahepatic lipid accumulation due to high intake of 
saturated fats, obesity, IR, and excessive fatty acids in the circulation 
(Marra, 2004). This sensitizes the liver to further insults acting 
as a “second hit” (Del Campo et al., 2018) including oxidative 
stress, lipid peroxidation, and mitochondrial dysfunction. These 
events give rise to a lipotoxic microenvironment, which leads to 

further damage of the hepatic tissue, consequently promoting 
inflammation and fibrogenesis (Buzzetti et al., 2016). More 
recent investigation has hypothesized that appearance of NASH 
is the result of the effects of signals deriving from multiple sites, 
including the gut, the adipose tissue, the muscle, and the liver 
itself, as illustrated as the “multiple-hits” hypothesis (Tilg and 
Moschen, 2010). The mechanisms underlying liver fibrosis are 
intricate and involve the interplay of multiple factors. Among 
these, a key role is played by the cross-talk between various liver-
resident and infiltrating cellular subsets, which produce and 
secrete different soluble mediators (cytokines and chemokines) 
(Weiskirchen et al., 2018). In most cases, tissue injury induces 
an inflammatory response involving the local vascular system, 
immune cells, and release of endocrine and neurological factors. 
In this context, non-parenchymal cells [endothelial and hepatic 
stellate cells (HSCs)] and resident or recruited immune cells 
[macrophages, dendritic cells (DCs), and mast cells] secrete a 
variety of pro-inflammatory molecules such as tumor necrosis 
factor-α (TNF-α) and interleukin-1β (IL-1β), pro-fibrotic factors 
including transforming growth factor-β (TGF-β) and pro-
apoptotic mediators, as well as reactive oxygen species (Tilg and 
Diehl, 2000). All together, these signals lead to the activation of 
matrix-producing cells (including HSCs) and consequently to 
myofibroblast trans-differentiation (Weiskirchen et al., 2018).

NAFLD not only is related to obesity, hypertension, and 
inflammation but also is closely associated with insulin resistance 
(IR), metabolic syndrome (MetS), and type 2 diabetes (T2D) 
(Gentilini et al., 2016). A recent meta-analysis of published 
prospective studies has investigated for the first time the 
association between the presence of NAFLD and the risk of 
developing T2D and MetS. In particular, it has been observed 
that NAFLD (as diagnosed by either serum liver enzymes or 
ultrasonography) predicts T2D development over a median 
follow-up of 5 years in a pooled population of patients from 20 
prospective studies. Moreover, NAFLD was also associated with 
an increase in MetS incidence over a median follow-up of 4.5 
years in a pooled population of patients from eight prospective 
studies (Ballestri et al., 2016). Importantly, IR has been shown to 
be crucial for NAFLD progression. Indeed, approximately 80% of 
obese and diabetic patients are affected by NAFLD (Marchesini 
et al., 1999). IR is defined as the decreased ability of tissues to 
respond to insulin signals, and diverse types may be distinguished, 
a systemic and a hepatic insulin resistance. Systemic IR is 
characterized by the inability of insulin to diminish blood glucose 
levels in an appropriate manner due to the impairment of GLUT4 
receptor translocation to the surface membrane of the muscle cell, 
leading to insulin-dependent lower glucose uptake (Petersen and 
Shulman, 2017). Hepatic IR is described by cessation of insulin-
induced suppression of hepatic glucose production and increased 
stimulation of lipogenesis (Petersen and Shulman, 2017).

Interestingly, insulin also controls lipid metabolism, as 
it enhances fatty acid re-esterification into triglyceride in 
adipocytes and the liver. Metabolic actions of insulin are 
mediated by the PI3K–AKT/PKB pathway (Cohen, 2006), 
which is phosphorylated by the insulin receptor through two 
major substrates, insulin receptor substrate 1 and 2 (IRS-1 and 
IRS-2). Well-established AKT/PKB substrates include GSK-3, a 

Abbreviations: nonalcoholic fatty liver disease (NAFLD), nonalcoholic 
steatohepatitis (NASH), MerTK (myeloid-epithelial-reproductive tyrosine kinase), 
hepatocellular carcinoma (HCC), cardiovascular diseases (CVD), insulin resistance 
(IR), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), transforming 
growth factor-β (TGF-β), apoptotic cells (ACs), free fatty acids (FFAs), de novo 
lipogenesis (DNL), sterol regulatory element-binding protein 1c (SREBP-1c), 
patatin-like phospholipase-3 (PNPLA3), transmembrane 6 superfamily member 
2 (TM6SF2), low-density lipoproteins (VLDL), triglycerides (TGs), high-density 
lipoproteins (HDL), low-density lipoproteins (LDL), growth arrest-specific 
6 (Gas-6), carboxyl-glutamic acid (Gla), epidermal growth factor (EGF), sex 
hormone-binding globulin-like (SHBG), laminin G (LG), visceral adipose tissue 
(VAT), granulocyte macrophage colony-stimulating factor (GM-CSF), reactive 
oxygen species (ROS), reactive nitrogen intermediates (RNI), hepatic stellate 
cells (HSCs), macrophage colony-stimulating factor (M-CSF), growth arrest-
specific-6 (Gas-6), matrix metalloproteinases (MMPs), inducible NO synthase 
(iNOS), hypoxia-inducible factor (HIF), pyruvate kinase M2 (PKM2), peroxisome 
proliferator-activated receptors (PPARs), liver X receptors (LXRs), retinoid X 
receptors (RXRs), dendritic cells (DCs), ATP-binding cassette transporter A1 and 
G1 (ABCA-1 and ABCG-1), reverse cholesterol transport (RCT), apolipoprotein 
B (APO-B), smooth muscle cells (VSMCs), phosphatidylserine (PtSer), toll-like 
receptor 4 (TLR4), soluble fragment of MerTK (sol-Mer), specialized pro-resolving 
mediators (SPMs), suppression of cytokine signaling-1 and 3 (SOCS-1 and SOCS-
3), N,N-dimethyl-3β-hydroxycholenamide (DMHCA), methylpiperidinyl-3β-
hydroxycholenamide (MePipHCA).
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glycogen synthesis regulator, FOXO transcription factors, which 
upon phosphorylation inhibit transcription of FOXO-dependent 
gluconeogenic genes (Carter and Brunet, 2007), and sterol 
regulatory element-binding protein 1c (SREBP-1c), thus 
enhancing expression of rate-limiting glycolytic and lipogenic 
enzymes (Foretz et al., 1999; Foufelle and Ferré, 2002).

