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A B S T R A C T   

Background: Despite increasing utilization and survival benefit over the last decade, extracorporeal membrane 
oxygenation (ECMO) remains resource-intensive with significant complications and rehospitalization risk. We 
thus utilized machine learning (ML) to develop prediction models for 90-day nonelective readmission following 
ECMO. 
Methods: All adult patients receiving ECMO who survived index hospitalization were tabulated from the 
2016–2020 Nationwide Readmissions Database. Extreme Gradient Boosting (XGBoost) models were developed to 
identify features associated with readmission following ECMO. Area under the receiver operating characteristic 
(AUROC), mean Average Precision (mAP), and the Brier score were calculated to estimate model performance 
relative to logistic regression (LR). Shapley Additive Explanation summary (SHAP) plots evaluated the relative 
impact of each factor on the model. An additional sensitivity analysis solely included patient comorbidities and 
indication for ECMO as potential model covariates. 
Results: Of ~22,947 patients, 4495 (19.6 %) were readmitted nonelectively within 90 days. The XGBoost model 
exhibited superior discrimination (AUROC 0.64 vs 0.49), classification accuracy (mAP 0.30 vs 0.20) and cali-
bration (Brier score 0.154 vs 0.165, all P < 0.001) in predicting readmission compared to LR. SHAP plots 
identified duration of index hospitalization, undergoing heart/lung transplantation, and Medicare insurance to 
be associated with increased odds of readmission. Upon sub-analysis, XGBoost demonstrated superior dis-
clination compared to LR (AUROC 0.61 vs 0.60, P < 0.05). Chronic liver disease and frailty were linked with 
increased odds of nonelective readmission. 
Conclusions: ML outperformed LR in predicting readmission following ECMO. Future work is needed to identify 
other factors linked with readmission and further optimize post-ECMO care among this cohort.   

Introduction 

Over the past decade, the use of extracorporeal membrane oxygen-
ation (ECMO) for severe cardiopulmonary dysfunction has dramatically 
increased [1]. While significant advancements in technology and sur-
gical management have yielded notable improvements in outcomes, 
ECMO remains a resource-intensive therapy that is associated with 
significant complications [2]. Ultimately, patients who survive to 
discharge following ECMO frequently suffer from sequelae of acute 
illness and physical deconditioning, often requiring repeat 

hospitalization [3]. 
With the aim of directing efforts for quality improvement, prior work 

has sought to delineate clinical factors associated with nonelective 
rehospitalization following ECMO [4]. Current models, however, 
remain limited due to the use of older, highly selective, or pediatric 
cohorts, thus reducing generalizability without accounting for local 
variations in clinical practice. Furthermore, published models generally 
lack external validation and demonstrate poor predictive performance, 
limiting their clinical utility [5]. Machine learning (ML) algorithms 
which utilize nonlinear data structures hold the promise of yielding 
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prediction models with superior performance relative to traditional 
regression methods [6]. Indeed, ML modeling for survival after ECMO 
has shown improved discrimination and calibration compared to the 
regression-based Survival After veno-arterial ECMO score [7]. Given 
rising costs, and increasing emphasis on value-based healthcare, a 
contemporary prognostication of nonelective readmission is warranted. 
This model could potentially be used to predict readmission dynamically 
across centers. 

In the present work, we utilized ML techniques to develop prediction 
models for readmission following hospitalization for ECMO using a 
national cohort. We hypothesized that the ML model would improve 
upon traditional methods in predictive and discriminatory power. 

Methods 

Data source and study population 

The present study utilized the 2016–2020 Nationwide Readmissions 
Database (NRD), the largest publicly available all-payer readmissions 
repository in the US. The NRD provides hospital-based discharge 
weights to generate accurate estimates for ~60 % of all inpatient hos-
pitalizations [8]. Unique patient identifiers allow tracking of read-
missions within each calendar year and state. 

All nonelective adult (≥18 years) hospitalizations entailing ECMO 
were identified using previously reported International Classification of 
Diseases 10th Revision (ICD-10) procedure codes [1]. Records missing 
data for age, sex, in-hospital mortality or hospitalization costs were 
excluded (<1 %). Only patients who survived index hospitalization were 
considered for analysis. Based on previously defined methodology, pa-
tients were categorized into the following groups for indication of 
ECMO: heart or lung transplant, postcardiotomy, cardiogenic shock, 
respiratory failure, and mixed cardiopulmonary failure [2]. 

Variable definitions and study outcomes 

Patients hospitalized non-electively within 90 days of index ECMO 
discharge were considered the Readmit cohort, with all others grouped 
as Non-Readmit (Fig. 1). Patient and hospital characteristics, including 
age, sex, primary insurer, income quartile, hospital teaching status, 
hospital region and urban/rural location, were reported as defined by 
the Healthcare Cost and Utilization Project Data Dictionary [8]. The 
Elixhauser Comorbidity Index, a validated composite of 30 conditions, 
was used to quantify the burden of chronic conditions [9]. Patient frailty 
was ascertained using the binary Johns Hopkins Adjusted Clinical 
Groups tool, as previously detailed [10]. Individual comorbidities and 
perioperative complications were tabulated using previously reported 
ICD-10 diagnosis codes. Complications included cardiac (cardiac arrest, 
ventricular tachycardia, ventricular fibrillation, cardiac tamponade, 

myocardial infarction), respiratory (pneumothorax, pneumonia, acute 
respiratory failure, prolonged ventilation), neurologic (transient 
ischemic attack and cerebral infarction), renal (acute kidney injury), 
infectious (sepsis, septicemia, bacteremia, and central line bloodstream 
infection), and intraoperative (accidental puncture and hemorrhage) 
[11]. Hospitalization costs were calculated by the application of 
hospital-specific cost-to-charge ratios to overall charges and adjustment 
for inflation using the 2020 Personal Healthcare Index [12]. To account 
for institutional experience, centers were categorized into low-, me-
dium-, and high-volume tertiles based on the total number of ECMO 
hospitalizations each year. 

The primary outcome was the occurrence of at least one nonelective 
readmission within 90 days of discharge following ECMO hospitaliza-
tion. Our main analysis considered patient demographics, comorbid 
conditions and indications for ECMO, as well as resource use compli-
cations and incurred during index hospitalization. We additionally 
performed a sensitivity analysis incorporating only patient de-
mographics, concomitant comorbidities and indication for ECMO in the 
prediction model (Supplementary Table 1). 

Model development and training 

The study cohort was split randomly into training (80 %) and testing 
(20 %) sets. Models were derived using training data and evaluated 
using testing data. All variables included in the models are detailed in 
Supplementary Table 1. Categorical variables were split into binary 
classification to prevent variable misclassification and increase the 
granularity of discrete features [14]. 

Within the training set, ten-fold cross-validation was utilized for the 
identification of appropriate hyperparameters, which were used to 
optimize model performance. Briefly, this approach creates 10 random, 
equally-sized subgroups, and utilizes nine to train the model and one for 
validation. Within each subgroup, randomized search matrices identi-
fied hyperparameter values that maximize the c-statistic [15]. We report 
selected hyperparameters in Supplementary Table 2. 

Following hyperparameter preprocessing, eXtreme Gradient Boost-
ing (XGBoost) models were developed to predict readmission, and 
compared to traditional logistic regression (LR). Briefly, XGBoost gen-
erates an ensemble of decision trees to optimize a final prediction model; 
using a boosting algorithm, trees can learn from previous iterations [16]. 
In comparison, LR uses a single weight vector, which is then converted 
into a probability between 0 and 1 that could be used for classification 
efforts [17]. 

Recursive feature elimination was employed to select covariates of 
greatest predictive performance. Independent variables were ranked by 
individual feature importance. SHapley Additive exPlanation (SHAP) 
values were calculated to measure the marginal influence of each co-
variate on the output of the decision tree model [18]. Derived from 
cooperative game theory, this method assigns credit in arbitrary units to 
each included factor for model output [19]. 

Modeling evaluation and performance 

Model discrimination was primarily evaluated using the area under 
the receiver operating characteristic (AUROC) curve. The Brier score 
was used to evaluate the calibration of each model. Briefly, a Brier score 
of 0 indicates that all predicted probabilities perfectly match observed 
outcomes, while a maximum score of 1 represents the poorest calibra-
tion [20]. Furthermore, precision-recall curves were constructed to 
evaluate sensitivity and positive predictive value across all risk thresh-
olds. The mean average precision (mAP) was calculated as the area 
under the precision-recall curve [21]. Calibration plots were created to 
assess how well predicted probabilities matched expected outcomes 
[22]. 

Fig. 1. CONSORT (Consolidated Standards of Reporting Trials) diagram of 
study cohort and survey-weighted sample size. 

J. Balian et al.                                                                                                                                                                                                                                   



Surgery Open Science 19 (2024) 125–130

127

Statistical analysis 

Continuous variables were reported as medians with interquartile 
range (IQR). Categorical variables were presented as frequencies (%). 
Baseline characteristics were compared using the χ2 test and adjusted 
Wald or Mann-Whitney U tests. Cuzick’s nonparametric test was applied 
to assess the statistical significance of nonparametric test of trends [13]. 