Also, promoting de novo lipogenesis in the liver, mediated by 
SREBP-1c, IR inhibits lipid export in the form of triglyceride-rich 
very-low-density lipoprotein (VLDL), hepatic FFA oxidation, 
and triglyceride (TG) accumulation, the major form of lipids 
stored in NAFLD patients (Browning and Horton, 2004).

Liver is the principal site of lipid metabolism; hepatic 
necro-inflammation has a crucial atherogenic role because it 
exacerbates systemic IR and promotes atherogenic dyslipidemia, 
with increased triglycerides, decreased high-density lipoprotein 
(HDL)-cholesterol, and increased low-density lipoprotein (LDL)-
cholesterol (Nobili et al., 2010). Moreover, increased levels of 
highly atherogenic small dense type A LDL-cholesterol and of 
oxidized LDL-cholesterol are frequently detected in NAFLD. The 
main alteration in atherogenesis is the TG hepatic overproduction 
of as well as cholesterol-enriched VLDL particles.

NAFLD AS A RISK FACTOR FOR 
CARDIOVASCULAR DISEASES

NAFLD has been recognized as strong predictor of increased 
carotid intima-media thickness, independent of other known 
cardio-metabolic risk factors.

Hepatic fat accumulation may be an important determinant 
of the relationship between NAFLD and atherosclerosis. 
Recently, it has been proposed that fatty liver is not per se a risk 
factor for atherosclerosis, unless it is associated with metabolic 
derangements. It has been suggested that there might be two 
different forms of fatty liver disease: one mainly related to 

metabolic abnormalities and another due primarily to genetic 
factors, characterized by higher risk of progressive liver damage 
(Sookoian and Pirola, 2011; Hamaguchi et al., 2007).

NAFLD is associated with adverse metabolic and atherosclerosis 
risk profiles (Fox et al., 2007; Neeland et al., 2013). From the 
metabolic point of view, the biological mechanism responsible for 
NAFLD-associated atherogenesis could be due to the crosstalk 
between visceral adipose tissue (VAT), gut, muscle tissue, and liver 
(Tilg and Moschen, 2010). Indeed, expanded and inflamed VAT 
releases molecules, such as adipokines, IL-6, and TNF-α, potentially 
involved in IR and cardiovascular disease (CVD) development 
(Fargion et al., 2014). Moreover, dietary chylomicrons and de novo 
lipogenesis contribute to the increased hepatic FFA pool as well as 
the development of NAFLD (Kleiner and Brunt, 2012).

Lipid accumulation in the liver leads to sub-acute inflammation 
followed by cytokine production via the NF-kB pathway. In 
particular, the activation of NF-kB leads to increased transcription 
of several pro-inflammatory genes that mediate the progression 
of systemic and low-grade inflammation. The increase in adipose 
tissue and chronic inflammation also cause an imbalance in 
adipokine secretion, in particular a reduction of adiponectin. 
Adiponectin has been shown to have anti-inflammatory and anti-
fibrotic capacity (Di Maira et al., 2018; Marra et al., 2008), and its 
low levels are associated with high fat content (Bugianesi et al., 
2005) and the progression from steatosis and CVD to NASH and 
CV-atherosclerosis, respectively (Matsuzawa et al., 2004). NASH 
is involved in atherogenesis through the systemic release of pro-
atherogenic mediators (C-reactive protein, IL-6, and TNF-α) 
and hypercoagulation and hypo-fibrinolysis induction mediated 
by fibrinogen, factor VII, and plasminogen-activator inhibitor-1 
(Kotronen and Yki-Järvinen, 2008; Targher et al., 2008). In this 
way, the liver becomes a source of pro-atherogenic molecules 
that amplifies arterial injury. In line with these results, growing 
evidence indicates that atherosclerosis is proportional to the 
severity of liver damage (Alkhouri et al., 2010) (Figure 1).

FIGURE 1 | Schematic representation of key mechanisms responsible for NAFLD associated-atherosclerosis. NAFLD contributes to a more atherothrombotic risk 
profile via atherogenic dyslipidemia, hepatic/systematic insulin resistance and increased secretion of several proinflammatory and pro-coagulant mediators. NAFLD, 
nonalcoholic fatty liver disease; HSCs, hepatic stellate cells; FFA, free fatty acids; LDL, low-density lipoproteins; KCs, kupffer cells.
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The importance of NAFLD and its close association with 
CVD development has been highlighted by two meta-analyses. 
Notably, in a systematic meta-analysis of 34 cross-sectional 
and prospective cohort studies, an increase in coronary artery 
disease, hypertension, and atherosclerosis in NAFLD patients 
was observed, although no association between NAFLD/NASH 
and with overall or CVD-related mortality was shown (Wu et 
al., 2016). Additionally, (Targher et al., 2016) have described a 
strong correlation between NAFLD and increased risk of fatal 
and non-fatal CVD events, increased carotid intima-media 
thickness, increased coronary artery calcification, impaired 
flow-mediated vasodilation, and arterial stiffness. Indeed, 
several mechanisms correlated with NAFLD pathogenesis are 
involved in atherosclerosis and include genetic predisposition, 
reduced levels of adiponectin, IR, atherogenic dyslipidemia, 
oxidative stress, chronic inflammation, and altered production 
of pro- and anti-coagulant factors (Francque et al., 2016). 
Recently, a systematic review (Zhou et al., 2018) has described 
a two-fold increase in risk of CVD in diabetic NAFLD patients 
compared with non-NAFLD group, confirming other previous 
findings (Targher et al., 2007; Hamaguchi et al., 2007). 
Likewise, other two independent studies found that TG to 
high-density lipoprotein cholesterol ratio (TG/HDL-C) could 
be considered a better NAFLD predictor compared to other 
several lipid parameters and markers of liver injury (Ren et al., 
2019; Fan et al., 2019).

Remarkably, also several polymorphisms associated 
with predisposition of NAFLD progression have been 
identified. Among the most validated factors, the Patatin-like 
phospholipase-3 (PNPLA3)/adiponutrin, rs738409 C > G SNP, 
I148M (Valenti et al., 2010) variant is involved both in hepatic 
lipid remodeling and in lipoprotein secretion, determining a 
greater predisposition to NASH (He et al., 2010; Ruhanen et al., 
2014). Indeed, there is dissociation between de novo lipogenesis 
and the severity of hepatic steatosis in carriers of the I148M 
variant (Mancina et al., 2015). The involvement of the PNPLA3 
variant has been observed also in lean subjects, where the 
presence of PNPLA3 GG genotype is correlated with a more 
severe liver and cardiovascular damage (Fracanzani et al., 2017). 
Among NAFLD patients, with minor metabolic alterations, the 
presence of GG PNPLA3 makes the subjects more susceptible to 
liver and CVDs, amplifying the effects of environmental factors 
(Fracanzani et al., 2017). In addition, carotid plaques have been 
independently associated not only with well-known risk factors 
for atherosclerosis but also with the PNPLA3 GG genotype 
(Petta et al., 2013).

Moreover, the transmembrane 6 superfamily member 2 
(TM6SF2) rs58542926 C > T SNP, which encodes the loss of 
function E167K variant, has been associated with higher risk 
of NAFLD progression but with lower risk of cardiovascular 
events (Pirazzi et al., 2012). This protective effect of the 
E167K variant reflects the reduced circulating levels of 
atherogenic lipoproteins, because of higher intracellular lipid 
retention, mainly TGs and cholesterol, in hepatocytes. The 
mechanism seems related to the reduction of VLDL secretion, 
thus resulting in TG accumulation and consequent steatosis 
(Dongiovanni et al., 2015).

ACTIVATION OF MACROPHAGES 
DEPENDS ON THEIR METABOLIC STATE

In the liver, resident macrophages, the Kupffer cells are central 
players in the development of NASH by recruiting inflammatory 
immune cells and secreting pro-inflammatory cytokines (Sica 
et al., 2014; Raggi et al., 2015; Raggi et al., 2017). Importantly, 
the balance between M1 and M2 macrophages (Box 1) mediates 

BOX 1 | Macrophage polarization.

In response to various signals, activated macrophages differentiate into two 
main subsets: M1 (classically activated) and M2 (alternatively activated). 
M1 macrophages are stimulated by LPS, INF-γ, TNF-α, and/or granulocyte 
macrophage colony-stimulating factor (GM-CSF) to produce inflammatory 
mediators, including TNF-α, IL-1β, IL-6, IL-8, IL-12, chemokine (C-C motif) 
ligand 2 (CCL2/MCP-1), reactive oxygen species (ROS), and reactive 
nitrogen intermediates (RNI), promoting inflammatory responses and HSC 
activation (Nathan, 2002). M2 macrophages regulate inflammatory reactions 
and tissue repair and can be distinguished in diverse subtypes, each one 
induced by different cytokines and eliciting different signals. In particular, 
M2a macrophages (CD206/mannose receptor+ CD209/DC-SIGN+ CD163− 
CD16− MerTK−) are stimulated by IL-4 and/or IL-13 and induce mainly a Th2 
response. M2b macrophages are stimulated by immune complexes or LTR 
ligands and are involved in Th2 activation and immune regulation, producing 
IL-10 and inflammatory cytokines. Finally, M2c macrophages (CD206high 
CD209− CD163+ CD16+ MerTK+) are stimulated by macrophage colony-
stimulating factor (M-CSF) plus IL-10 and TGF-β or by glucocorticoids, are 
characterized by their ability to secrete IL-10, which, in turn, is amplified 
by Gas-6 secretion in an autocrine manner, via MerTK signaling, and are 
involved in immune suppression, tissue repair, matrix remodeling, and 
clearance of apoptotic cells (Zizzo et al., 2012; Martinez et al., 2006).