All statistical analysis was performed using Stata 16.1 (StataCorp, 
College Station, TX) and Python 3.11.6 (Python Software Foundation, 
Wilmington, DE). Statistical significance was set at α = 0.05. This study 
was deemed exempt from full review by the Institutional Review Board 
at the University of California, Los Angeles, due to the de-identified 
nature of the data. 

Results 

Baseline demographics and outcomes 

Of ~22,947 patients included for analysis, 4495 (19.6 %) were 
considered the Readmit cohort. Over the study period, the number of 
hospitals performing ECMO increased from 263 in 2016 to 384 in 2020, 
P < 0.05. However, the proportion of patients nonelectively readmitted 
decreased from 20.5 % to 17.2 % (2016 to 2020, P < 0.01). On average, 
the Readmit group was older (54 [41–63] vs 52 [38–62] years, P <
0.001) and less commonly privately insured (37.5 vs 44.7 %, P < 0.001), 
compared to Non-Readmit (Table 1). Those who underwent nonelective 
rehospitalization were more commonly placed on ECMO for heart or 

lung transplant (26.3 vs 14.2 %, P < 0.001) and cardiogenic shock (6.6 
vs 6.2 %, P < 0.001), relative to Non-Readmit. 

During index hospitalization, Readmit patients more frequently 
experienced intraoperative (7.0 vs 5.7 %, P = 0.02) and renal (56.7 vs 
53.5 %, P = 0.01) complications, but less often developed respiratory 
sequelae (53.2 vs 56.3 %, P = 0.01). Further, the Readmit cohort 
demonstrated longer index LOS (45 [43–47] vs 35 [34–36], P < 0.001) 
and greater hospitalization costs (30 [28–31] vs 24 [23–25], P < 0.001), 
relative to Non-Readmit (Table 2). 

Model discrimination and performance 

As shown in Fig. 2, XGBoost demonstrated superior discrimination 
(AUROC 0.64 vs 0.49, P < 0.001) compared to LR. XGBoost continued to 
exceed LR when evaluated by mAP and the Brier score (Table 3). Both 
models exhibited modest calibration, with increasing error at high es-
timates of risk (Fig. 3). 

Feature importance 

Features of greatest predictive importance were described through 
SHAP Summary plots (Fig. 4A). Undergoing heart or lung trans-
plantation or developing acute renal injury were associated with 
increased risk of nonelective readmission. Certain comorbid conditions 
were additionally linked with increased nonelective readmission, 
including congestive heart failure and diabetes mellitus. In contrast, 
respiratory failure and postoperative acute respiratory distress syn-
drome were linked with lower odds of nonelective readmission. 

Secondary analysis 

As in our primary analysis, ML prognostic indices of pre- 
hospitalization features demonstrated improved performance 
compared to logistic regression (Supplementary Table 3). SHAP sum-
mary plots revealed patient frailty, concurrent cancer, and lowest in-
come quartile were associated greater likelihood of nonelective 
readmission, while private insurance was linked with lower odds 
(Fig. 4B). 

Discussion 

Advances in selection and perioperative management of ECMO 
candidates have yielded steady improvements in survival over the last 
decade. Yet, readmission following hospitalization for ECMO remains 
both frequent and resource-intensive. In the present study, we applied 

Table 1 
Demographic and clinical characteristics of patients undergoing ECMO were 
stratified by nonelective readmission within 90 days.   

Non-Readmit 
(n = 18,452) 

Readmit 
(n = 4495) 

P-value 

Age, median (IQR) 52 (38–62) 54 (41–63)  <0.001 
Female, % 36.7 36.3  0.75 
Elixhauser (mean, SD) 3.9 ± 0.1 4.1 ± 0.1  <0.001 
Income quartile, %    0.18 

76th–100th 23.2 22.3  
51st–75th 25.0 23.6  
26th–50th 26.9 26.6  
0–25th 24.9 27.1  

Insurance coverage, %    <0.001 
Private 44.7 37.5  
Medicare 26.5 35.8  
Medicaid 20.6 20.6  
Othera 8.2 6.1  

Indication for ECMO, %    <0.001 
Post cardiotomy 13.2 12.6  
Cardiogenic shock 6.2 6.6  
Respiratory failure 53.3 41.3  
Mixed cardiopulmonary failure 13.1 13.2  
Heart or lung transplant 14.2 26.3  