IL-4 and/or 

IL-13

M1 (classically activated)

Recruited 

Monocytes

LPS

INF-γ

TNF-α

GM-CSF 

secreting  

TNF-α IL-1β IL-6 IL-8 MCP-1 ROS 

RNI 

M2a secreting

IL-4

immune complexes

or LTR ligands 

M2c secreting

IL-10 highly capable of 

clearing ACs

M-CSF, IL-10 and TGF-β 

Glucocorticoids

M2b 

secreting

M2 (alternatively activated)

However, this concept is a little too simplistic to describe the polarization 
of liver macrophages, especially in pathological conditions. In the injured 
liver, macrophages often express markers of inflammation or resolution 
simultaneously, and can rapidly change their phenotype depending on the 
hepatic microenvironment (Tacke, 2017). During the early stages of liver 
injury, bone marrow-derived monocytes are intensively recruited to the liver 
and differentiate into inflammatory macrophages (mostly M1) to produce 
pro-inflammatory and profibrotic cytokines. Subsequently, recruited 
macrophages switch to an M2 phenotype, which secretes a wide variety 
of matrix metalloproteinases (MMPs), such as MMP-2, MMP-9, MMP-
12, MMP-13, and MMP-14, and anti-inflammatory cytokines such  as 
IL-4, IL-13, and IL-10, aimed to facilitate fibrosis resolution (Pradere 
et al., 2013).

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org


MerTK in Atherosclerotic Lesions Associated With NAFLDPastore et al.

5 May 2019 | Volume 10 | Article 604Frontiers in Pharmacology | www.frontiersin.org

the progression or resolution of liver fibrosis. Intriguingly, 
M1-M2 functional changes have been shown to be dependent on 
underlying metabolic changes (O’Neill and Pearce, 2016).

In the lean adipose tissue, M2 macrophages produce 
high amounts of ATP (~30 per glucose) through oxidative 
phosphorylation, a biochemical process slower than glycolysis 
(O’Neill et al., 2016). In contrast, increased lipid storage in 
obesity is associated with adipocyte dysfunction and a pro-
inflammatory response, with an increase in M1-polarized pro-
inflammatory macrophages (Norata et al., 2015). In particular, 
activation of immune receptors, such as TLRs, IL-1 receptor type 
I, and TNF-R, results in activation of NF-kB and JNK signaling, 
which can induce serine phosphorylation of IRS-1 and IRS-2 and 
thereby inhibition of downstream insulin signaling (McNelis and 
Olefsky, 2014; Marra, 2008).

In M1 macrophages, upregulation of glycolytic metabolism 
feeds the pentose phosphate pathway (Van den Bossche et al., 
2017). Although glycolysis produces only a small amount of 
energy (two molecules of ATP per glucose) (Nagy and Haschemi, 
2015), this pathway supports inflammatory macrophage 
responses by generating NADPH, utilized by inducible NO 
synthase (iNOS) to produce NO or by NADPH oxidase to produce 
ROS, both necessary to sustain the antimicrobial activity of pro-
inflammatory macrophages (Modolell et al., 1995). Moreover, 
glycolysis generates pyruvate to fuel the tricarboxylic acid cycle. 
In M1 macrophages, this cycle is interrupted after citrate and 
succinate (Jha et al., 2015; O’Neill, 2015). Increased synthesis of 
acetyl coenzyme A from citrate determines the synthesis of free 
fatty acids (FFAs), lipids, and prostaglandins (Infantino et al., 
2011; Infantino et al., 2013). Up-regulation of proteins involved 
in the uptake [e.g., CD36 (Bassaganya-Riera et al., 2009)], 

esterification [e.g., diacylglycerol O-acyltransferase (Koliwad 
et al., 2010)], and oxidation [e.g., long-chain 3-hydroxyacyl-CoA 
dehydrogenase (Vats et al., 2006)] of FFAs could provide energy 
for M2 cells to restore tissue homeostasis (Shapiro et al., 2011). 
These processes would allow a reduction of FFA concentration 
by reducing IR and inflammation (Vats et al., 2006) (Figure 2).

MERTK IN THE ACTIVATION OF ANTI-
INFLAMMATORY M2C MACROPHAGES

MerTK represents the second member of Tyro-3, Axl, and Mer 
(TAM) receptor tyrosine kinase (RTK) family to be described 
(Linger et al., 2008).These receptors are characterized by adhesion 
molecule-like domains in the extracellular region, mimicking 
the structure of neural cell adhesion molecule important in 
cell–cell contacts, which contains five Ig domains and two 
fibronectin type III domains (Yamagata et al., 2003). The best-
studied ligands for MerTK are the Vit-K modified-carboxylated 
proteins growth arrest-specific 6 (Gas-6) and Protein-S (Mark et 
al., 1996; Anderson et al., 2003). These glycoproteins share ~44% 
of homology and have analogous domain structure, consisting 
of an N-terminal-carboxyl-glutamic acid (Gla) domain, four 
tandem epidermal growth factor (EGF)-like repeats, and a 
C-terminal sex hormone-binding globulin-like region (SHBG) 
containing 2 laminin G (LG) repeats (Mark et al., 1996). Gas-6 
and Protein-S are biologically active following the carboxylation 
of the Gla-domain through a vitamin K-dependent reaction 
(Stenhoff et al., 2004). This domain mediates the Ca2+-dependent 
binding to negatively charged membrane phospholipids, such 
as phosphatidylserine exposed on the surface of apoptotic cells 

FIGURE 2 | Macrophage-mediated functions to metabolic activities. In diagram on the left are depicted tissue features in the lean state associate with M2- 
macrophage polarization, while in diagram on the right are depicted tissue features during inflammation and insulin resistance associate with M1-macrophage 
polarization.
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(Huang et al., 2003). LG domains are involved in the ligand–
receptor interaction by forming a V-shaped structure, stabilized 
by a calcium-binding site (Sasaki et al., 2002). In human plasma, 
protein-S is highly concentrated (0.30 µM/L) (Rezende et al., 
2004) (approximately 1,000 times higher), compared to Gas-6 
(0.16–0.28 nM/L) (Balogh et al., 2005), conceivably due to the 
involvement of protein-S in the coagulation pathways, where 
it functions as a co-factor for protein C during factor Va and 
VIIIa inactivation (Heeb, 2008). Gas-6 is expressed mainly in 
vascular smooth muscle and endothelial cells, and it is frequently 
upregulated after tissue damage (Ekman et al., 2010).

MerTK is normally expressed in monocytes/macrophages, 
DCs, NK cells, NKT cells, HSCs, megakaryocytes, platelets, 
epithelial tissue, and reproductive tissue (Behrens et al., 2003; 
Petta et al., 2016). M2c macrophages express MerTK at high 
levels and display a marked capability to clear apoptotic bodies, a 
physiological process defined as efferocytosis (Zizzo et al., 2012). 
Interestingly, it has been demonstrated that M2c polarization is 
closely associated with MerTK upregulation, and detection of 
M2c receptors predicts MerTK expression (Zizzo et al., 2012). 
Indeed, MerTK expression and Gas-6 secretion follow the 
expression of specific M2c macrophages CD163 and CD16. 
This specific macrophage phenotype can be induced by M-CSF 
or dexamethasone, and IL-10 could enhance M-CSF effects. In 
addition, M2c macrophages are able to release Gas-6, which 
can, in turn, amplify IL-10 secretion in an autocrine manner, 
via MerTK signaling (Zizzo et al., 2012). Gas-6, linked to the 
externalized phosphatidylserine, activates MerTK, initiating the 
phagocytic process and inducing the activation of downstream 
pathways, such as ERK, P38, MAPK, FAK, AKT, and STAT-
6, that mediate transcriptional events, leading to a decrease of 
pro-inflammatory cytokines, such as IL-12, and increase in 
inflammatory repressors, including IL-10 and TGF-β, thus 
generating an anti-inflammatory milieu (Tibrewal et al., 2008).

MerTK signaling plays a central role in the suppression of 
the innate immune response, as demonstrated in experimental 
models of endotoxemia, in which MerTK knockout mice exhibit 
an extreme activation of inflammatory responses and ineffective 
resolution of inflammation, mediated by elevated levels of TNF-α 
and IL-1 (Lee et al., 2012). MerTK acts by maintaining both 
central and peripheral tolerance, through different mechanisms, 
including efferocytosis. It is already well-described MerTK 
overexpression in murine models of fibrogenesis and in patients 
with NASH and severe fibrosis (Petta et al., 2016). Indeed, in 
genome-wide association studies, it has been reported that the 
MERTK locus rs4374383 G > A correlates with decreased hepatic 
MerTK expression, thus protecting against liver fibrosis in chronic 
hepatitis C and NAFLD (Patin et al., 2012; Petta et al., 2016). The 
same G > A variant has been found to be associated with cardio-
metabolic derangement and nutritionally induced inflammation 
and could contribute in this way to liver and cardio-metabolic 
disease (Musso et al., 2017). Moreover, it has been shown that 
in human NAFLD specimens, MerTK is mainly expressed in 
macrophages and HSCs loosely aggregated within inflammatory 
foci (Petta et al., 2016). MerTK signaling has been recently 
studied also in humans with both acute liver failure syndromes 
and acute-on-chronic liver failure, where a significant cause of 

morbidity is sepsis. Triantafyllou et al. (Triantafyllou et al., 2018) 
have shown an expansion of MerTK-positive cells in circulatory 
and tissue compartments of patients with acute liver failure 
compared with healthy and cirrhotic controls, together with a 
concomitant increase in Gas-6 and in MerTK phosphorylation.

Notably, in response to acute liver injury, MerTK mediates 
downregulation of inflammatory cascades contributing to 
hepatic immune regulation by preventing autoreactive T cell 
development. However, in the context of chronic inflammation, 
MerTK promotes HSC activation, thus resulting in excessive 
fibrogenesis by abundant collagen and extracellular matrix 
proteins secretion (Petta et al., 2016).