Comorbidities, %    
Congestive heart failure 42.7 48.2  <0.001 
Cardiac arrhythmia 39.4 41.1  0.19 
Pulmonary circulatory disorder 17.5 20.2  0.01 
Hypertension 31.5 32.8  0.31 
Neurologic disorders 23.6 21.8  0.07 
Chronic lung disease 14.0 14.4  0.61 
Diabetes 14.3 16.0  0.05 
Late-stage kidney disease 4.5 7.7  <0.001 
Liver disease 19.6 22.7  0.001 
Cancer 2.4 3.1  0.06 
Coagulopathy 33.0 36.2  0.01 

Hospital teaching status, %    0.05 
Non-Metropolitan 0.5 0.2  
Metropolitan non-teaching 4.4 3.6  
Metropolitan teaching 95.2 96.2  

Abbreviations: IQR, interquartile range, ECMO, extracorporeal membrane 
oxygenation, SD, standard deviation. 

a Includes self-pay, uninsured, and other 

Table 2 
Unadjusted clinical and financial outcomes of readmitted vs non-readmitted 
patients following ECMO.   

Non-Readmit 
(n = 18,452) 

Readmit 
(n = 4495) 

P-value 

Clinical outcomes (%) 
Cardiac complication 37.8 37.6  0.92 
Respiratory complication 56.3 53.2  0.01 
Infectious complication 36.7 36.6  0.98 
Intraoperative complication 5.7 7.0  0.02 
Acute kidney injury 53.5 56.7  0.01  

Financial outcomes 
Length of stay, median days [IQR] 35 [34–36] 45 [43–47]  <0.001 
Costs, $1000 USD, median [IQR] 24 [23–25] 30 [28–31]  <0.001 

Categorical outcomes reported as proportions (%) unless otherwise specified. 
Continuous outcomes reported as medians with interquartile ranges with units 
as specified. 
Abbreviations: ECMO, extracorporeal membrane oxygenation, USD, United 
States Dollar; IQR, Interquartile Range. 
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robust ML techniques to predict 90-day nonelective readmission 
following ECMO hospitalizations and made several important observa-
tions. Relative to logistic regression, machine learning demonstrated 
superior discrimination, calibration and predictive power. Furthermore, 
we identified several patient factors predictive of readmission. With 
implications towards ECMO-related practice and policy, several of these 

findings merit further discussion. 
In the present work, ML models exhibited superior accuracy in 

evaluating nonelective readmission, compared with LR. Prior literature 
has validated the utility of ML techniques to predict outcomes following 
ECMO [23]. In a single-institution study of 282 patients, Ayers et al. 
implemented neural network learning to predict survival following VA- 
ECMO, reporting significant performance improvements compared to 
regression-based prognostic scores [7]. Similarly, Abassi and colleagues 
reported enhanced precision of XGBoost relative to LR in the prediction 
of severe hemorrhage and thrombosis during cannulation [24]. In line 
with this literature, our XGBoost model consistently outperformed LR 
modeling across various performance metrics. Ultimately, the superior 
predictive power of ML techniques is likely attributable to decision tree 
architecture, which adjusts for nonlinear interactions between cova-
riates and outcomes of interest [6]. These factors may be especially 
significant in the context of readmission, which can result from complex 
interactions among a patient’s in-hospital course, clinical disposition, 
comorbidities, and psychosocial environment [25]. While long-term 
follow-up data was unavailable for the present analysis, clinicians and 
centers could build on this work using more granular local datasets and 
validate our prognostic models for specific hospital contexts. 

After evaluating SHAP values, we identified several patient factors 
that confer high readmission risk, including comorbid congestive heart 
failure and receipt of a heart or lung transplant during ECMO hospital-
ization. These conditions imply long-term chronic illness and decreased 
physiologic reserve, potentially increasing vulnerability to complica-
tions and readmission [26]. In particular, transplant patients may face 
poor functional status at baseline as well as the need for daily immu-
nosuppression, limiting their ability to resist and recover from signifi-
cant complications. Interestingly, we found acute respiratory distress 
syndrome and respiratory failure to be linked with lower odds of read-
mission. Generally, these patients present with respiratory failure sec-
ondary to acute illness; they are younger and face a lower burden of 
chronic disease, relative to the overall ECMO patient population [27]. 
Therefore, after adequate recovery, it is likely these patients are at lower 
risk for complications, disease sequelae, and eventual rehospitalization. 
Future studies should consider the role of post-discharge monitoring and 
follow-up care for patients facing greatest likelihood for readmission. 
These data could further reveal the longitudinal impact of ECMO beyond 
three months following initial hospitalization. Additionally, given pa-
tients who received ECMO may face unique sequelae of both their dis-
ease and treatment, the development of a specific post-discharge 
longitudinal care pathway could reduce readmission risk, while 
improving short- and longer-term recovery through targeted care. 