Various therapies targeting MerTK are currently under 
development. Small-molecule tyrosine kinase inhibitors such 
as UNC569 (Christoph et al., 2013), UNC1062 (Schlegel et 
al., 2013), and UNC1666 (Lee-Sherick et al., 2015) have been 
recently described. These compounds competitively bind MerTK 
in its catalytic site, impeding phosphorylation and activation 
of the kinase domain. Treatment with these inhibitors causes 
a decrease in MerTK downstream signaling. Next-generation 
inhibitors have also been reported, including UNC2025, a 
potent, orally bioavailable inhibitor (Zhang et al., 2014). Other 
agents include Mer590, a monoclonal antibody that directly 
binds to the extracellular domain and induces internalization 
and degradation of MerTK (Cummings et al., 2014).

Small-molecule inhibitors and monoclonal antibodies are the 
main drugs that are currently used to inhibit signaling pathways 
by interfacing with specific molecules. Nevertheless, any targeted 
therapy has its own limitations. Although identifying a specific 
molecular target is crucial for NAFLD-associated cardiovascular 
treatment, targeting only a single molecule may not be completely 
determinant of these complex diseases. Other limitations include 
toxicity during the treatment, as well as mechanisms of resistance 
to molecular-targeted drugs.

MACROPHAGE NUCLEAR RECEPTORS 
CONTROL MERTK EXPRESSION IN LIPID 
METABOLISM NAFLD ASSOCIATED

Macrophage polarization is an important mechanism for the 
regulation of inflammatory response, and it is finely controlled 
by the nuclear receptor superfamily members peroxisome 
proliferator activated receptors (PPARs) (α, β/δ, and γ isotypes) 
and liver X receptors (LXRs) (LXR-α and LXR-β) (Rigamonti 
et al., 2008). These transcription factors form heterodimers 
with retinoid X receptors (RXR) (α and β isotypes) and, upon 
binding a lipid or synthetic ligand, mediate gene expression 
through trans-activation (Szanto and Roszer 2008). Nuclear 
receptors have considerable roles in the modulation of 
macrophage functions. Their ligands influence the transcription 
of genes regulating lipid homeostasis, pro-inflammatory 
cytokine production, resolution of inflammation, and synthesis 
of mediators that promote tissue healing (Rőszer et al., 2013; 
Menendez-Gutierrez et al., 2012). PPAR-γ can be activated 
by metabolic signals (i.e., polyunsaturated fatty acids and 
lipoproteins) (Nagy et al., 1998), by inflammatory mediators 
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(i.e., eicosanoids) (Kliewer  et  al.,  1997), or by immunologic 
signals (i.e., cytokines) (Huang et al., 1999). PPAR-γ activation 
results in lipid uptake through the scavenger receptor CD36, 
and β-oxidation of fatty acids (Szanto and Roszer, 2008) is 
associated to macrophage polarization into M2a cells (Bouhlel 
et al., 2007). LXRs are oxysterol-activated transcription factors 
that sense elevated cellular cholesterol (Repa and Mangelsdorf, 
2002). PPAR-γ and LXR activities are coordinated, PPAR-γ is 
in fact able to activate LXRs, but in certain conditions, PPAR-γ 
and LXRs exert opposing roles (Szanto and Roszer, 2008). In 
M2a macrophages, IL-4 stimulates the increase of PPAR-γ 
expression and LXR-α downregulation (Chinetti-Gbaguidi et 
al., 2011). LXRs are important for both apoptotic cell clearance 
and suppression of the inflammatory response during their 
phagocytosis. PPARs and LXRs control the transcription of 
many receptors, including MerTK.

Accumulation of excess lipoprotein-derived cholesterol in 
macrophages activates LXRs that, in turn, trigger the induction 
of ABC transporter, mediating cholesterol efflux (Castrillo 
and Tontonoz, 2004) and the upregulation of MerTK in mice 
(A-Gonzalez et al., 2009) and in humans (Zizzo and Cohen, 
2015). Gonzalez et al. have demonstrated that phagocytosis 
of apoptotic cells activates LXRs, probably through the 
accumulation of membrane-derived cholesterol. LXRs, in turn, 
activate transcription of MerTK, generating a positive feedback 
to promote further efferocytosis, a process that mediates the 
increased expression of ABC transporter genes such as ABCA-1 
and ABCG-1, involved in the efflux of the excess cholesterol 
and immunosuppression (A-Gonzalez et al., 2009). These 
results indicate that the LXR-dependent regulation of MerTK 
is important for normal immune homeostasis. MERTK-/- and 
LXRs DKO mice share a series of features, including amplified 
pro-inflammatory responses and increased susceptibility to 
both autoimmunity and atherosclerosis (Ait-Oufella et al., 2008; 
Cohen et al., 2002).