In our sensitivity analysis which solely utilized patient-level factors 

Fig. 2. Receiver Operating Characteristics of Logistic Regression and XGBoost. 
XGBoost exhibited greater discriminatory power in the prognostication of 
nonelective rehospitalization compared to LR within the testing dataset, 
demonstrated by incremental area under the Receiver Operating Character-
istic Curve. 

Table 3 
Performance metrics between machine learning (XGBoost) versus logistic 
regression (LR).  

Metric LR (95 % CI) XGBoost (95 % CI) 

AUROC 0.488 (0.483–0.493) 0.636 (0.630–0.642) 
Recall 0.490 (0.479–0.502) 0.609 (0.598–0.620) 
Precision 0.200 (0.198–0.201) 0.272 (0.269–0.274) 
Brier score 0.165 (0.162–0.168) 0.154 (0.151–0.158) 

Performance metrics reported as mean with 95 % confidence intervals and ob-
tained via 10-fold cross validation. 
LR: Logistic Regression; CI, Confidence Interval; AUROC: Area Under the 
Receiver Operating Characteristic. 

Fig. 3. (A) Calibration plot for XGBoost and Logistic Regression. XGBoost was more accurate in predicting nonelective readmission across higher risk thresholds. (B) 
Precision Recall Curves for Logistic Regression and XGBoost. The XGBoost model demonstrated greater classification accuracy, as indicated by enhanced mean 
average precision score. 
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as readmission predictors, XGBoost continued to exceed LR across per-
formance metrics. In line with research evaluating the impact of socio-
economic disadvantage on outcomes following ECMO for cardiogenic 
shock, we found lowest income and public insurance to confer greater 
readmission risk [5]. Furthermore, we identified patient frailty and co-
morbid liver disease as independent risk factors for rehospitalization. 
Notably, this finding accords with prior work that has linked liver 
dysfunction with inferior clinical outcomes during and after ECMO. In a 
single institution study of 187 ECMO runs, Sandrio et al. found both pre- 
ECMO liver impairment or high Model for End-Stage Liver Disease score 
to confer significantly greater mortality risk [28]. While pre-existing 
hepatic dysfunction is currently incorporated in existing ECMO mor-
tality prediction models, our investigation suggests it may also be im-
pactful for readmission [29]. We recognize many of these factors may 
not be modifiable, and certainly not during an acute hospitalization. 
Ultimately, the incorporation of these factors could help identify pa-
tients at greatest risk for rehospitalization early in their hospital course. 
Indeed, multi-disciplinary clinical teams could take this risk into ac-
count when discharge planning and coordinating follow-up care. Yet, 
efforts are needed to ensure sociodemographic risk factors do not 
negatively influence patient selection and further contribute to known 
disparities in receipt of this life-saving modality [30]. 

The present study has several limitations related to its retrospective 
nature. ICD coding may be influenced by physician-level and institu-
tional billing practices. The NRD does not offer granular clinical, 
radiographic, or laboratory data to assess the disease severity of each 
individual patient. Moreover, ECMO-specific data points including flow 
rate, ventilator settings, and cannulation sites could not be ascertained 
in the NRD. Surgeon ECMO experience was unavailable for analysis, as 
were certain hospital metrics, such as nurse-to-patient ratios or utiliza-
tion of standardized recovery pathways. The NRD does not capture out- 
of-hospital complications or follow-up care, nor does it report admitting 
diagnoses, preventing the adjustment of our models to these features. 
Future studies could consider the impact of such information on the 
AUROC and performance of readmission prediction models. Addition-
ally, while we were unable to compare our machine-learning models to 
published algorithms, we utilized logistic regression with traditional 
methods for covariate selection for comparison. Nonetheless, the present 
study utilized a nationally representative sample and thorough statisti-
cal methods to present a robust ML-based analysis of readmission 
following ECMO. 

In conclusion, we report that ML outperforms traditional LR in the 
prediction of nonelective readmission within 90 days following hospi-
talization for ECMO. With continued adoption and utilization of ECMO, 
the implementation of more accurate readmission risk assessments, such 
as the model detailed in the present work, could enhance care transitions 
and post-discharge follow-up. Altogether, improved readmission pre-
diction and appropriately targeted interventions could improve both the 

value and quality of care for these complex patients. 
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