ROLE OF MERTK IN ATHEROSCLEROSIS 
PROCESS

Atherosclerotic lesions are clinically silent, and the acute 
cardiovascular events can be consequent to evolution to 
necrotic plaques (Virmani et al., 2000). At first, apoptotic cells 
are efficiently cleared by neighboring macrophages to limit 
overall lesion cellularity (Tabas, 2005). Here, efferocytosis is 
rapid and without inflammation. In physiological conditions, 
apoptotic cells are engulfed and degraded in phagolysosomes, 
and macrophages become overloaded with macromolecular 
constituents and cholesterol. In advanced atherosclerosis, the 
persistence of chronic inflammatory stimuli promotes lesion 
destabilization and susceptibility to heart attack and stroke. 
The role of inflammation in promoting atherosclerosis is well 
documented. Indeed, in advanced plaques, apoptotic foam 
cells, induced by chronic endoplasmic reticulum stress, elicit 
inflammatory responses (Li et al., 2013). In addition, endoplasmic 
reticulum stress is strongly correlated with plaque rupture (Li et 
al., 2006). Two processes contribute to post-apoptotic necrosis 

and defective efferocytosis and are impaired to resolve the 
inflammation response (Schrijvers et al., 2005; Libby, 2002; 
Tabas, 2010). Defective efferocytosis may be manifest at multiple 
levels, including improper presentation of apoptotic bodies 
ligands, failure to secrete come find me recruitment signals, 
or defects at the level of phagocytes (Vandivier et al., 2006). 
Efferocytosis is impaired in this last stage, and defective MerTK 
contributes, at least in part, to expansion of necrotic plaque 
(Tabas, 2005). In this regard, evidence demonstrates that mice 
lacking MerTK have shown a defect in efferocytosis, and this 
correlated with increased inflammation and necrosis within the 
plaque (Ait-Oufella et al., 2008; Thorp et al., 2008). Moreover, 
macrophages near the necrotic core of human atheroma showed 
lower MerTK expression than those in the peripheral lesions 
(Garbin et al., 2013). Finally, in the advanced atherosclerosis, 
accumulation of lipids and ROS increases levels of oxidized 
phospholipids. These lipids can bind to scavenger receptors 
and may compete for apoptotic cell recognition, compromising 
efferocytosis mechanisms (Gillotte-Taylor et al., 2001). A recent 
study shows that in the lesions, prevention of dead cells’ uptake 
is mediated by some apoptotic cells displaying a don’t-eat-me 
molecule called CD47, which is usually lost during apoptosis 
(Kojima et al., 2016).

Efferocytosis can be impaired by inactivation of MerTK 
under some inflammatory conditions (Sather et al., 2007). 
In particular, oxidized LDLs induce the expression of toll-
like receptor 4 (TLR4), increase secretion of pro-atherogenic 
cytokines, such as TNF-α and IL-1β, and reduce secretion of 
anti-inflammatory cytokines, such as TGF-β and IL-10 (Bae 
et al., 2009). This pro-inflammatory environment impairs 
efferocytosis, promoting increased lipid uptake, which 
amplified phagocytosis, and reducing MerTK expression 
levels on the macrophage surface (Miller et al., 2003). The 
decrease of MerTK expression is associated with its cleavage 
by the metalloproteinase ADAM17. In human atheromas, 
macrophages adjacent to the necrotic core have higher 
ADAM17 than those in peripheral lesion (Garbin et al., 2013). 
Multiple athero-inflammatory stimuli, such as oxidative stress, 
hypoxia, and oxidized ligands, are able to promote ADAM17 
activity (Sather et al., 2007; Garbin et al., 2013). Efferocytosis is 
suppressed by destroying the receptor and creating soluble Mer 
(sol-Mer), which competes for the binding molecules Gas-6 
and Protein-S. Interestingly, oxidized LDLs, promoting MerTK 
cleavage and defective efferocytosis, can activate necroptotic 
pathways within advanced plaques, favoring the development 
of necrotic core (Karunakaran et al., 2016). In a recent study, it 
has been demonstrated that oxidized LDLs are able to increase 
sol-Mer levels and decrease MerTK expression in the surface 
of wild-type macrophages but not in macrophages pre-treated 
with ADAM17 inhibitor or in macrophages that express 
cleavage-resistant MerTK (Cai et al., 2016). Of note, MerTK-
mediated efferocytosis might be limited by availability of Gas-
6. In this regard, vascular smooth muscle cells appear to be 
a major source of Gas-6 within the lesions (Melaragno et al., 
1999; Yin et al., 2000). It has been reported that vulnerable 
plaques have a paucity of smooth muscle cells in areas next to 
rupture (Clarke et al., 2006).
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NUCLEAR RECEPTORS AS 
MACROPHAGE THERAPEUTIC TARGET

Nuclear receptors such as PPARs and LXRs are important 
transcription factors associated with the specific accessory 
functions of macrophages. PPAR-γ exhibits great potentiality 
as a drug target in the therapy of inflammation-related 
diseases. Thiazolidinediones are insulin sensitizers used to 
improve glycemic control in T2DM patients. However, they 
may cause weight gain, fluid retention that can precipitate 
cardiac failure and bone fractures, and risk of bladder cancer 
(Cariou et al., 2012). In order to eliminate the onset of 
these effects, further  research into new PPAR-γ modulators 
is required.

GW9662 is a potent, irreversible, and selective PPAR-γ 
antagonist. Zizzo et al. have shown that this PPAR-γ antagonist 
induces macrophage differentiation towards M2c-like (CD206+ 
CD163+ CD16+) cells and upregulation of the MerTK/Gas-6 axis. 
It has shown that among the novel small molecules derived from 
GW9662, BZ-26 has a stronger interaction with PPAR-γ and 
higher transcriptional inhibitory activity of PPAR-γ compared 
with GW9662. BZ-26 inhibits inflammatory macrophage 
differentiation of THP1 human monocytic cell line (Bei et al., 
2016). Moreover, BZ-26 attenuates the inflammatory responses 
in LPS-triggered acute inflammation mouse model down-
regulating peripheral TNF-α and IL-6 level. BZ-26 inhibits NF-kB 
transcriptional activity and abolishes LPS-induced nuclear 
translocation of P65. These data demonstrate that PPAR-γ, 
besides being a ligand-activated nuclear receptor implicated in 
regulation of lipid and glucose metabolism, is a fundamental 
transcription factor for differentiation and activation of 
macrophages. PPAR-γ could represent an important therapeutic 
target to modulate inflammation via inhibiting inflammatory 
macrophages.

LXRs are important regulators of cholesterol, free fatty 
acids, and glucose metabolism. LXRs drive cholesterol efflux 
in macrophages (through ABCA-1 and ABCG-1) and support 
reverse cholesterol transport by cholesterol conversion to bile 

acids and excretion in the liver. Moreover, their activation is 
important in regulating immune processes and in inhibiting 
inflammatory gene expression (Joseph et al., 2003). It has been 
shown that T0901317, a synthetic LXR agonist, upregulates 
MerTK expression during the polarization of monocytes 
to macrophages independently of M2c polarization, with 
significant effects already occurring at low doses (Zizzo and 
Cohen, 2015), confirming previously obtained data in mice 
(A-Gonzalez et al., 2009). Unfortunately, synthetic LXR 
agonists, such as T0901317, mediate reverse cholesterol 
transport not only in the macrophage but also in other cell 
types, including hepatocytes (Grefhorst et al., 2002). Activation 
of cholesterol efflux from both sources induces the activation 
of a lipogenic program, mediated by SREBP (Grefhorst et al., 
2002), which induces remarkable steatosis and dyslipidemia in 
the liver in mouse models and human patients (Kirchgessner et 
al., 2016). These conditions make LXR’s therapeutic targeting 
unsustainable. Recently, Muse et al. have identified two 
synthetic compounds: N,N-dimethyl-3β-hydroxycholenamide 
(DMHCA) and methylpiperidinyl-3β-hydroxycholenamide 
(MePipHCA), which act as potent activators of LXR target 
genes involved in cholesterol efflux (e.g., ABCA-1 and ABCG-
1) in human and murine macrophages, while having no effect 
on the expression of lipogenic SREBP targets (e.g., Fasn) in the 
liver (Magida and Evans, 2018). Interestingly, DMHCA and 
MePipHCA activity on Kupffer cells does not induce target 
gene activation in the liver (Muse et al., 2018). These two LXR 
agonists exhibit anti-atherosclerotic activity without causing 
substantial hypertriglyceridemia in mice; therefore, they might 
represent a new class of athero-protective agents (Muse et al., 
2018). It has been demonstrated the efficacy of DMHCA and 
MePipHCA in suppressing inflammation without causing liver 
lipid accumulation or liver injury in mouse models (Yu et al., 
2016) (Table 1). Further studies will be needed to evaluate the 
effect of these compounds on macrophage polarization and 
activation. A limitation of these compounds is the large dose for 
in vivo efficacy. Therefore, the pharmacokinetic profile of these 
molecules will need to be improved.

TABLE 1 | Overview of nuclear receptors functions modulating lipid metabolism in macrophages and actions mediated by their synthetic ligands.

Receptors Role in macrophages polarization Role in lipid metabolism Agonist or antagonis

PPARγ Mediates macrophage differentiation via STAT-6 
into M2a cells
(Huang et al., 1999)

Regulates lipid uptake through the scavenger 
receptor CD36
(Szanto and Roszer, 2008)
Regulates β-oxidation of fatty acids
(Vats et al., 2006)

PPARγ antagonists:
GW9662 induces M2c polarizing effects, 
with upregulation of MerTK (Zizzo and 
Cohen, 2015)
BZ-26 attenuates inflammation by
inhibiting the differentiation inflammatory
macrophages
(Bei et al., 2016)

LXRs Promote uptake of ACs through the induction 
of MerTK
(A-Gonzalez et al., 2009)

Act as oxysterols sensors
Mediate cholesterol efflux
(Szanto and Roszer, 2008)

LXRs agonists:
T0901317 upregulates MerTK expression
(Zizzo and Cohen, 2015)
(A-Gonzalez et al., 2009)
DMHCA and MePipHCA act as potent 
activators of LXRs target genes involved in 
cholesterol efflux
(Magida and Evans, 2018)

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org


MerTK in Atherosclerotic Lesions Associated With NAFLDPastore et al.

9 May 2019 | Volume 10 | Article 604Frontiers in Pharmacology | www.frontiersin.org

CONCLUSIONS AND FUTURE 
PERSPECTIVES

Although there is a clear association between NAFLD 
and  the progression of atherosclerotic lesions, the 
underlying  mechanisms are only partially delineated. 
Lipid metabolism plays key roles in the polarization of 
macrophages, which, in turn, influences the pathogenesis 
of lipid-related diseases (Figure 1). The huge complexity 
of NAFLD and  CVD pathogenesis suggests a multitarget 
pharmacological approach, in which macrophages represent 
an intriguing target.

In this scenario, the nuclear receptor-dependent regulation 
of MerTK is important for immune homeostasis and MerTK 

regulates the pro-inflammatory responses reducing both 
autoimmunity and atherosclerosis.
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